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Motivation: /n-sifu Upgrading of Oil Sands via MCNPs
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Multiscale modeling of self-assembled

and functionalized nanoobjects S

Density Functional Theory
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Outline

@ Benzene hydrogenation mechanism: [Adsorption of
CYCliC C6H69 C6H89 C6H10 and C6H12 on the (OOOI)
surface of a-Mo,C]

o

X. Liu, D. R. Salahub et al, J Phys Chem C 2013, 117 (14), 7069
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Benzene Hydrogenation Reaction Intermediates
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Adsorption of C¢Hg, CgHg, CeH, o,
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Thermodynamically Stable Adsorption
Configuration
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What are missing from the DFT studies?

» The topology (shape) of the real active sites on
MCNPs;

> The electron delocalization over the real
nanoparticles;

» The reaction barriers l

An even faster method is needed!
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Outline

@ Parameterizing a faster quantum mechanical
method: [DFTB Parameterization of Mo, C, H, O and
Si]

@

X. Liu, D. R. Salahub et al, Theor.Chem.Acc., 2016, 135:168, 1-14
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DFTB Benchmarking: Reaction Path Energies

Benzene Hydrogenation on a Mo, C,  cluster
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Entropy? The in-sifu Environment?
Something is still missing!
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Outline

@ The role of entropy and the environment:
[Molybdenum Carbide Nanocatalysts at Work 1n the in-
situ Environment: a DFTB and QM(DFTB)/MM Study]

X. Liu, D. R. Salahub et al, J Am Chem Soc 2015, 137, 4249
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QM(DFTB)/MM Scheme

Etot - EQM i EMM ke EQM/MM

Warshel and Levitt, J. Mol. Biol. 1976

Ftot — <q,‘ gom 4 H‘QM/MM‘LP> L gOM/MM |y

esd vdw

Cui et al. J Phys. Chem. B 2000, 105 (2), 569

CHARMM




The QM/MM Model

A 1.2 nm MCNP embedded in 100 benzene

molecules
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Free Energy and Umbrella Sampling
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QM/MM Umbrella Sampling (a typical window)

Addition of the 1st hydrogen
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The Physical Quantities

Electronic (potential) energy QM-NEB -
U=E_+E(T)+E.(T)+E,T) Internal Energy
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The Second Hydrogenation Reaction
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Final Remarks - important concepts

v Benzene hydrogenation on molybdenum carbide:
Langmuir-Hinshelwood mechanism.

v MCNPs: metallic nanoparticles.

v The key to improve the catalytic activity:
controlling the morphology of the MCNPs.

v' The MCNPs are flexible under working conditions.

v The entropic (including anharmonic entropy) effect
and the solvent environment are crucial.

v’ Nanoparticles are neither clusters nor bulk
v Need a new paradigm for nanocatalysis that includes

flexibility, anharmonicity and entropy
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How to choose/find reaction coordinates (collective
variables)?




QM/MM Umbrella Sampling (a typical window)

Addition of the 1st hydrogen
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Free Energy and Umbrella Sampling
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The Second Hydrogenation Reaction
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A sampling of enhanced sampling methods

Umbrella sampling (Torrie, Valleau, 1977)

Transition path sampling (Bolhuis, Chandler, 1998)
Replica exchange (Parallel tempering) (Sugita, 1999)
Meta-dynamics (Laio, Parrinello, 2002)

String method (Vanden Eijnden, 2002)

Path collective variables (Parrinello, 2007)

Adaptive Biasing Force (Pohorille, 2008, Klein, 2010)
Free-energy without CVs (Laio, 2018)

Time-lagged autoencoders/deep learning (Noée, 2018)

. CV discovery with deep Bayesian models (Schoberl,
2018)



Predictive Collective Variable Discovery with Deep Bayesian Models
Markus Schoberl,™2-* Nicholas Zabaras,':®) and Phaedon-Stelios Koutsourelakis?: ©)
) Center for Informatics and Compuiational Science, University of Notre Dame,
911 Cushing Hall, Notre Dame, IN 46556, USA.
2 Continuum Mechanics Group, Technical University of Munich,
Boltzmannstrafle 15, 85748 Garching, Germany.

(Dated: 20 September 2018)

Extending spatio-temporal scale initations of models for complex atomistic systems
considered 1n biochemistry and matenals science necessitates the development of en-
hanced samphing methods. The potential acceleration in explonng the configurational
space by enhanced sampling methods depends on the choice of collective vanables
(CVs). In this work, we formulate _tkc discovery of CVs as a Bayesian inference prob-
lem and consider the CVs as hidden generators of the full-atomistic trajectory. The

ability to generate samples of the fine-scale atomistic configurations using hmited

training data allows us to compute estimates of observables as well as our proba-
_bilistic confidence on them. The methodology is bﬁ on emerging mm
advances in machine learning and vanational inference. The discovered CVs are re-
lated to physicochemical properties which are essential for Wme(hamsms

v in unexplored complex systems. We provide a quantitative assessment of
the CVs in terms of their predictive ability for alanine dipeptide (ALA-2) and ALA-15
peptide.

J. Chem. Phys. 150, 024109 (2019) |
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FIG. 2. Schematic of the AEVB depicting the employed network architecture. Fully connected
linear layers are denoted with (¥ and non-linear activation functions with a(¥). The indices ¢ and

0 indicate encoding and decoding networks, respectively. The maximization of the lower-bound

on the log-likelihood £(8,¢; X) in Eq. (11) simultaneously optimizes the parametrization of the
encoder and decoder. The first term in £(8, ¢»; X') accounts for the reconstruction of the training
data (! with z(Y distributed according gy (z(*)|2("). The second term, in aggregation of all data

x),_ensures that gg(z*)|x(?) is close to p(z).




1. Sirmulation of ALA-2

Alanine dipeptide consists of 22 atoms leading to dim(x) = 66 in a Cartesian repre-
sentation comprising the coordinates of all atoms which we will use later on as the model
input. It is well-known that ALA-2 exhibits distinct conformations which are categorized
depending on the dihedral angles (¢,%)) (as indicated in Fig. 1(a)) of the atomistic configu-

ration. We label the three characteristic modes as a, -1, and -2 in accordance with [104]

(see Fig. 1(b)).

Ramachandran Plot

-100—50 0 50 100 150
o [°]

(a) ALA-2 peptide with indicated dihedral (b) Characteristic conformations
angels. and their labelling as used in the

sequel.



. x -2 Training Data

FIG. 5. Representation of the z-coordinates of the training data X with N = 500 in the CV
space (yellow diamonds). Using the trained model and the mean of g,(z|z) we computed the z-
coordinates of 1527 test samples corresponding to different conformations of the alanine dipeptide

to a (black), 8-1 (blue), and 3-2 (red). Without any prior physical information, the encoder yields
\

three distinct clusters in the CV space.
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(a) Active ARD prior. (b) Without ARD prior.

FIG. 6. Representation of the z-coordinates of the training data X with N = 50 in the CV

space (yellow diamonds). Using the trained model and the mean of g4(2|z) we computed the z-
coordinates of 1527 test samples corresponding to different conformations of the alanine dipeptide
to a (black), 8-1 (blue), and -2 (red). In the case of limited training data, the ARD prior
facilitates the identification of physically meaningful CVs (left) compared to the representation on
the right obtained without the ARD prior. Note that the changed positioning of the conformations

in the CV space compared to Fig. 5 is due to symmetries in pg(z).
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FIG. 7. Ramachandran plot estimated with the training data X (left column), using predictions of
the trained model (middle column), and the reference (right column, estimated with N = 10, 000).
Each row refers to different size N of training datasets (the figure on the right column is repeated to
allow easy comparison with the results on the first two columns). The represented predictions are
obtained by applying Algorithm [2] with T = 10, 000 samples. The generative nature of the model
allows more accurate estimates than when using the training data alone. In addition, the Bayesian

approach allows for predictions with their associated uncertainties as discussed subsequently.
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FIG. 8. Predicted configurations x (including dihedral angle values) for {z|z; =
{—3.5,-25,...,3.5}, 22 = 0} with pg(z) of pg(x|z). As one moves along the z; axis, we ob-
tain for the given CVs atomistic configurations x reflecting the conformations «, -1, and 3-2.

Rendered atomistic representations are created by VMD'24,
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FIG. 12. Predicted radius of gyration with dim(z) = 2 for various sizes N of the training dataset.
The MAP estimate indicated in red is compared to the reference (black) solution. The latter is
estimated by N = 10,000. The shaded area represents the 5%-95% confidence interval, reflecting

the induced epistemic uncertainty from the limited amount of training data.



N = 300 N = 3000 Reference

.
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FIG. 15. Predicted Ramachandran plot with dim(z) = 2 for various sizes N of the training dataset
(first three plots from the left). Depicted predictions are MAP estimates based on T' = 10,000

samples. The plot on the right is the reference MD prediction with N = 10, 000 configurations.
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Machine Learning

A Probabilistic Perspective
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