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Objectives of this study:

• Giving an extensive and up to date review of methods already used for computing BCLF
functions.

• Providing algorithms for get exact values of this functions when using arbitrary precision
floating point real numbers.

• Providing double precision programs in C to compute BCLF with a limited range for param-
eters ζ, a and r (possibly using precomputations within a computer algebra system).

• Introducing to further studies using other methods, such as extrapolation methods.

• Numerous formulas are still to check.

• Is it an hard problem to find a stable method to evaluate An
λ+1/2(1, a, r) since this function

vanishes on curves in the quarter plane a, r ≥ 0 when n ≥ 2 and λ ≥ 1 ?

Remark.– Some formulas and methods in the following may be original, but litterature should be
studied very carefully before any assertion in this matter.

1 Introduction

1.1 Definition of BCLF functions

Let n a nonnegative integer, a and r two real positive numbers, ζ a real positive number. With R
defined as

R =
√

a2 + r2 − 2ar cos θ (1)

consider the function Rn−1e−ζR.
Defining x ∈ [−1,+1] by x = cos θ, its Lagrange expansion with respect to x on [−1,+1] with
respect to x may be expressed as

Rn−1e−ζR =
1√
ar

∞∑
λ=0

(2λ + 1)An
λ+1/2(ζ, a, r) Pλ(x) ,−1 ≤ x ≤ 1 , (2)
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which defines BCLF functions An
λ+1/2.

As ∫ +1

−1
P 2

λ (x)dx =
2

2λ + 1
(3)

we immediately deduce from this expression that

An
λ+1/2(ζ, a, r) =

√
ar

2

∫ +1

−1
Rn−1e−ζRPλ(x)dx . (4)

A simple expression of BCLF function for n = 0 and 0 < r ≤ a is well known

A0
λ+1/2(ζ, a, r) = Kλ+1/2(ζa)Iλ+1/2(ζr), 0 < r ≤ a . (5)

From expression (4) it follows that, for n ≥ 0,

An+1
λ+1/2(ζ, a, r) = − ∂

∂ζ
An

λ+1/2(ζ, a, r) . (6)

and

An
λ+1/2(ζ, a, r) = −(−1)n ∂n

∂ζn
A0

λ+1/2(ζ, a, r) . (7)

As R is invariant by exchanging a and r

An
λ+1/2(ζ, a, r) = An

λ+1/2(ζ, r, a) . (8)

As A0
λ+1/2(ζ, a, r) = A0

λ+1/2(1, ζa, ζr), equation (6) leads by recurrence to

An
λ+1/2(ζ, a, r) =

1
ζn

An
λ+1/2(1, ζa, ζr), n ≥ 0. (9)

Introducing function Ān
λ(a, r) = An

λ+1/2(1, a, r) for a, r ≥ 0, we get

Ān
λ(a, r) = ζnAn

λ+1/2(1, ζa, ζr), n ≥ 0, (10)

and the equation (6) may be rewritten

Ān+1
λ (a, r) = nĀn

λ(a, r)−
(

a
∂

∂a
+ r

∂

∂r

)
Ān

λ(a, r) , n ≥ 0. (11)

Equation (9) is called the homogeneity relation for the functions An
λ+1/2 and any equation involving

these functions should admit a translation into a corresponding equation for functions Ān
λ.
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1.2 Recurrence relations

Extending the value of An+1
λ+1/2 for any integer value of λ by equations (5) and (7) taken as definition

relations, one may check the following recurrence relations that are proved in [1].

A1
λ+1/2(ζ, a, r) =

arζ

2λ + 1
[A0

λ−1/2(ζ, a, r)−A0
λ+3/2(ζ, a, r)]. (12)

An+2
λ+1/2(ζ, a, r) = (a2 + r2)An

λ+1/2(ζ, a, r)

− 2ar

2λ + 1
[λAn

λ−1/2(ζ, a, r) + (λ + 1)An
λ+3/2(ζ, a, r)], n ≥ 0. (13)

Equations (12) and (7) are equivalent to

Ā1
λ(a, r) =

ar

2λ + 1
[Ā0

λ−1(a, r)− Ā0
λ+1(a, r)] (14)

Ān+2
λ (a, r) = (a2 + r2)Ān

λ(a, r)− 2ar

2λ + 1
[λĀn

λ−1(a, r) + (λ + 1)Ān
λ+1(a, r)], n ≥ 0. (15)

Using (14) and (11), it is easily that Ān
λ(a, r) may be expressed as a linear combination of Ā0

k and
coefficients in the set of polynomials in a, r, λ with integer coeffcients

Ān
λ(a, r) =

n∑
i=−n

pn,i(a, r, λ)Ā0
λ+i(a, r) (16)

For example

Furthermore Ā0
λ verifies a four term recurrence relation with respect to λ

Ā0
λ+4(a, r) = −2λ + 7

2λ + 3
Ā0

λ(a, r)− (2λ + 7)(2λ + 3)
ar

Ā0
λ+1(a, r)

+
2λ + 5

(2λ + 3)a2r2

[
(2λ + 3)(2λ + 7)(a2 + r2) + 2a2r2

]
Ā0

λ+2(a, r)

−(2λ + 7)2

ar
Ā0

λ+3(a, r). (17)

Using (16) and (17), it may be deduced that Ān
λ(a, r) may be expressed as

Ān
λ(a, r) =

3∑
i=0

Qn,i(a, r, λ)Ā0
λ+i(a, r), (18)

where Qn,i(a, r, λ), i = 0, . . . , 3 are rational functions in a, r, λ.

Denoting by Qn the vector of components Qn,i(a, r, λ), i = 0, . . . , 3 and by D the linear differential
operator D = a ∂

∂a + r ∂
∂r , it may be proven that

Qn+1 = (nI4 −M)Qn −DQn, (19)
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where I4 is the 4× 4 unit matrix and M is the 4× 4 matrix

M =



2λ + 1 − ar

2λ + 3
0 − ar

2λ + 3

− (2λ + 3)(2λ + 5)(a2 + r2) + a2r2

(2λ + 5)ar
0 − ar

2λ + 5
−(2λ + 3)

2λ + 5
ar

2λ + 3
0

(2λ + 3)(2λ + 5)(a2 + r2) + a2r2

(2λ + 3)ar
ar

2λ + 5
0

ar

2λ + 5
−(2λ + 7)


.

Remark.– The following recurrence relation such as printed in [2] is false because it is not coherent
with homogeneity equation (9) :

An+1
l (ζ, a, r) =

ar

2l + 1

[
An

λ−1/2(ζ, a, r)−An
λ+3/2(ζ, a, r)−An−1

λ−1/2(ζ, a, r)−An−1
λ+3/2(ζ, a, r)

]
,

even when replacing An+1
l (ζ, a, r) by An+1

l+1/2(ζ, a, r) in the hand side of the equation because of an
obvious misprint.

1.3 Explicit expressions

Equations (5) and (6) together with recurrence and derivative relations on Bessel functions allow
to get explicit expressions of An

λ+1/2(ζ, a, r) in terms of Bessel functions for any n, λ, a and r.

For example

A1
λ+1/2(ζ, a, r) =

2λ + 1
ζ

Iλ+1/2(ζr)Kλ+1/2(ζa)− rIλ−1/2(ζr)Kλ+1/2(ζa)

+aIλ+1/2(ζr)Kλ−1/2(ζa) , 0 ≤ r ≤ a , (20)

or

A1
λ+1/2(ζ, a, r) = −2λ + 1

ζ
Iλ+1/2(ζr)Kλ+1/2(ζa)− rIλ+3/2(ζr)Kλ+1/2(ζa)

+aIλ+1/2(ζr)Kλ+3/2(ζa) , 0 ≤ r ≤ a . (21)

The polynomials pn

Definition.– Polynomials pn(x), n 6= 0 with integer coefficients are defined by the following recur-
rence

p0(x) = 1, (22)
p1(x) = x + 1, (23)
pn(x) = (2n− 1)pn−1(x) + x2pn−2(x), n ≥ 2. (24)

For example

p2(x) = x2 + 3x + 3,

p3(x) = x2 + 6x2 + 15x + 15.

Polynomials pn are encountered in Pade approximants of the function e2x in the following way.
Πm,nf(x) = p(x)/q(x) is the Pade approximant of order m, n of a function f(x), where p(x), q(x)
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is the unique pair of polynomials with integer coefficients with respective degrees m an n and
relatively primes such that f(x)− p(x)/q(x) = O(xk+l+1). Then, when f(x) = e2x,

Πm,nf(x) =
pn(x)

pn(−x)
, n ≥ 1. (25)

For n nonnegative integer, Bessel functions In+1/2(x) and Kn+1/2(x) may be expressed in terms of
polynomial pn(x) :

In+1/2(x) = (−1)n xn+1/2

√
2π

[
pn(−x)ex − pn(x)e−x

x2n+1

]
(26)

the term into brackets beeing a regular function at x = 0 with even parity,

Kn+1/2(x) =
√

πe−x

√
2 xn+1/2

pn(x) . (27)

Theorem.– The functions Ān
λ(a, r) has the following explicit representation

Ān
λ(a, r) =

e−a

2aλ+1/2rλ+1/2

[
p
(n)
λ (a, r)er + q

(n)
λ (a, r)e−r

]
, (28)

where p
(n)
λ (a, r) and q

(n)
λ (a, r) are polynomials in a and r with integer coefficients, with degree n+λ

with respect to each variable a , r and with total degree n + 2λ with respect to a and r.

To do:
Another explicit representation for A1

λ+1/2(ζ, a, r)

A1
λ+1/2(ζ, a, r) = aIλ+1/2(ζr)Kλ−1/2(ζa)− rIλ+3/2(ζr)Kλ+1/2(ζa) (29)

Another explicit expression for A
(2)
λ (a, r) is

A
(2)
λ (a, r) = (a2 + r2 + 2λ(2λ + 1))Iλ+1/2(r)Kλ+1/2(a) + 2rIλ+3/2(r)Kλ+1/2(a)

−2a(rIλ+3/2(r)Kλ+3/2(a) + λIλ+1/2(r)Kλ+3/2(a)) (30)

1.4 Integral representations

As in [3] using the integral representation of the product of two modified Bessel function (equation
6.541 page 703 in [4])

Kν(ζa)Iν(ζr) =
∫ +∞

0

t

t2 + ζ2
Jν(at)Jν(rt) dt , 0 ≤ r ≤ a . (31)

equations (5) and (7) provide

An
λ+1/2(ζ, a, r) =

∫ +∞

0
(−1)n ∂n

∂ζn

(
t

t2 + ζ2

)
Jλ+1/2(at)Jλ+1/2(rt) dt . (32)

This is equivalent to equation (29) in [3].

The following integral representations are used in [2]

A0
λ+1/2(ζ, a, r) =

1
2

∫ +∞

0
Iλ+1/2

(
ar

2u

)
e−ζ2u−a2+r2

4u
du

u
, (33)

An
λ+1/2(ζ, a, r) =

1
2

∫ +∞

0
un/2Hn(ζ

√
u)Iλ+1/2

(
ar

2u

)
e−ζ2u−a2+r2

4u
du

u
. (34)

where Hn is the Hermite polynomial of degree n.
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1.5 BCLF functions for r = a

This paragraph is devoted to the study of BCLF function on the diagonal r = a. For integers n ≥ 1
and λ ≥ 0, function g

(n)
λ are defined by

g
(n)
λ = A

(n)
λ+1/2(1, a, a) = Ā

(n)
λ (a, a). (35)

It is straightforward to verify the following relations

g
(1)
λ (a) =

a2

2λ + 1
[g(0)

λ−1(a)− g
(0)
λ+1(a)], (36)

g
(n+2)
λ (a) = 2a2

[
g
(n)
λ (a)− 1

2λ + 1
(λg

(n)
λ−1(a) + (λ + 1)g(n)

λ+1(a))
]
, n ≥ 0. (37)

g
(n+1)
λ (a) = ng

(n)
λ (a)− a

d

da
g
(n)
λ (a), n ≥ 0. (38)

The three term recurrence relation on λ is verified

g
(n)
λ+3(a) =

2λ + 5
2λ + 3

g
(n)
λ (a) + [

(2λ + 3)(2λ + 5)
a2

+ 1]g(n)
λ+1(a)

−2λ + 5
a2

[
2λ + 3

a2
+

a2

2λ + 3
]g(n)

λ+2(a) n ≥ 0. (39)

Theorem.– For n ≥ 0, λ ≥ 0, the function g
(n)
λ has the following Taylor series expansion

g
(n)
λ (a) =

+∞∑
k=0

cn,λ,ka
k with cn,λ,k =

(−1)n+λ+k2k

(k + 1)(k − n)!

∏λ
l=1(k − 2l + 1)∏λ
l=1(k + 2l + 1)

, (40)

where by convention 1/n! has value 0 if n < 0. This series has an infinite radius of convergence
and the coefficients verify the recurrence relation

4(k + 1)cn,λ,k = (k − n + 1)(k − n + 2)(k − 2λ + 1)(k + 2λ + 3)cn,λ,k+2, k ≥ 0. (41)

Proof.– To do

The recurrence relation implies that

c0 = c2 = c2n1 = 0, c2n1+2 6= 0, (42)

where n1 is defined by n = 2n1 + 2 if n is even and n = 2n1 + 1 if n is odd, and

c1 = c3 = c2m1−1 = 0, c2m1+1 6= 0, (43)

where m1 is defined by 2m1 = max(n, 2λ) if n is even and 2m1 + 1 = max(n, 2λ + 1) if n is odd.
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2 Numerical stability and exact values in arbitrary precision

2.1 Naive evaluation of Ān
λ(a, r)

Functions Ān
λ(a, r) may be evaluated using recurrence relations (14) and (15). However there

happens a loss of precision when n, λ, a or r increases and numbers are represented by floating
point reals with fixed precision. A way to overcome this problem is to increase the precision of by
floating point reals for intermediate computations. It is straightforward within a computer algebra
system like Maple or others.

An heuristic (not rigorous) way to get exact numerical results for a given precision D is to succes-
sively compute the function for increasing precisions D < D1 < . . . < Dn < Dn+1 and to stop the
computation when the rounding to D digits of the results for precisions Dn and Dn+1 are equal.
The precision Dn then gives a precise indication of the numerical instability of an algorithm and in
particular a formula for Ān

λ and given values of a and r.

The following functions in calculAn.mpl are used to implement this procedure.

exComp1 := proc(f,x)
local oldprec,prec1,prec2,y1,y2;
global INCPREC,CURPREC;
oldprec:=Digits;
y1 := f(x);
Digits := Digits+INCPREC;
CURPREC := Digits;
y2 := f(x);
while not(evalf(y1,oldprec)=evalf(y2,oldprec)) do
y1 := y2;
Digits := Digits+INCPREC;
CURPREC := Digits;
y2 := f(x);
od;
Digits := oldprec;
evalf(y1,oldprec);

end:

showPrec1 := proc(f,x)
global CURPREC;
CURPREC:=1;
exComp1(f,x);
CURPREC;

end:

exComp2 := proc(f,a,r)
local oldprec,prec1,prec2,y1,y2;
global INCPREC,CURPREC;
oldprec:=Digits;
y1 := f(a,r);
Digits := Digits+INCPREC;
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CURPREC := Digits;
y2 := f(a,r);
while not(evalf(y1,oldprec)=evalf(y2,oldprec)) do
y1 := y2;
Digits := Digits+INCPREC;
CURPREC := Digits;
y2 := f(a,r);
od;
Digits := oldprec;
evalf(y1,oldprec);

end:

showPrec2 := proc(f,a,r)
global CURPREC;
CURPREC := 1:
exComp2(f,a,r);
CURPREC;

end:

Then come the definitions of Ān
λ(a, r) and g

(n)
λ (a) using recurrence equations.

Anbar := proc(n,lambda,a,r)
if r>a then RETURN(Anbar(n,lambda,r,a)); fi;
if n=0 then
RETURN(BesselK(lambda+1/2,a)*BesselI(lambda+1/2,r));

fi;
if n=1 then
RETURN(a*r/(2*lambda+1)*(Anbar(0,lambda-1,a,r) - Anbar(0,lambda+1,a,r)));

fi;
(a^2+r^2)*Anbar(n-2,lambda,a,r) - 2*a*r/(2*lambda+1)*(
lambda*Anbar(n-2,lambda-1,a,r) + (lambda+1)*Anbar(n-2,lambda+1,a,r));

end:

Gn := proc(n,lambda,a)
if n=0 then
RETURN(BesselK(lambda+1/2,a)*BesselI(lambda+1/2,a));

fi;
if n=1 then
RETURN(a^2/(2*lambda+1)*(Gn(0,lambda-1,a,tst) - Gn(0,lambda+1,a,tst)));

fi;
2*a^2*(Gn(n-2,lambda,a,tst) - 1/(2*lambda+1)*(

lambda*Gn(n-2,lambda-1,a,tst) + (lambda+1)*Gn(n-2,lambda+1,a,tst)));
end:

This section to be completed.
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2.2 Roots of Ān
λ(a, r)

From equation (4) it follows that An
λ+1/2(ζ, a, r) > 0 for 0 < r ≤ a if n = 0 or n = 1 or λ = 0. Let

us denote by Z
(n)
λ the subset of points (r, a) in r > 0, a > 0 such that Ān

λ(a, r) = 0. For λ = 1, n ≥ 2
and for n = 2, 3, λ ≥ 1, Z

(n)
λ is a single simple curve (as in figures 3 and 3).

The set Z
(10)
6 is shown in figure 3. The points on the diagonal a = r are obtained for a = r =

0.568310, 2.444904, 5.5934424, 11.269419, 28.131956 and the limit points (0, a) or (a, 0) are obtained
when a is a positive root of polynomial

a6 − 39a5 + 510a4 − 2640a3 + 4725a2 − 945a− 945 ,

that is a = 0.732831, 3.008601, 6.388665, 11.132220, 18.070565.

It may be observed, but not yet proved, that Z
(n)
λ is the union of min(λ, bn

2 c) simple curves.

Although it may be deduced from the existence of non void sets Z
(n)
λ that it is impossible to find

a pure arithmetic algorithm to get functions Ān
λ(a, r) with a predefined relative precision using

double floats, results of the previous subsection show that the loss of precision at the neighborhood
of zeros is not the main obstacle.

3 Analytical study
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bk k(l m||l ), and vanishing of hn,2nŰi(l m||l ) for special values of i and n. J. Math. Physics,
26:3193–3199, 1985.

[23] N. Suzuki. Comment on “Compact expression for Löwdin’s alpha function”. J. Math. Physics,
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Figure 1: Number of false digits in the naive evaluation of Ā2
4(a, r) by recurrence relation.
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Figure 2: Number of false digits in the naive evaluation of Ā2
4(a, r) by equation (30).
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