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Artificial Intelligence — Having machines exhibit human

intelligence i.e. carry out tasks that humans can

Machine Learning — Having machines learn for themselves
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Computer vision - image classification, image restoration,

object detection in images and videos
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Natural language processing - speech recognition, sentiment
analysis, speech synthesis, language translation in text and

audio
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Computer vision - image classification, image restoration,

object detection in images and videos

Natural language processing - speech recognition, sentiment
analysis, speech synthesis, language translation in text and

audio

Data mining - predicting market demand
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Artificial Intelligence — Having machines exhibit human

intelligence i.e. carry out tasks that humans can
Machine Learning — Having machines learn for themselves

Deep Learning — use of artificial neural networks with multiple

layers allowing "deep" connections

@ Input Layer () Hidden Layer @ Output Layer
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Next generation deep learning

* Medical screening
* Weather forecasting and event detection
* Geographic Information Systems for satellite image analysis

* Bioinformatics

Deep learning in chemistry

* DeepChem - deep-learning in drug discovery, quantum chemistry
and biology

* neural network force fields at DFT accuracy

* Kohn-Sham density from machine learning
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= NC Types of Machine Learning

Unsupervised Reinforcement

Supervised _
Learning Learning

Learning

* Labeled data S
* Direct feedback * Unlabeled data rial and error
* Regression

* Classification

R P * Reward based

* Clustering
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Steps in a supervised machine learning workflow

Load the data
Explore the data

Preprocess the data

Evaluate model

1

2

3

4. Run model
5

6. Refine model
7

Predict
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Deep Learning Frameworks are building blocks for the design,

training and validation of deep neural networks through a high
-level programming interface

* TensorFlow

* Torch/PyTorch

» Caffe/Caffe2

* Microsoft Cognitive Toolkit/CNTK

* MXNet

* Scikit
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DeepChem is a Python
library democratizing deep learning for science.

Physiology

BBABP
Toxel
ToxCast

Quantum Physical Biophysics | b soe

ClinTox
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Journal of Computer-Aided Molecular Design

MULEE%TAPH?[?FE[[% - July 2014, Volume 28, Issue 7, pp 711-720 | Cite as

FreeSolv: a database of experimental and calculated
hydration free energies, with input files

Authors Authors and affiliations

David L. Mobley -], J. Peter Guthrie

643 experimental and calculated hydration free energy of small molecules in water
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Sam Hutchinson (3" year student) — Feature Engineer

Molecular ML Challenge: Featurization
O

O Molecules come in many
sizes and shapes.

O How can a molecule be
transformed into a
vector/matrix for
machine learning?

O Turns out different
representations needed
for different problem:s.
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Machine feaminj and A9

via Brain simulations

Andrew Ng
Stanford University

Coming up with features is difficult, time-
consuming, requires expert knowledge.

“Applied machine learning” is basically
feature engineering.
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Sam Hutchinson (3" year student)
— Feature Engineer

ECFP VS FCFP
Extended Connectivity Fingerprints Functional Connectivity Fingerprints
Based on intramolecular descriptors Based on intermolecular descriptors
_ atomic mass - hydrogen bonding donor
- atomic number - hydrogen bonding acceptor
- atomic charge - acidic
- valence minus number of hydrogens - basic
- no. of directly attached heavy neighbours - aromatic
- no. of directly attached hydrogens - halogenic

-isitinaring?
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Experimental (kcal/mol)

ECFP XGBoost

Experimental (kcal/mol)

FCFP XGBoost

Predicted (kcal/mol) Predicted (kcal/mol)
EFCP FCFP (this work) | FCFP (RdKit)
Train (R?) 0.97+0.01 0.97+0.01 0.97+0.01
Valid (R?) 0.74+0.13 0.78+0.08 0.82+0.04
Test (R?) 0.78+0.05 0.81+0.03 0.83+0.04
Test (RMS) in kcal/mol | 1.78+0.27 1.65+0.21 1.60+£0.14

ncLorg.au




EFCP FCFP (this work) FCFP (RdKit)

Train (R?) 0.97+0.01 0.97+0.01 0.97+0.01
Valid (R?) 0.74+0.13 0.78+0.08 0.82+0.04
Test (R?) 0.78+0.05 0.81+0.03 0.83+0.04
Test (RMS) in kcal/mol | 1.78+0.27 1.65+0.21 1.60+0.14

Model Training Validation Test

Random Forest | 0.80+0.03 2.12+0.68 2.03+£0.22

Multitask 1.07+£0.06 1.95+0.41 1.87+0.07

XGBoost 0.85+0.12 1.76%0.21 1.74%0.15

KRR 11+0.07

0.31+0.09

1.35+0.15

1.40£0.16

0.49%0.46

1.48%0.15

1.63%£0.18

0.32+£0.04

1.19+0.08

1.22+0.28

0.31%0.05

1.20£0.02

1.15+0.12
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Minnesota Solvation Database — version 2012

If this database 1s used for published work, the following citation should be given:

Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.;
Chambers, C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G.
Minnesota Solvation Database — version 2012, University of Minnesota,

Minneapolis, 2012.
EFCP FCFP GraphConv DAG weave

Octanol (€=9.86)
Train (R?) 0.97+0.06 | 0.96 +0.02 1.00+0.00 | 1.00+0.00 | 1.00+0.00
Valid (R?) 0.80+0.08 | 0.89+0.06 0.85+0.05 | 0.96+0.02 | 0.90+0.07
Test (R?) 0.79+0.10 | 0.79+0.13 0.94+0.01 | 0.96+0.02 | 0.94+0.03
Test (RMS) | 1.65+0.52| 1.54£0.24 | 110+0.42 | 0.76£0.29 | 1.04£0.30
in kcal/mol
Hexadecane (€=2.05)
Train (R?) 0.89+0.14 | 0.84+0.20 0.97+0.01 | 1.00+£0.01 | 0.99+0.01
Valid (R?) 0.62+0.22 | 0.52+0.22 0.66+0.08 | 0.91+0.04 | 0.90+0.08
Test (R?) 0.59+0.11 | 0.79+0.34 0.59+0.10 | 0.68+0.06 | 0.69+0.14
Test (RMS) [ 1.220.51 | 1.1940.66 |  113+0.14 | 1.05£0.09 | 1.03£0.24
in kcal/mol
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Hamessing the power of supercomputing and state of the art electronic
structure methods, the Materials Project provides open web-based access
to computed information on known and predicted materials as well as

Material (3 powerful analysis tools to inspire and design novel materials.
Project —
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Machine feaminj and A9

via Brain simulations

Andrew Ng
Stanford University

Coming up with features is difficult, time-
consuming, requires expert knowledge.

“Applied machine learning” is basically
feature engineering.




Machine Learning in Materials Science?

SMILES - simplified molecular-input line-entry
system

H-G-C-C-C-C-C-H CCCCCC

O)‘NHz C1=CC=C(C=C1)C(=O)N

CHy
HiC N
N)‘j[) CN1C=NC2=C1C(=O)N(C(=0O)N20O)C
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Features used in Materials Science

number of atoms/ions van der Waals radius
atomic number covalent radius
atomic mass melting point
atomic/ionic radius boiling point

period/group in Periodic Table density

valency molar volume
electron affinity thermal conductivity
electronegativity specific heat
ionization energy diffusivity
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ADVANCED

a ENERGY
M“h\‘liir’ﬁ s

MATERIALS

www.advenergymat.de

www.MaterialsViews.com

New Light-Harvesting Materials Using Accurate
and Efficient Bandgap Calculations

Ivano E. Castelli,* Falco Hiiser, Mohnish Pandey, Hong Li, Kristian S. Thygesen,
Brian Seger, Anubhav Jain, Kristin A. Persson, Gerbrand Ceder, and Karsten W. Jacobsen

This contains GLLB-sc computed band gaps of around 2400 experimentally known
materials showing a band gap at the GGA level and their corresponding Materials Project

identifier which was used to download 2254 structures from the Materials Project

repository.
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R%=0.980, RIZASE=0.380, MAE=0.272 R?=0.980, RMSE=0.381, MAE=0.276
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R?=0.993, RMSE=0.232, MAE=0.142
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Including PBE estimate
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Conclusions

Conclusions from Solvation study
— Putting in more "chemistry" did not make much of a

difference
— Featurisers without as much "chemistry" perform better

— Are we putting in the right "chemistry"?

Conclusions from Materials study
— Putting in more "structure" did not make much of a

difference
— Better performance was gained by including crude ab initio

descriptors
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a) crystal structure b) Voronoi tessellation and c) infinite periodic graph
neighbors search construction and

property labeling
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d) decomposition to fragments

path fragments of length /,

nodes (atoms)

circular fragments (polyhedrons)
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