

CHEMISTRY: MOLECULES TO MATERIALS

Introduction to Quantum Computation

Part 1

Bruno Senjean
ICGM, Université de Montpellier, CNRS

Please connect to http://www.quizzoodle.com/session/join/

History

Table of contents

Classical ComputationClassical circuitToward the second quantum revolution
Quantum Mechanics
Quantum ComputationQuantum bit (Qubit)
Quantum circuit
Quantum Gates
Examples
Classical versus QuantumReversibilityUniversalityNo-cloning theorem

History

Max Planck

Ultraviolet catastrophe
Planck assumed that electromagnetic radiation can be emitted or absorbed only in discrete packets, called quanta, of energy

$$
E=h \nu
$$

Albert Einstein

Photoelectric effect, Interaction light-matter:
a beam of light is not a wave propagating through space, but a swarm of discrete energy packets, known as photons

Erwin Schrödinger

Matrix mechanics and Schrödinger wave formulation of quantum states, wavefunctions...

Disruptive mathematical formalism, questioning:

Max Born

"Quantum Mechanics" is used for the first time

John von Neumann

Equivalence between the wave formulation and the matrix mechanics. These equivalent theory will be referred to Quantum Mechanics

EPR paper:
Quantum Mechanics is incomplete. It lacks some essential "element of reality". We are just missing some hidden variable, Nature properties should be deterministic.

Alan Turing

Turing Machine
Mathematical model of computation describing an abstract machine capable of implementing any computer algorithm.

Bombe

Colossus

Computers used in the Second World War to decode Enigma, just in time for the Normandy landings

ENIAC (Pennsylvanie)

First programmable, electronic, general-purpose digital computer, Turing-complete (computationally universal) able to simulate any Turing machine.

30 tons, $72 \mathrm{~m}^{2}$

J. Bardeen, W. Brattain, W. Shockley

First working transistor.
A transistor is a semiconductor device used to amplify or switch electrical signals and power.

The transistor is one of the
basic building blocks of modern electronics.
The first quantum revolution begins

Integrated circuits

Orders of magnitude smaller, faster, and less expensive

John Stewart Bell

Bell's inequality

Experimental test to check whether or not the picture of the world which EPR were hoping to force a return is valid or not.

Gordon Earle Moore

Moore's law

Based on the empirical observation that the number of transistors in a dense integrated circuit doubles about every two years

Microprocessors
Computer processor where the data processing logic and control is included on a single integrated circuit

Paul A. Benioff

Richard Feynman

First Conference on the Physics of Computation (MIT)

A computer can operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines.
(foundation for future work on quantum computing)

It appears impossible to efficiently simulate an evolution of a quantum system on a classical computer. Proposed a basic model for a quantum computer. (Quantum simulation, advantage over classical computing?)

William Wootters

Wojciech H. Zurek

No-cloning theorem
impossible to create an independent and identical copy of an arbitrary unknown quantum state

Alain Aspect

First quantum mechanics experiment to demonstrate the violation of Bell's inequalities

David Elieser Deutsch

First universal quantum computer (Quantum Turing-Machine)

Universal Turing machine can simulate any other Turing machine efficiently (Church-Turing thesis)

Universal quantum computer can simulate any other quantum computer with at most a polynomial slowdown.
(quantum gates, similar traditional digital computing binary logic gates)

Yoshihisa Yamamoto

Proposal for first experimental realization of a quantum computer with two-qubit gates using photons and atoms.

Chimie Physique Théorique et Modélisation

David Elieser Deutsch

Richard Jozsa

Deutsch-Jozsa quantum algorithm.
Although of little current practical use, it is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm.

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters Phys. Rev. Lett. 70, 1895 - Published 29 March 1993

Only the information about the quantum state and not the state itself (no matter or energy) passes from Alice to Bob.

Peter Shor

Shor's quantum algorithm.
Finding the prime factors of an integer.
Almost exponentially faster than associated classical algorithms
Quantum cryptography

Ignacio Cirac

Christopher Monroe

Peter Zoller

David J. Wineland

Proposed an experimental realization of the controlled-NOT gate with cold trapped ions
experimentally realize the first quantum logic gate (controlled-NOT gate) with trapped ions

Alexei Kitaev

Phase estimation algorithm

Estimates the phase (or eigenvalue) of an eigenvector of a unitary operator

Lov Grover

Quantum search algorithm
Quadratic speed-up over the best analog classical algorithm

Four superconducting transmon qubits

Yasunobu Nakamura and Jaw-Shen Tsai
demonstrate that a superconducting circuit can be used as a qubit

A variational eigenvalue solver on a photonic quantum processor

Alberto Peruzzo \boxtimes, Jarrod McClean, Peter Shadbolt, Man-Hong_Yung, Xiao-Qi Zhou, Peter J. Love, Alán
Aspuru-Guzik \square \& Jeremy L. O'Brien \square
Nature Communications 5, Article number: 4213 (2014) | Cite this article

Development of an hybrid quantum/classical algorithm Reduce circuit depth at the expense of measurement and classical optimization

Present

Development Roadmap |

2019 e	2020 O	2021 ®
Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algonithms and applications	Run cuantum programs $100 \times$ taster with Oiskit Runtme

2022
Bring dynamic circuits to Oiskir Runtime to unlock more computaions

2023
Enhancingapplcations withelastic computing
ind parallelization of and paralleizat
Oiski: Runime

2024
Improve accuracy of Oiskit funtime with
scalable erro mitgat

2025
Scate quantumapplications with circuit kniting
toolibox controling Qishit Runtime

Beyond 2026
increase accuracy an speed of quantum
workiows with integ
of errof correction into
Diskit

Algorithm
Developers

Kernel
Developers

System,
Modularity

Institut Charles Gerhardt Montpellier

Classical Computation

Classical circuit

Classical bits

The basic component of classical information is the classical bit (binary digit) which can take the value 1 or 0 , experimentally corresponding to the state of a transistor, a voltage, or a flux of photons in an optic fiber.

Although the electronic components which create, store and manipulate classical bits rely on quantum mechanics (first quantum revolution), the classical bit states are described by classical mechanics, essentially because they involve a huge number of particles.

Classical bits

The basic component of classical information is the classical bit (binary digit) which can take the value 1 or 0 , experimentally corresponding to the state of a transistor, a voltage, or a flux of photons in an optic fiber.

Although the electronic components which create, store and manipulate classical bits rely on quantum mechanics (first quantum revolution), the classical bit states are described by classical mechanics, essentially because they involve a huge number of particles.

Information is stored as a succession of bits, encoding integer numbers and real numbers. For N bits:

$$
n=\sum_{i=0}^{N-1} a_{i} 2^{i} \xrightarrow{\text { digitization }} a_{N-1} a_{N-2} \ldots a_{1} a_{0} .
$$

With N bits, one can encode 2^{N} integer numbers (one at a time).

Classical bits: examples

QUIZZ

Classical logical gates

A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

Classical logical gates

A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

A	NOTA
0	1
1	0

A	B	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

A	B	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

Classical circuit: model of classical computation

Example: the half adder circuit

\mathbf{A}	\mathbf{B}	\mathbf{S} $\mathbf{A}+\mathbf{B}$	\mathbf{C} Retenu
0	0	$\mathbf{0}$	$\mathbf{0}$
0	1	$\mathbf{1}$	$\mathbf{0}$
1	0	$\mathbf{1}$	$\mathbf{0}$
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Toward Second Quantum Revolution

Moore's law

The calculation power of a computer is related to the number of transistor in the processor, which has been observed to double about every two years.

Moore's law

The calculation power of a computer is related to the number of transistor in the processor, which has been observed to double about every two years.

The end of Moore's law ?
7 / 38

Transistors are reaching a size where quantum effects are not negligible anymore! $\sim 2 \mathrm{~nm}$

The end of Moore's law ?

Transistors are reaching a size where quantum effects are not negligible anymore! $\sim 2 \mathrm{~nm}$

There might be different solutions: 3D stacking, new emergent technologies (post-silicon era), ...

Chimie Physique Théorique et Modélisation

The end of Moore's law ?

Transistors are reaching a size where quantum effects are not negligible anymore! $\sim 2 \mathrm{~nm}$

There might be different solutions: 3D stacking, new emergent technologies (post-silicon era), ...

But why not a change of paradigm ? Exploit the quantum effects instead of dealing with them !

> Toward Quantum Computing
> QUIZZ

Quantum Mechanics

Postulates

Postulate 1a: Quantum state of a system

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

Postulate 1a: Quantum state of a system

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

Consider an orthonormal basis $\left\{\left|\alpha_{i}\right\rangle\right\}$ for a d-dimensional state space. An arbitrary state vector in the state space can be written as:

$$
|\psi\rangle=\sum_{i=1}^{d} a_{i}\left|\alpha_{i}\right\rangle
$$

We say that $|\psi\rangle$ is a superposition of the states $\left|\alpha_{i}\right\rangle$ with associated amplitude a_{i}.

Postulate 1a: Quantum state of a system

For a physical system, the associated state vector is normalized:

$$
\langle\psi \mid \psi\rangle=1 \longleftrightarrow \sum_{i=1}^{d}\left|a_{i}\right|^{2}=1
$$

The unit norm constraint does not completely determine $|\psi\rangle$, as any state $e^{i \theta}|\psi\rangle$ is also normalized.

Chimie Physique Théorique et Modélisation
Institut Charles Gerhardt Montpellier

Postulate 1a: Quantum state of a system

For a physical system, the associated state vector is normalized:

$$
\langle\psi \mid \psi\rangle=1 \longleftrightarrow \sum_{i=1}^{d}\left|a_{i}\right|^{2}=1
$$

The unit norm constraint does not completely determine $|\psi\rangle$, as any state $e^{i \theta}|\psi\rangle$ is also normalized.
States that differ by this global phase factor are said to be equivalent.

States that differ by a relative phase are distinct.

Chimie Physique Théorique et Modélisation

Postulate 1a: Quantum state of a system

For a physical system, the associated state vector is normalized:

$$
\langle\psi \mid \psi\rangle=1 \longleftrightarrow \sum_{i=1}^{d}\left|a_{i}\right|^{2}=1
$$

The unit norm constraint does not completely determine $|\psi\rangle$, as any state $e^{i \theta}|\psi\rangle$ is also normalized.
States that differ by this global phase factor are said to be equivalent.

States that differ by a relative phase are distinct.

What about a composite system made up of two (or more) distinct physical systems ?

Postulate 1b: Quantum state of composite systems

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

Chimie Physique Théorique et Modélisation

Postulate 1b: Quantum state of composite systems

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

For composite systems A and B, prepared in the state $\left|\psi_{A}\right\rangle$ and $\left|\psi_{B}\right\rangle$, respectively, then the joint state of the total system is

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle \equiv\left|\psi_{A}\right\rangle\left|\psi_{B}\right\rangle \equiv\left|\psi_{A} \psi_{B}\right\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{d}
\end{array}\right) \otimes\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{d}
\end{array}\right)=\left(\begin{array}{c}
a_{1} b_{1} \\
\vdots \\
a_{1} b_{d} \\
a_{2} b_{1} \\
\vdots \\
a_{d} b_{d}
\end{array}\right)
$$

Postulate 1b: Quantum state of composite systems

Any state of \mathcal{H} can be decomposed in the basis $\left\{\left|\mu_{i j}\right\rangle\right\}$ formed by the tensor product of the basis of \mathcal{H}_{A} and \mathcal{H}_{B}, i.e. $\left|\mu_{i j}\right\rangle=\left|\alpha_{i}\right\rangle \otimes\left|\beta_{j}\right\rangle$.

Postulate 1b: Quantum state of composite systems

Any state of \mathcal{H} can be decomposed in the basis $\left\{\left|\mu_{i j}\right\rangle\right\}$ formed by the tensor product of the basis of \mathcal{H}_{A} and \mathcal{H}_{B}, i.e. $\left|\mu_{i j}\right\rangle=\left|\alpha_{i}\right\rangle \otimes\left|\beta_{j}\right\rangle$.

Examples: consider $\left|\psi_{A, 1}\right\rangle$ and $\left|\psi_{A, 2}\right\rangle\left(\left|\psi_{B, 1}\right\rangle\right.$ and $\left.\left|\psi_{B, 2}\right\rangle\right)$ two states of system $\mathbf{A}(\mathbf{B})$, then

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{A, 1} \psi_{B, 2}\right\rangle+\left|\psi_{A, 2} \psi_{B, 1}\right\rangle\right)
$$

Chimie Physique Théorique et Modélisation

Postulate 1b: Quantum state of composite systems

Any state of \mathcal{H} can be decomposed in the basis $\left\{\left|\mu_{i j}\right\rangle\right\}$ formed by the tensor product of the basis of \mathcal{H}_{A} and \mathcal{H}_{B}, i.e. $\left|\mu_{i j}\right\rangle=\left|\alpha_{i}\right\rangle \otimes\left|\beta_{j}\right\rangle$.

Examples: consider $\left|\psi_{A, 1}\right\rangle$ and $\left|\psi_{A, 2}\right\rangle\left(\left|\psi_{B, 1}\right\rangle\right.$ and $\left.\left|\psi_{B, 2}\right\rangle\right)$ two states of system $\mathbf{A}(\mathbf{B})$, then

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{A, 1} \psi_{B, 2}\right\rangle+\left|\psi_{A, 2} \psi_{B, 1}\right\rangle\right)
$$

is entangled and
$|\psi\rangle=\frac{1}{2}\left(\left|\psi_{A, 1} \psi_{B, 1}\right\rangle+\left|\psi_{A, 1} \psi_{B, 2}\right\rangle+\left|\psi_{A, 2} \psi_{B, 1}\right\rangle+\left|\psi_{A, 2} \psi_{B, 2}\right\rangle\right)$

Postulate 1b: Quantum state of composite systems

Any state of \mathcal{H} can be decomposed in the basis $\left\{\left|\mu_{i j}\right\rangle\right\}$ formed by the tensor product of the basis of \mathcal{H}_{A} and \mathcal{H}_{B}, i.e. $\left|\mu_{i j}\right\rangle=\left|\alpha_{i}\right\rangle \otimes\left|\beta_{j}\right\rangle$.

Examples: consider $\left|\psi_{A, 1}\right\rangle$ and $\left|\psi_{A, 2}\right\rangle\left(\left|\psi_{B, 1}\right\rangle\right.$ and $\left.\left|\psi_{B, 2}\right\rangle\right)$ two states of system $\mathbf{A}(\mathbf{B})$, then

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{A, 1} \psi_{B, 2}\right\rangle+\left|\psi_{A, 2} \psi_{B, 1}\right\rangle\right)
$$

is entangled and
$|\psi\rangle=\frac{1}{2}\left(\left|\psi_{A, 1} \psi_{B, 1}\right\rangle+\left|\psi_{A, 1} \psi_{B, 2}\right\rangle+\left|\psi_{A, 2} \psi_{B, 1}\right\rangle+\left|\psi_{A, 2} \psi_{B, 2}\right\rangle\right)=\frac{1}{2}\left(\left|\psi_{A, 1}\right\rangle+\left|\psi_{A, 2}\right\rangle\right) \otimes\left(\left|\psi_{B, 1}\right\rangle+\left|\psi_{B, 2}\right\rangle\right)$
is not.
Entangled states are interesting because they exhibit correlations that have no classical analog.

Postulate 2: Measurement of physical observable

Every measurable physical quantity \mathcal{M} is described by a Hermitian operator $\hat{\mathcal{M}}$ acting in the state space \mathcal{H}. This operator is an observable, meaning that its eigenvectors form a basis for \mathcal{H}. The result of measuring a physical quantity \mathcal{M} must be one of the eigenvalues of the corresponding observable $\hat{\mathcal{M}}$.

Postulate 2: Measurement of physical observable

Every measurable physical quantity \mathcal{M} is described by a Hermitian operator $\hat{\mathcal{M}}$ acting in the state space \mathcal{H}. This operator is an observable, meaning that its eigenvectors form a basis for \mathcal{H}. The result of measuring a physical quantity \mathcal{M} must be one of the eigenvalues of the corresponding observable $\hat{\mathcal{M}}$.

Consider the spectral decomposition of $\hat{\mathcal{M}}$:

$$
\hat{\mathcal{M}}=\sum_{m} m \hat{P}_{m}=\sum_{m} m|m\rangle\langle m|
$$

where \hat{P}_{m} is the projector onto the eigenspace of $\hat{\mathcal{M}}$ with eigenvalue m.

The possible outcomes of the measurement are the eigenvalues m of the observable.

Postulate 2: Projective measurement on state $|\psi\rangle$

Consider a state $|\psi\rangle \in \mathcal{H}$, which can always be written in the eigenbasis of $\hat{\mathcal{M}}$:

$$
|\psi\rangle=\sum_{m} \psi_{m}|m\rangle
$$

The probability of getting the eigenvalue m upon measuring $|\psi\rangle$ is given by

$$
p_{\psi}(m)=\langle\psi| \hat{P}_{m}|\psi\rangle=|\langle\psi \mid m\rangle|^{2}=\left|\psi_{m}\right|^{2}
$$

Given that outcome m occurred, $|\psi\rangle$ collapses immediately to

$$
|\psi\rangle \longrightarrow \frac{\hat{P}_{m}|\psi\rangle}{\sqrt{p_{\psi}(m)}}=|m\rangle
$$

Postulate 2: Projective measurement, expectation value

One can easily calculate average values for projective measurements,

$$
\begin{aligned}
\mathbf{E}_{\psi}(\hat{\mathcal{M}}) & =\sum_{m} p_{\psi}(m) \\
& =\sum_{m} m\langle\psi| \hat{P}_{m}|\psi\rangle \\
& =\langle\psi|\left(\sum_{m} \hat{P}_{m}\right)|\psi\rangle \\
& =\langle\psi| \hat{\mathcal{M}}|\psi\rangle \equiv\langle\hat{\mathcal{M}}\rangle_{\psi}
\end{aligned}
$$

It follows a formula for the standard deviation

$$
\Delta_{\psi} \hat{\mathcal{M}}=\sqrt{\left\langle\hat{\mathcal{M}}^{2}\right\rangle_{\psi}-\langle\hat{\mathcal{M}}\rangle_{\psi}^{2}}
$$

which is a measure of the typical spread of the observed values upon measurement of $\hat{\mathcal{M}}$.

Postulate 3: Time evolution of a system

The time evolution of the state vector $|\psi(t)\rangle$ is governed by the Schrödinger equation, where $H(t)$ is the (time-dependent) Hamiltonian (observable associated with the total energy of the system),

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

Postulate 3: Time evolution of a system

The time evolution of the state vector $|\psi(t)\rangle$ is governed by the Schrödinger equation, where $H(t)$ is the (time-dependent) Hamiltonian (observable associated with the total energy of the system),

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

or, equivalently:

The time evolution of a closed system is described by a unitary transformation on the initial state,

$$
|\psi(t)\rangle=U\left(t ; t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

Operation are unitary to preserve the norm of the quantum state in time.

Quantum Computation

Quantum Bit or Qubit

Chimie Physique Théorique et Modélisation

Quantum bit: a mathematical object

A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system: a two-level system.

Chimie Physique Théorique et Modélisation

Quantum bit: a mathematical object

A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system: a two-level system.

Any state of the state space will be decomposed in the computational basis made out of two vectors denoted $|0\rangle$ and $|1\rangle$ as follows

$$
|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle
$$

with $\left(\psi_{0}, \psi_{1}\right) \in \mathbb{C}^{2}$ and $\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}=1$.

Quantum bit: a mathematical object

A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system: a two-level system.

Any state of the state space will be decomposed in the computational basis made out of two vectors denoted $|0\rangle$ and $|1\rangle$ as follows

$$
|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle
$$

with $\left(\psi_{0}, \psi_{1}\right) \in \mathbb{C}^{2}$ and $\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}=1$.

In contrast with a classical bit, the state can be something else than $|0\rangle$ and $|1\rangle$, it can be a superposition of $|0\rangle$ and $|1\rangle$ (also called quantum parallelism).

Quantum bit: a mathematical object

A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system: a two-level system.

Any state of the state space will be decomposed in the computational basis made out of two vectors denoted $|0\rangle$ and $|1\rangle$ as follows

$$
|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle
$$

with $\left(\psi_{0}, \psi_{1}\right) \in \mathbb{C}^{2}$ and $\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}=1$.
In contrast with a classical bit, the state can be something else than $|0\rangle$ and $|1\rangle$, it can be a superposition of $|0\rangle$ and $|1\rangle$ (also called quantum parallelism).

A qubit follows the law of quantum mechanics. It cannot be examined to determine its quantum state, but its measurement outcome will be $|0\rangle$ with probability $\left|\psi_{0}\right|^{2}$ or $|1\rangle$ with probability $\left|\psi_{1}\right|^{2}$.

Quantum corollary to Moore's law: Quantum registers

1-qubit: $|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle$

Quantum corollary to Moore's law: Quantum registers

1-qubit: $|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle$
2-qubit: $|\psi\rangle=\psi_{0}|00\rangle+\psi_{1}|01\rangle+\psi_{2}|10\rangle+\psi_{3}|11\rangle$

Quantum corollary to Moore's law: Quantum registers

1-qubit: $|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle$
2-qubit: $|\psi\rangle=\psi_{0}|00\rangle+\psi_{1}|01\rangle+\psi_{2}|10\rangle+\psi_{3}|11\rangle$
3-qubit: $|\psi\rangle=\psi_{0}|000\rangle+\psi_{1}|001\rangle+\psi_{2}|010\rangle+\psi_{3}|011\rangle \psi_{4}|100\rangle+\psi_{5}|101\rangle+\psi_{8}|110\rangle+\psi_{7}|111\rangle$

Quantum corollary to Moore's law: Quantum registers

1-qubit: $|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle$
2-qubit: $|\psi\rangle=\psi_{0}|00\rangle+\psi_{1}|01\rangle+\psi_{2}|10\rangle+\psi_{3}|11\rangle$
3-qubit: $|\psi\rangle=\psi_{0}|000\rangle+\psi_{1}|001\rangle+\psi_{2}|010\rangle+\psi_{3}|011\rangle \psi_{4}|100\rangle+\psi_{5}|101\rangle+\psi_{8}|110\rangle+\psi_{7}|111\rangle$
4-qubit: $|\psi\rangle=\psi_{0}|0000\rangle+\psi_{1}|0001\rangle+\psi_{2}|0010\rangle+\psi_{3}|0011\rangle \psi_{4}|0100\rangle+\psi_{5}|0101\rangle+\psi_{8}|0110\rangle+\psi_{7}|0111\rangle$

$$
+\psi_{8}|1000\rangle+\psi_{9}|1001\rangle+\psi_{10}|1010\rangle+\psi_{11}|1011\rangle \psi_{12}|1100\rangle+\psi_{13}|1101\rangle+\psi_{14}|1110\rangle+\psi_{15}|1111\rangle
$$

Quantum corollary to Moore's law: Quantum registers

1-qubit: $|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle$
2-qubit: $|\psi\rangle=\psi_{0}|00\rangle+\psi_{1}|01\rangle+\psi_{2}|10\rangle+\psi_{3}|11\rangle$
3-qubit: $|\psi\rangle=\psi_{0}|000\rangle+\psi_{1}|001\rangle+\psi_{2}|010\rangle+\psi_{3}|011\rangle \psi_{4}|100\rangle+\psi_{5}|101\rangle+\psi_{8}|110\rangle+\psi_{7}|111\rangle$
4-qubit: $\begin{aligned}|\psi\rangle & =\psi_{0}|0000\rangle+\psi_{1}|0001\rangle+\psi_{2}|0010\rangle+\psi_{3}|0011\rangle \psi_{4}|0100\rangle+\psi_{5}|0101\rangle+\psi_{8}|0110\rangle+\psi_{7}|0111\rangle \\ & +\psi_{8}|1000\rangle+\psi_{9}|1001\rangle+\psi_{10}|1010\rangle+\psi_{11}|1011\rangle \psi_{12}|1100\rangle+\psi_{13}|1101\rangle+\psi_{14}|1110\rangle+\psi_{15}|1111\rangle\end{aligned}$

The number of binary strings that are encoded on the qubit register doubles for every additional qubit.

That's the Quantum corollary to Moore's law

Not performing any measurements, Nature conceals a great deal of hidden quantum information, which grows exponentially with the number of qubits ($N=500>n_{\text {atoms }}$ in the universe !).

Quantum Computation

Quantum Circuit

Quantum circuit: model of quantum computation

Quantum circuit: model of quantum computation

Quantum circuit: model of quantum computation

Quantum circuit: model of quantum computation

Quantum Computation

Quantum gates

Single-qubit gates: Bloch Sphere representation
Because $\left(\psi_{0}, \psi_{1}\right) \in \mathbb{C}^{2}$ and $\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}=1$, one can rewrite the qubit state as follows:

$$
|\psi\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right) \longrightarrow|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

Single-qubit gates: Pauli matrices

Any unitary operation \hat{U} on a single qubit might be seen as a rotation on the Bloch sphere. It corresponds to a 2×2 matrix which can be expressed as a function of four basis operators.

Single-qubit gates: Pauli matrices

Any unitary operation \hat{U} on a single qubit might be seen as a rotation on the Bloch sphere. It corresponds to a 2×2 matrix which can be expressed as a function of four basis operators.

A commonly used basis consists in Pauli's matrices:

$$
\mathbb{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Chimie Physique Théorique et Modélisation

Single-qubit gates: Pauli matrices

Any unitary operation \hat{U} on a single qubit might be seen as a rotation on the Bloch sphere. It corresponds to a 2×2 matrix which can be expressed as a function of four basis operators.

A commonly used basis consists in Pauli's matrices:

$$
\mathbb{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Alternative notations:

$$
\hat{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{X}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{Y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Properties: $\hat{X}^{2}=\hat{Y}^{2}=\hat{Z}^{2}=\hat{I}$ and $\sigma_{i} \sigma_{j}=i \varepsilon_{i j k} \sigma_{k}+\delta_{i j} \mathbb{I}$

Chimie Physique Théorique et Modélisation

Single-qubit gates: Pauli generators for rotations

Any rotation around the direction $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)(|\vec{n}|=1)$ can be expressed as the exponential matrix of a superposition of Pauli's matrices, with $\hat{\vec{\sigma}}=(\hat{X}, \hat{Y}, \hat{Z})$,

$$
\begin{aligned}
e^{i \frac{\theta}{2}(\vec{n} \cdot \hat{\sigma})} & =\sum_{k=0}^{\infty} \frac{i^{k}\left(\frac{\theta}{2} \vec{n} \cdot \hat{\vec{\sigma}}\right)^{k}}{k!} \\
& =\sum_{p=0}^{\infty} \frac{(-1)^{p}\left(\frac{\theta}{2} \vec{n} \cdot \hat{\vec{\sigma}}\right)^{2 p}}{(2 p)!}+i \sum_{q=0}^{\infty} \frac{(-1)^{q}\left(\frac{\theta}{2} \vec{n} \cdot \hat{\vec{\sigma}}\right)^{2 q+1}}{(2 q+1)!} \\
& =\mathbb{I} \sum_{p=0}^{\infty} \frac{(-1)^{p}\left(\frac{\theta}{2}\right)^{2 p}}{(2 p)!}+i(\vec{n} \cdot \hat{\vec{\sigma}}) \sum_{q=0}^{\infty} \frac{(-1)^{q}\left(\frac{\theta}{2}\right)^{2 q+1}}{(2 q+1)!} \\
& =\cos \frac{\theta}{2} \mathbb{I}+i \sin \frac{\theta}{2}\left(n_{x} \hat{X}+n_{y} \hat{Y}+n_{z} \hat{Z}\right)=R_{\vec{n}}(\theta)
\end{aligned}
$$

Single-qubit gates

$$
\left.\left.\hat{X}=\begin{array}{c}
|0\rangle \\
|0\rangle \\
|1\rangle \\
|1\rangle \\
\hline
\end{array}\left(\begin{array}{cc}
\mid 1 \\
1 & 0
\end{array}\right), \quad \hat{Z}=\begin{array}{c}
|0\rangle \\
|0\rangle \\
|1\rangle
\end{array}\left(\begin{array}{cc}
|1\rangle \\
1 & 0 \\
0 & -1
\end{array}\right), \quad \hat{H}=\frac{1}{\sqrt{2}|0\rangle}|1\rangle \begin{array}{cc}
|0\rangle & |1\rangle \\
1 & 1 \\
1 & -1
\end{array}\right), \quad \hat{R}_{\theta}=\begin{array}{c}
|0\rangle \\
|1\rangle
\end{array} \begin{array}{cc}
|0\rangle & |1\rangle \\
1 & 0 \\
0 & e^{i \theta}
\end{array}\right),
$$

Single-qubit gates

$$
\hat{X}=\begin{gathered}
|0\rangle \\
|0\rangle \\
|1\rangle \\
|1\rangle
\end{gathered}\left(\begin{array}{cc}
|0\rangle \\
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{Z}=\begin{gathered}
|0\rangle \\
|0\rangle \\
|1\rangle
\end{gathered}\left(\begin{array}{cc}
|1\rangle \\
1 & 0 \\
0 & -1
\end{array}\right), \quad \hat{H}=\frac{1}{\sqrt{2}|0\rangle} \left\lvert\, \begin{array}{cc}
|0\rangle & |1\rangle \\
\left.\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad \hat{R}_{\theta}=\begin{array}{c}
|0\rangle \\
|1\rangle
\end{array} \begin{array}{cc}
|0\rangle & |1\rangle \\
1 & 0 \\
0 & e^{i \theta}
\end{array}\right), ~
\end{array}\right.
$$

Alternatively:

$$
\hat{X}=|1\rangle\langle 0|+|0\rangle\langle 1|, \quad \hat{Z}=|0\rangle\langle 0|-|1\rangle\langle 1|, \quad \hat{H}=\frac{|0\rangle+|1\rangle}{\sqrt{2}}\langle 0|+\frac{|0\rangle-|1\rangle}{\sqrt{2}}\langle 1|, \quad \hat{R}_{\theta}=|0\rangle\langle 0|+e^{i \theta}|1\rangle\langle 1|
$$

Single-qubit gates

$$
\begin{aligned}
& |0\rangle \quad|1\rangle \\
& |0\rangle \quad|1\rangle \\
& |0\rangle \quad|1\rangle \\
& |0\rangle \quad|1\rangle
\end{aligned}
$$

Alternatively:

$$
\hat{X}=|1\rangle\langle 0|+|0\rangle\langle 1|, \quad \hat{Z}=|0\rangle\langle 0|-|1\rangle\langle 1|, \quad \hat{H}=\frac{|0\rangle+|1\rangle}{\sqrt{2}}\langle 0|+\frac{|0\rangle-|1\rangle}{\sqrt{2}}\langle 1|, \quad \hat{R}_{\theta}=|0\rangle\langle 0|+e^{i \theta}|1\rangle\langle 1|
$$

Circuit representation:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \ldots \hat{U} \quad\left|\psi^{\prime}\right\rangle
$$

Controlled multi-qubit gate C-U

Single-qubit gates cannot create entanglement, one requires multi-qubit gates.

Controlled multi-qubit gate C-U

Single-qubit gates cannot create entanglement, one requires multi-qubit gates.

Consider a register of N qubits, where a quantum operation \hat{U} is applied to the last ($N-1$) qubits, controlled by the first qubit.

This gate is called a singly-controlled multi-qubit gate (can be easily generalized to a multi-controlled multi-qubit gate) and is given by

$$
\mathrm{C}-\mathrm{U}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes \mathbb{I}^{\otimes^{N-1}}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes \hat{U}
$$

such that \hat{U} is only applied if the first qubit is in state $|1\rangle$.

Controlled multi-qubit gate C-U

Single-qubit gates cannot create entanglement, one requires multi-qubit gates.

Consider a register of N qubits, where a quantum operation \hat{U} is applied to the last ($N-1$) qubits, controlled by the first qubit.

This gate is called a singly-controlled multi-qubit gate (can be easily generalized to a multi-controlled multi-qubit gate) and is given by

$$
\mathrm{C}-\mathrm{U}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes \mathbb{I}^{\otimes^{N-1}}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes \hat{U}
$$

such that \hat{U} is only applied if the first qubit is in state $|1\rangle$.

Two-qubit gates
24 / 38

Two-qubit gates
24 / 38

Alternatively:
$|\mathrm{C}-\mathrm{NOT}\rangle=|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11|, \quad|S W A P\rangle=|00\rangle\langle 00|+|10\rangle\langle 01|+|01\rangle\langle 10|+|11\rangle\langle 11|$

$$
\mathrm{C} \text {-NOT }=\begin{gathered}
|00\rangle \\
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle \\
|10\rangle\rangle
\end{gathered}\left(\begin{array}{cccc}
1 & 0 & 0 & |10\rangle \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \text { SWAP }=\begin{aligned}
& |00\rangle \\
& |01\rangle \\
& |00\rangle \\
& |10\rangle \\
& |11\rangle
\end{aligned}\left(\begin{array}{cccc}
|01\rangle & |10\rangle & |11\rangle \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Alternatively:
$|\mathrm{C}-\mathrm{NOT}\rangle=|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11|, \quad|S W A P\rangle=|00\rangle\langle 00|+|10\rangle\langle 01|+|01\rangle\langle 10|+|11\rangle\langle 11|$

Chimie Physique Théorique et Modélisation

Toffoli gate

The Toffoli gate is a multi-controlled 3-qubit gate (controlled-controlled NOT gate), which was originally devised as a universal, reversible classical logic gate by Toffoli.

	$\|000\rangle$	\|001)	$\|010\rangle$	\|011)	\|100〉	\|101>	\|110>	\|111)
$\|000\rangle$	(1	0	0	0	0	0	0	
\|001)	0	1	0	0	0	0	0	0
\|010)	0	0	1	0	0	0	0	0
\|011)	0	0	0	1	0	0	0	0
\|100)	0	0	0	0	1	0	0	0
\|101)	0	0	0	0	0	1	0	0
\|110)	0	0	0	0	0	0	0	1
\|111)	(0	0	0	0	0	0	1	0)

Chimie Physique Théorique et Modélisation

Toffoli gate

The Toffoli gate is a multi-controlled 3-qubit gate (controlled-controlled NOT gate), which was originally devised as a universal, reversible classical logic gate by Toffoli.

	$\|000\rangle$	\|001)	\|010)	\|011)	\|100)	\|101)	\|110)	\|111)	
\|000)	1	0	0	0	0	0	0	0	$A\rangle \longrightarrow-\|A\rangle$
\|001)	0	1	0	0	0	0	0	0	$\|A\rangle-\quad\|A\rangle$
\|010)	0	0	1	0	0	0	0	0	$\|B\rangle \longrightarrow\|B\rangle$
\|011)	0	0	0	1	0	0	0	0	$\|B\rangle=.-\|B\rangle$
\|100)	0	0	0	0	1	0	0	0	$\cdots-\bigcirc\|C \oplus A B\rangle$
\|101)	0	0	0	0	0	1	0	0	$A B\rangle$
\|110)	0	0	0	0	0	0	0	1	
\|111)	0	0	0	0	0	0	1	0)	

Quantum Computation

Examples

Example 1: Bell states

Bell states, also called EPR states or EPR pairs, are:

$$
\frac{|00\rangle \pm|11\rangle}{\sqrt{2}}, \quad \frac{|01\rangle \pm|10\rangle}{\sqrt{2}}
$$

Example 1: Bell states

Bell states, also called EPR states or EPR pairs, are:

$$
\frac{|00\rangle_{ \pm}|11\rangle}{\sqrt{2}}, \quad \frac{|01\rangle_{ \pm}|10\rangle}{\sqrt{2}}
$$

They can be prepared with an Hadamard gate and a CNOT gate:

Example 1: Bell states

Bell states, also called EPR states or EPR pairs, are:

$$
\frac{|00\rangle \pm|11\rangle}{\sqrt{2}}, \quad \frac{|01\rangle \pm|10\rangle}{\sqrt{2}}
$$

They can be prepared with an Hadamard gate and a CNOT gate:

$$
\left.\begin{array}{r}
|0\rangle-H
\end{array}\right\} \frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Einstein, Podolski and Rosen (EPR, 1935)

Quantum mechanics:

1. An unobserved particle does no possess physical properties that exist independent of observation. Rather, such physical properties arise as a consequence of measurements performed upon the system.
2. For an entangled state of a composite system of A and B, the action performed on system A will modify the description of system B.

Einstein, Podolski and Rosen (EPR, 1935)

Quantum mechanics:

1. An unobserved particle does no possess physical properties that exist independent of observation. Rather, such physical properties arise as a consequence of measurements performed upon the system.
2. For an entangled state of a composite system of A and B, the action performed on system A will modify the description of system B.

EPR wanted to show that any complete physical theory should fulfill the sufficient condition that a value of a physical property can be predicted with certainty immediately before measurement.

Hence, quantum mechanics is incomplete and one is missing a local hidden variable, according to their assumption of local realism.

Bell thought about an experiment that has different outcome if analyzed by our common sense notions of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob which perform measurements simultaneously (physical influences cannot propagate faster than light!).

Bell's inequality (1964)

Bell thought about an experiment that has different outcome if analyzed by our common sense notions of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob which perform measurements simultaneously (physical influences cannot propagate faster than light!).

Bell's inequality (1964)

Bell thought about an experiment that has different outcome if analyzed by our common sense notions of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob which perform measurements simultaneously (physical influences cannot propagate faster than light!).

Bell inequality:

$$
\mathbf{E}(Q S)+\mathbf{E}(R S)+\mathbf{E}(R T)-\mathbf{E}(Q T) \leq 2
$$

And if Charlie prepares two entangled qubits ?

Bell's inequality (1964)

If Charlie prepares two entangled qubits in the state $|\psi\rangle=\frac{|01\rangle-|10\rangle}{2}$, and that

$$
Q=Z_{1}, R=X_{1}, S=\frac{-Z_{2}-X_{2}}{\sqrt{2}}, T=\frac{Z_{2}-X_{2}}{\sqrt{2}}
$$

Bell's inequality (1964)

If Charlie prepares two entangled qubits in the state $|\psi\rangle=\frac{|01\rangle-|10\rangle}{2}$, and that

$$
Q=Z_{1}, R=X_{1}, S=\frac{-Z_{2}-X_{2}}{\sqrt{2}}, T=\frac{Z_{2}-X_{2}}{\sqrt{2}}
$$

we have

$$
\langle Q \otimes S\rangle_{\psi}=\langle R \otimes S\rangle_{\psi}=\langle R \otimes T\rangle_{\psi}=-\langle Q \otimes T\rangle_{\psi}=\frac{1}{\sqrt{2}}
$$

Chimie Physique Théorique et Modélisation

Bell's inequality (1964)

If Charlie prepares two entangled qubits in the state $|\psi\rangle=\frac{|01\rangle-|10\rangle}{2}$, and that

$$
Q=Z_{1}, R=X_{1}, S=\frac{-Z_{2}-X_{2}}{\sqrt{2}}, T=\frac{Z_{2}-X_{2}}{\sqrt{2}}
$$

we have

$$
\langle Q \otimes S\rangle_{\psi}=\langle R \otimes S\rangle_{\psi}=\langle R \otimes T\rangle_{\psi}=-\langle Q \otimes T\rangle_{\psi}=\frac{1}{\sqrt{2}}
$$

such that

$$
\langle Q S\rangle_{\psi}+\langle R S\rangle_{\psi}+\langle R T\rangle_{\psi}-\langle Q T\rangle_{\psi}=2 \sqrt{2}>2
$$

Hence, the fact that two spatially separate particles can form an unseparable system violates Bell inequality. And indeed, Bell inequality (1964) are not obeyed by Nature (Alain Aspect experiment, 1982).

Example: Quantum teleportation

Alice and Bob have one qubit each. While together, they generated an EPR pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, but they are now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit $|\psi\rangle$ to Bob...

Example: Quantum teleportation

Alice and Bob have one qubit each. While together, they generated an EPR pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, but they are now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit $|\psi\rangle$ to Bob...

But:

1. Alice doesn't know the state of the qubit, $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
2. She cannot look at it or it will collapse...
3. She can only communicate with Bob once...

Example: Quantum teleportation

Alice and Bob have one qubit each. While together, they generated an EPR pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, but they are now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit $|\psi\rangle$ to Bob...

But:

1. Alice doesn't know the state of the qubit, $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
2. She cannot look at it or it will collapse...
3. She can only communicate with Bob once...

Fortunately, their EPR pair can be used to send $|\psi\rangle$ to Bob! (Experiment by Bennett et al., 1993)

Do we have time to do it together ?
QUIZZ

Example: Quantum teleportation

$31 / 38$

Example: Quantum teleportation

Example: Quantum teleportation

Example: Quantum teleportation

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =\frac{1}{2}(\alpha(|0\rangle+|1\rangle)(|00\rangle+|11\rangle)+\beta(|0\rangle-|1\rangle)(|10\rangle+|01\rangle)) \\
& =\frac{1}{2}(|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)+|10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle))
\end{aligned}
$$

Example: Quantum teleportation

$$
\begin{aligned}
00 \longrightarrow\left|\psi_{3}(00)\right\rangle & =\alpha|0\rangle+\beta|1\rangle \\
01 \longrightarrow\left|\psi_{3}(01)\right\rangle & =\alpha|1\rangle+\beta|0\rangle \\
10 \longrightarrow\left|\psi_{3}(10)\right\rangle & =\alpha|0\rangle-\beta|1\rangle \\
11 \longrightarrow\left|\psi_{3}(11)\right\rangle & =\alpha|1\rangle-\beta|0\rangle
\end{aligned}
$$

Example: Quantum teleportation

Only the information about the quantum state and not the state itself (no matter or energy) passes from Alice to Bob.

The teleportation is not faster than light, as Alice has to pass the information to Bob by a classical channel.

Chimie Physique Théorique et Modélisation

Classical versus Quantum QUIZZ

Irreversibility versus Reversibility

Quantum gates are unitary, and hence reversible.

Irreversibility versus Reversibility

Quantum gates are unitary, and hence reversible.
Classical logical gates are not all reversible, but any irreversible classical algorithm can be transformed into a reversible algorithm at the expense of having a higher volume of information and the introduction of the Toffoli gate.

Chimie Physique Théorique et Modélisation

Irreversibility versus Reversibility

Quantum gates are unitary, and hence reversible.
Classical logical gates are not all reversible, but any irreversible classical algorithm can be transformed into a reversible algorithm at the expense of having a higher volume of information and the introduction of the Toffoli gate.

Toffoli gate is a universal reversible gate for classical computing. As it is reversible, it has a quantum analog, and any classical algorithm has a quantum analog as well.

Example of the half-adder circuit:

Universal operations

'Universal' refers to the fact that any gate can be implemented by using only successions of these gates.

Universal operations

'Universal' refers to the fact that any gate can be implemented by using only successions of these gates.

Classical computing: NAND or NOR or Toffoli are universal gates.

Universal operations

'Universal' refers to the fact that any gate can be implemented by using only successions of these gates.

Classical computing: NAND or NOR or Toffoli are universal gates.
Quantum computing:

1. Toffoli + non trivial single-qubit gate
2. CNOT, rotation gates $R_{x}(\theta), R_{y}(\theta)$ and $R_{z}(\theta)$
3. Clifford $(\mathrm{CNOT}+\mathrm{S}+\mathrm{H})+\mathrm{T}$ gates

Universal operations

'Universal' refers to the fact that any gate can be implemented by using only successions of these gates.

Classical computing: NAND or NOR or Toffoli are universal gates.
Quantum computing:

1. Toffoli + non trivial single-qubit gate
2. CNOT, rotation gates $R_{x}(\theta), R_{y}(\theta)$ and $R_{z}(\theta)$
3. Clifford $(\mathrm{CNOT}+\mathrm{S}+\mathrm{H})+\mathrm{T}$ gates

Note: quantum algorithms that is written with Clifford gates can be simulated efficiently on classical computers.

Non-Clifford relative phase gates are very important! (Phase-shift gate, S gate, T gate, ...)

Making copy ? No cloning theorem

Copies are everywhere in the classical world, they are one of the most powerful means of spreading and preserving information.

Can we make a copy of an unknown quantum state ?

Making copy ? No cloning theorem

Copies are everywhere in the classical world, they are one of the most powerful means of spreading and preserving information.

Can we make a copy of an unknown quantum state ?

Suppose the procedure works for two particular pure states $|\psi\rangle$ and $|\varphi\rangle$, thus

$$
U(|\psi\rangle \otimes|s\rangle)=|\psi\rangle \otimes|\psi\rangle, \quad U(|\varphi\rangle \otimes|s\rangle)=|\varphi\rangle \otimes|\varphi\rangle
$$

The inner product of the two states give $\langle\psi \mid \varphi\rangle=(\langle\psi \mid \varphi\rangle)^{2} \longrightarrow|\psi\rangle$ and $|\varphi\rangle$ are either equal or orthogonal.
Hence, a general quantum cloning device is impossible.

Take Home Messages

Take Home messages

Quantum computing differs from classical computing due to:

- Superposition
- Entanglement
- Measurement (collapse)
- No-cloning
- Reversibility (unitary operations)

Developing efficient quantum algorithms for practical relevant (industrial or societal) tasks is not trivial, as it requires a radical change of vision of computing.

References

Nielsen, M., and Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.

Kenneth Maussang, Université de Montpellier, Introduction to quantum computing
Y. Leroyer et G. Sénizergues 1 ENSEIRB-MATMECA, Introduction à l'information quantique

Wikipedia

Institut Charles Gerhardt Montpellier

