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History



Max Planck



Albert Einstein



1920

Matrix mechanics and Schrödinger wave formulation

of quantum states, wavefunctions...

Disruptive mathematical formalism, questioning:

classical waves, corpuscles, trajectories, locality and determinism

Max Born

Erwin Schrödinger

Werner Heisenberg



1924

"Quantum Mechanics" is used for the first time

Max Born



1932

John von Neumann

Equivalence between the wave formulation

and the matrix mechanics. These equivalent

theory will be referred to Quantum Mechanics



1935

A. Einstein B. Podolski N. Rosen

EPR paper:

Quantum Mechanics is incomplete. It lacks some essential "element of reality".

We are just missing some hidden variable, Nature properties should be deterministic.



1936

Alan Turing

Turing Machine

Mathematical model of computation describing an abstract machine

capable of implementing any computer algorithm.



1943

Colossus

Bombe

Computers used in the Second World War to decode Enigma, 

just in time for the Normandy landings 



1945

ENIAC (Pennsylvanie)

First programmable, electronic, 

general-purpose digital computer, 

Turing-complete (computationally universal) 

able to simulate any Turing machine.

30 tons, 72 m2



1947

J. Bardeen, W. Brattain, W. Shockley

First working transistor.

A transistor is a semiconductor device 

used to amplify or switch electrical signals and power. 

The transistor is one of the 

basic building blocks of modern electronics.

The first quantum revolution begins



1960

Integrated circuits

Orders of magnitude smaller, faster, and less expensive



1964

John Stewart Bell

Bell's inequality

Experimental test to check whether or not 

the picture of the world which EPR were hoping 

to force a return is valid or not. 



1965

Gordon Earle Moore

Moore's law

Based on the empirical observation that 

the number of transistors in a dense integrated circuit

doubles about every two years



1970

Microprocessors

Computer processor where the data processing logic 

and control is included on a single integrated circuit



1981

Paul A. Benioff

Richard Feynman

First Conference on the Physics of Computation (MIT)

A computer can operate under the laws of quantum mechanics

by describing a Schrödinger equation description of Turing machines.

(foundation for future work on quantum computing)

It appears impossible to efficiently simulate an evolution 

of a quantum system on a classical computer.

Proposed a basic model for a quantum computer.

(Quantum simulation, advantage over classical computing?)



1982

William Wootters

Wojciech H. Zurek

No-cloning theorem

impossible to create an independent and identical copy 

of an arbitrary unknown quantum state



Alain Aspect

First quantum mechanics experiment 

to demonstrate the violation of Bell's inequalities



1985

David Elieser Deutsch

First universal quantum computer

(Quantum Turing-Machine)

Universal Turing machine can simulate any other Turing machine 

efficiently (Church-Turing thesis)

 

Universal quantum computer can simulate any other quantum computer 

with at most a polynomial slowdown.

(quantum gates, similar traditional digital computing binary logic gates)



1988

Yoshihisa Yamamoto

Proposal for first experimental realization

of a quantum computer with two-qubit gates

using photons and atoms.



1992

David Elieser Deutsch

Richard Jozsa

Deutsch-Jozsa quantum algorithm.

Although of little current practical use, 

it is one of the first examples of a quantum algorithm 

that is exponentially faster 

than any possible deterministic classical algorithm.



1993

Only the information about the quantum state and not the state itself

(no matter or energy) passes from Alice to Bob.



1994

Peter Shor

Shor's quantum algorithm.

Finding the prime factors of an integer.

Almost exponentially faster than associated classical algorithms 

Quantum cryptography



1995

Peter ZollerIgnacio Cirac

David J. WinelandChristopher Monroe

Proposed an experimental realization of the 

controlled-NOT gate with cold trapped ions

experimentally realize the first quantum logic gate 

(controlled-NOT gate) with trapped ions



Alexei Kitaev

Phase estimation algorithm

Estimates the phase (or eigenvalue) 

of an eigenvector of a unitary operator



1996

Lov Grover

Quantum search algorithm

Quadratic speed-up over the best analog classical algorithm 



1999

Four superconducting transmon qubits

Yasunobu Nakamura and Jaw-Shen Tsai 

demonstrate that a superconducting circuit can be used as a qubit





2019

First experimental demonstration of quantum "supremacy" 

(mitigated by several other authors) for a very specific task. 





Classical Computation

Classical circuit



Classical bits 2 / 38

The basic component of classical information is the classical bit (binary digit) which can take the value 1
or 0, experimentally corresponding to the state of a transistor, a voltage, or a flux of photons in an optic
fiber.

Although the electronic components which create, store and manipulate classical bits rely on quantum me-
chanics (first quantum revolution), the classical bit states are described by classical mechanics, essentially
because they involve a huge number of particles.
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The basic component of classical information is the classical bit (binary digit) which can take the value 1
or 0, experimentally corresponding to the state of a transistor, a voltage, or a flux of photons in an optic
fiber.

Although the electronic components which create, store and manipulate classical bits rely on quantum me-
chanics (first quantum revolution), the classical bit states are described by classical mechanics, essentially
because they involve a huge number of particles.

Information is stored as a succession of bits, encoding integer numbers and real numbers. For N bits:

n =
N−1

∑
i=0

ai2
i digitization
ÐÐÐÐÐ→ aN−1aN−2 . . . a1a0.

With N bits, one can encode 2N integer numbers (one at a time).



Classical bits: examples 3 / 38
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Classical logical gates 4 / 38

A logic gate is an idealized or physical device implementing a Boolean function, a logical operation
performed on one or more binary inputs that produces a single binary output.
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A logic gate is an idealized or physical device implementing a Boolean function, a logical operation
performed on one or more binary inputs that produces a single binary output.



Classical circuit: model of classical computation 5 / 38

Example: the half adder circuit



Toward Second Quantum Revolution



Moore’s law 6 / 38

The calculation power of a computer is related to the number of transistor in the processor, which has
been observed to double about every two years.



Moore’s law 6 / 38

The calculation power of a computer is related to the number of transistor in the processor, which has
been observed to double about every two years.



The end of Moore’s law ? 7 / 38

Transistors are reaching a size where quantum effects are not negligible anymore ! ∼ 2 nm
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The end of Moore’s law ? 7 / 38

Transistors are reaching a size where quantum effects are not negligible anymore ! ∼ 2 nm

There might be different solutions: 3D stacking, new emergent technologies (post-silicon era), ...

But why not a change of paradigm ? Exploit the quantum effects instead of dealing with them !

Toward Quantum Computing
QUIZZ
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Quantum Mechanics

Postulates



Postulate 1a: Quantum state of a system 8 / 38

Associated to any isolated physical system is a complex vector space with inner product (Hilbert
space) known as the state space of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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Associated to any isolated physical system is a complex vector space with inner product (Hilbert
space) known as the state space of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.

Consider an orthonormal basis {∣αi⟩} for a d-dimensional state space. An arbitrary state vector in the
state space can be written as:

∣ψ⟩ = d

∑
i=1

ai ∣αi⟩

We say that ∣ψ⟩ is a superposition of the states ∣αi⟩ with associated amplitude ai.
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For a physical system, the associated state vector is normalized:

⟨ψ∣ψ⟩ = 1←→
d

∑
i=1

∣ai∣2 = 1

The unit norm constraint does not completely determine ∣ψ⟩, as any state eiθ ∣ψ⟩ is also normalized.
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Postulate 1a: Quantum state of a system 9 / 38

For a physical system, the associated state vector is normalized:

⟨ψ∣ψ⟩ = 1←→
d

∑
i=1

∣ai∣2 = 1

The unit norm constraint does not completely determine ∣ψ⟩, as any state eiθ ∣ψ⟩ is also normalized.

States that differ by this global phase factor are said to be equivalent.

States that differ by a relative phase are distinct.

What about a composite system made up of two (or more) distinct physical systems ?



Postulate 1b: Quantum state of composite systems 10 / 38

The state space of a composite physical system is the tensor product of the state spaces of the component
physical systems, H =HA ⊗HB .
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Postulate 1b: Quantum state of composite systems 10 / 38

The state space of a composite physical system is the tensor product of the state spaces of the component
physical systems, H =HA ⊗HB .

For composite systems A and B, prepared in the state ∣ψA⟩ and ∣ψB⟩, respectively, then the joint state
of the total system is

∣ψ⟩ = ∣ψA⟩⊗ ∣ψB⟩ ≡ ∣ψA⟩ ∣ψB⟩ ≡ ∣ψAψB⟩ =
⎛⎜⎜⎜⎝
a1

a2

⋮

ad

⎞⎟⎟⎟⎠
⊗

⎛⎜⎜⎜⎝
b1

b2

⋮

bd

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1b1

⋮

a1bd
a2b1

⋮

adbd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
QUIZZ
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Any state of H can be decomposed in the basis {∣µij⟩} formed by the tensor product of the basis of HA
and HB , i.e. ∣µij⟩ = ∣αi⟩⊗ ∣βj⟩.
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Any state of H can be decomposed in the basis {∣µij⟩} formed by the tensor product of the basis of HA
and HB , i.e. ∣µij⟩ = ∣αi⟩⊗ ∣βj⟩.
Examples: consider ∣ψA,1⟩ and ∣ψA,2⟩ (∣ψB,1⟩ and ∣ψB,2⟩) two states of system A (B), then

∣ψ⟩ = 1√
2
( ∣ψA,1ψB,2⟩ + ∣ψA,2ψB,1⟩ )

is entangled and

∣ψ⟩ = 1

2
( ∣ψA,1ψB,1⟩ + ∣ψA,1ψB,2⟩ + ∣ψA,2ψB,1⟩ + ∣ψA,2ψB,2⟩ ) = 1

2
( ∣ψA,1⟩ + ∣ψA,2⟩ )⊗ ( ∣ψB,1⟩ + ∣ψB,2⟩ )

is not.

Entangled states are interesting because they exhibit correlations that have no classical analog .



Postulate 2: Measurement of physical observable 12 / 38

Every measurable physical quantity M is described by a Hermitian operator M̂ acting in the
state space H. This operator is an observable, meaning that its eigenvectors form a basis for
H. The result of measuring a physical quantity M must be one of the eigenvalues of the
corresponding observable M̂.
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Every measurable physical quantity M is described by a Hermitian operator M̂ acting in the
state space H. This operator is an observable, meaning that its eigenvectors form a basis for
H. The result of measuring a physical quantity M must be one of the eigenvalues of the
corresponding observable M̂.

Consider the spectral decomposition of M̂:

M̂ =∑
m

mP̂m =∑
m

m ∣m⟩ ⟨m∣
where P̂m is the projector onto the eigenspace of M̂ with eigenvalue m.

The possible outcomes of the measurement are the eigenvalues m of the observable.



Postulate 2: Projective measurement on state ∣ψ⟩ 13 / 38

Consider a state ∣ψ⟩ ∈H, which can always be written in the eigenbasis of M̂:

∣ψ⟩ =∑
m

ψm ∣m⟩
The probability of getting the eigenvalue m upon measuring ∣ψ⟩ is given by

pψ(m) = ⟨ψ∣ P̂m ∣ψ⟩ = ∣⟨ψ∣m⟩∣2 = ∣ψm∣2

Given that outcome m occurred, ∣ψ⟩ collapses immediately to

∣ψ⟩Ð→ P̂m ∣ψ⟩√
pψ(m) = ∣m⟩



Postulate 2: Projective measurement, expectation value 14 / 38

One can easily calculate average values for projective measurements,

Eψ(M̂) = ∑
m

pψ(m)
= ∑

m

m ⟨ψ∣ P̂m ∣ψ⟩
= ⟨ψ∣ (∑

m

P̂m) ∣ψ⟩
= ⟨ψ∣M̂ ∣ψ⟩ ≡ ⟨M̂⟩ψ

It follows a formula for the standard deviation

∆ψM̂ =

√⟨M̂2⟩ψ − ⟨M̂⟩2ψ
which is a measure of the typical spread of the observed values upon measurement of M̂.



Postulate 3: Time evolution of a system 15 / 38

The time evolution of the state vector ∣ψ(t)⟩ is governed by the Schrödinger equation, where
H(t) is the (time-dependent) Hamiltonian (observable associated with the total energy of the
system),

ih̵
d

dt
∣ψ(t)⟩ =H(t)∣ψ(t)⟩
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The time evolution of the state vector ∣ψ(t)⟩ is governed by the Schrödinger equation, where
H(t) is the (time-dependent) Hamiltonian (observable associated with the total energy of the
system),

ih̵
d

dt
∣ψ(t)⟩ =H(t)∣ψ(t)⟩

or, equivalently:

The time evolution of a closed system is described by a unitary transformation on the initial
state, ∣ψ(t)⟩ = U(t; t0)∣ψ(t0)⟩

Operation are unitary to preserve the norm of the quantum state in time.



Quantum Computation

Quantum Bit or Qubit
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A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system:
a two-level system.
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A quantum bit (qubit) is the basic component of quantum computers and is the simplest quantum system:
a two-level system.

Any state of the state space will be decomposed in the computational basis made out of two vectors
denoted ∣0⟩ and ∣1⟩ as follows ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩
with (ψ0, ψ1) ∈ C2 and ∣ψ0∣2 + ∣ψ1∣2 = 1.

In contrast with a classical bit, the state can be something else than ∣0⟩ and ∣1⟩, it can be a superposition

of ∣0⟩ and ∣1⟩ (also called quantum parallelism).

A qubit follows the law of quantum mechanics. It cannot be examined to determine its quantum state,
but its measurement outcome will be ∣0⟩ with probability ∣ψ0∣2 or ∣1⟩ with probability ∣ψ1∣2.



Quantum corollary to Moore’s law: Quantum registers 17 / 38

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩



Quantum corollary to Moore’s law: Quantum registers 17 / 38

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩
2-qubit: ∣ψ⟩ = ψ0 ∣00⟩ +ψ1 ∣01⟩ +ψ2 ∣10⟩ +ψ3 ∣11⟩



Quantum corollary to Moore’s law: Quantum registers 17 / 38

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩
2-qubit: ∣ψ⟩ = ψ0 ∣00⟩ +ψ1 ∣01⟩ +ψ2 ∣10⟩ +ψ3 ∣11⟩
3-qubit: ∣ψ⟩ = ψ0 ∣000⟩ + ψ1 ∣001⟩ + ψ2 ∣010⟩ +ψ3 ∣011⟩ψ4 ∣100⟩ +ψ5 ∣101⟩ + ψ8 ∣110⟩ + ψ7 ∣111⟩



Quantum corollary to Moore’s law: Quantum registers 17 / 38

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩
2-qubit: ∣ψ⟩ = ψ0 ∣00⟩ +ψ1 ∣01⟩ +ψ2 ∣10⟩ +ψ3 ∣11⟩
3-qubit: ∣ψ⟩ = ψ0 ∣000⟩ + ψ1 ∣001⟩ + ψ2 ∣010⟩ +ψ3 ∣011⟩ψ4 ∣100⟩ +ψ5 ∣101⟩ + ψ8 ∣110⟩ + ψ7 ∣111⟩
4-qubit: ∣ψ⟩ = ψ0 ∣0000⟩ + ψ1 ∣0001⟩ + ψ2 ∣0010⟩ +ψ3 ∣0011⟩ψ4 ∣0100⟩ + ψ5 ∣0101⟩ + ψ8 ∣0110⟩ +ψ7 ∣0111⟩

+ψ8 ∣1000⟩+ψ9 ∣1001⟩+ψ10 ∣1010⟩+ψ11 ∣1011⟩ψ12 ∣1100⟩+ψ13 ∣1101⟩+ψ14 ∣1110⟩+ψ15 ∣1111⟩



Quantum corollary to Moore’s law: Quantum registers 17 / 38

1-qubit: ∣ψ⟩ = ψ0 ∣0⟩ + ψ1 ∣1⟩
2-qubit: ∣ψ⟩ = ψ0 ∣00⟩ +ψ1 ∣01⟩ +ψ2 ∣10⟩ +ψ3 ∣11⟩
3-qubit: ∣ψ⟩ = ψ0 ∣000⟩ + ψ1 ∣001⟩ + ψ2 ∣010⟩ +ψ3 ∣011⟩ψ4 ∣100⟩ +ψ5 ∣101⟩ + ψ8 ∣110⟩ + ψ7 ∣111⟩
4-qubit: ∣ψ⟩ = ψ0 ∣0000⟩ + ψ1 ∣0001⟩ + ψ2 ∣0010⟩ +ψ3 ∣0011⟩ψ4 ∣0100⟩ + ψ5 ∣0101⟩ + ψ8 ∣0110⟩ +ψ7 ∣0111⟩

+ψ8 ∣1000⟩+ψ9 ∣1001⟩+ψ10 ∣1010⟩+ψ11 ∣1011⟩ψ12 ∣1100⟩+ψ13 ∣1101⟩+ψ14 ∣1110⟩+ψ15 ∣1111⟩
The number of binary strings that are encoded on the qubit register doubles for every additional qubit.

That’s the Quantum corollary to Moore’s law

Not performing any measurements, Nature conceals a great deal of hidden quantum information, which
grows exponentially with the number of qubits (N = 500 > natoms in the universe !).



Quantum Computation

Quantum Circuit
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Quantum Computation

Quantum gates



Single-qubit gates: Bloch Sphere representation 19 / 38

Because (ψ0, ψ1) ∈ C2 and ∣ψ0∣2 + ∣ψ1∣2 = 1, one can rewrite the qubit state as follows:

∣ψ⟩ = eiγ (cos
θ

2
∣0⟩ + eiϕ sin

θ

2
∣1⟩)Ð→ ∣ψ⟩ = cos

θ

2
∣0⟩ + eiϕ sin

θ

2
∣1⟩
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Single-qubit gates: Pauli matrices 20 / 38

Any unitary operation Û on a single qubit might be seen as a rotation on the Bloch sphere. It corresponds
to a 2 × 2 matrix which can be expressed as a function of four basis operators.

A commonly used basis consists in Pauli’s matrices:

I = (1 0

0 1
) , σ1 = (0 1

1 0
) , σ2 = (0 −i

i 0
) , σ3 = (1 0

0 −1
)

Alternative notations:

Î = (1 0

0 1
) , X̂ = (0 1

1 0
) , Ŷ = (0 −i

i 0
) , Ẑ = (1 0

0 −1
)

Properties: X̂2
= Ŷ 2

= Ẑ2
= Î and σiσj = iεijkσk + δijI



Single-qubit gates: Pauli generators for rotations 21 / 38

Any rotation around the direction n⃗ = (nx, ny, nz) (∣n⃗∣ = 1) can be expressed as the exponential matrix

of a superposition of Pauli’s matrices, with ˆ⃗σ = (X̂, Ŷ , Ẑ),

ei
θ

2
(n⃗⋅ˆ⃗σ)

=

∞

∑
k=0

ik ( θ
2
n⃗ ⋅ ˆ⃗σ)k
k!

=

∞

∑
p=0

(−1)p ( θ
2
n⃗ ⋅ ˆ⃗σ)2p(2p)! + i

∞

∑
q=0

(−1)q ( θ
2
n⃗ ⋅ ˆ⃗σ)2q+1

(2q + 1)!
= I

∞

∑
p=0

(−1)p ( θ
2
)2p(2p)! + i (n⃗ ⋅ ˆ⃗σ) ∞∑

q=0

(−1)q ( θ
2
)2q+1

(2q + 1)!
= cos

θ

2
I + i sin

θ

2
(nxX̂ + nyŶ + nzẐ) = Rn⃗(θ)



Single-qubit gates 22 / 38

X̂ = (
∣0⟩ ∣1⟩∣0⟩ 0 1∣1⟩ 1 0

), Ẑ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 −1

), Ĥ =
1√
2

(
∣0⟩ ∣1⟩∣0⟩ 1 1∣1⟩ 1 −1

), R̂θ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 eiθ

),



Single-qubit gates 22 / 38

X̂ = (
∣0⟩ ∣1⟩∣0⟩ 0 1∣1⟩ 1 0

), Ẑ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 −1

), Ĥ =
1√
2

(
∣0⟩ ∣1⟩∣0⟩ 1 1∣1⟩ 1 −1

), R̂θ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 eiθ

),
Alternatively:

X̂ = ∣1⟩ ⟨0∣ + ∣0⟩ ⟨1∣ , Ẑ = ∣0⟩ ⟨0∣ − ∣1⟩ ⟨1∣ , Ĥ =
∣0⟩ + ∣1⟩√

2
⟨0∣ + ∣0⟩ − ∣1⟩√

2
⟨1∣ , R̂θ = ∣0⟩ ⟨0∣ + eiθ ∣1⟩ ⟨1∣
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X̂ = (
∣0⟩ ∣1⟩∣0⟩ 0 1∣1⟩ 1 0

), Ẑ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 −1

), Ĥ =
1√
2

(
∣0⟩ ∣1⟩∣0⟩ 1 1∣1⟩ 1 −1

), R̂θ = (
∣0⟩ ∣1⟩∣0⟩ 1 0∣1⟩ 0 eiθ

),
Alternatively:

X̂ = ∣1⟩ ⟨0∣ + ∣0⟩ ⟨1∣ , Ẑ = ∣0⟩ ⟨0∣ − ∣1⟩ ⟨1∣ , Ĥ =
∣0⟩ + ∣1⟩√

2
⟨0∣ + ∣0⟩ − ∣1⟩√

2
⟨1∣ , R̂θ = ∣0⟩ ⟨0∣ + eiθ ∣1⟩ ⟨1∣

Circuit representation:
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Consider a register of N qubits, where a quantum operation Û is applied to the last (N − 1) qubits,
controlled by the first qubit.

This gate is called a singly-controlled multi-qubit gate (can be easily generalized to a multi-controlled
multi-qubit gate) and is given by

C-U = (1 0
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)⊗ I

⊗
N−1

+ (0 0

0 1
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such that Û is only applied if the first qubit is in state ∣1⟩.
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C-NOT =
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Alternatively:

∣C-NOT⟩ = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ + ∣11⟩ ⟨10∣ + ∣10⟩ ⟨11∣ , ∣SWAP⟩ = ∣00⟩ ⟨00∣ + ∣10⟩ ⟨01∣ + ∣01⟩ ⟨10∣ + ∣11⟩ ⟨11∣
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Alternatively:

∣C-NOT⟩ = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ + ∣11⟩ ⟨10∣ + ∣10⟩ ⟨11∣ , ∣SWAP⟩ = ∣00⟩ ⟨00∣ + ∣10⟩ ⟨01∣ + ∣01⟩ ⟨10∣ + ∣11⟩ ⟨11∣
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The Toffoli gate is a multi-controlled 3-qubit gate (controlled-controlled NOT gate), which was originally
devised as a universal, reversible classical logic gate by Toffoli.
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devised as a universal, reversible classical logic gate by Toffoli.
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Examples
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Example 1: Bell states 26 / 38

Bell states, also called EPR states or EPR pairs, are:

∣00⟩ ± ∣11⟩√
2

,
∣01⟩ ± ∣10⟩√

2

They can be prepared with an Hadamard gate and a CNOT gate:

∣00⟩ H1

Ð→

1√
2
(∣00⟩ + ∣10⟩) C−NOT12

ÐÐÐÐÐ→

1√
2
(∣00⟩ + ∣11⟩)
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Quantum mechanics:

1. An unobserved particle does no possess physical properties that exist independent of observation.
Rather, such physical properties arise as a consequence of measurements performed upon the
system.

2. For an entangled state of a composite system of A and B, the action performed on system A will
modify the description of system B.
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Quantum mechanics:

1. An unobserved particle does no possess physical properties that exist independent of observation.
Rather, such physical properties arise as a consequence of measurements performed upon the
system.

2. For an entangled state of a composite system of A and B, the action performed on system A will
modify the description of system B.

EPR wanted to show that any complete physical theory should fulfill the sufficient condition that a value
of a physical property can be predicted with certainty immediately before measurement.

Hence, quantum mechanics is incomplete and one is missing a local hidden variable, according to their
assumption of local realism.
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Bell thought about an experiment that has different outcome if analyzed by our common sense notions
of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob
which perform measurements simultaneously (physical influences cannot propagate faster than light!).
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Bell thought about an experiment that has different outcome if analyzed by our common sense notions
of the world, or by quantum mechanics. Charlie prepares two particles, send one to Alice and one to Bob
which perform measurements simultaneously (physical influences cannot propagate faster than light!).

Alice Bob
Faaaar faaaaaaar awayyyyyy

Bell inequality:
E(QS) +E(RS) +E(RT ) −E(QT ) ≤ 2

And if Charlie prepares two entangled qubits ?
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If Charlie prepares two entangled qubits in the state ∣ψ⟩ = ∣01⟩ − ∣10⟩
2

, and that

Q = Z1,R =X1, S =
−Z2 −X2√

2
, T =

Z2 −X2√
2
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If Charlie prepares two entangled qubits in the state ∣ψ⟩ = ∣01⟩ − ∣10⟩
2

, and that

Q = Z1,R =X1, S =
−Z2 −X2√

2
, T =

Z2 −X2√
2

we have

⟨Q⊗ S⟩ψ = ⟨R⊗ S⟩ψ = ⟨R⊗ T ⟩ψ = −⟨Q⊗ T ⟩ψ = 1√
2

such that

⟨QS⟩ψ + ⟨RS⟩ψ + ⟨RT ⟩ψ − ⟨QT ⟩ψ = 2
√

2 > 2.

Hence, the fact that two spatially separate particles can form an unseparable system violates Bell inequality .

And indeed, Bell inequality (1964) are not obeyed by Nature (Alain Aspect experiment, 1982).



Example: Quantum teleportation 30 / 38

Alice and Bob have one qubit each. While together, they generated an EPR pair
∣00⟩ + ∣11⟩√

2
, but they are

now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit ∣ψ⟩ to Bob...
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Alice and Bob have one qubit each. While together, they generated an EPR pair
∣00⟩ + ∣11⟩√

2
, but they are

now separated. Many years later, Bob is hiding and Alice has a mission: deliver a qubit ∣ψ⟩ to Bob...

But:

1. Alice doesn’t know the state of the qubit, ∣ψ⟩ = α ∣0⟩ + β ∣1⟩
2. She cannot look at it or it will collapse...

3. She can only communicate with Bob once...

Fortunately, their EPR pair can be used to send ∣ψ⟩ to Bob ! (Experiment by Bennett et al., 1993)

Do we have time to do it together ?
QUIZZ

http://www.quizzoodle.com/session/a53c017c9e704fdeb44e94a78640e7da
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∣ψ1⟩ = 1√
2
(α ∣0⟩ (∣00⟩ + ∣11⟩) + β ∣1⟩ (∣10⟩ + ∣01⟩) )
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∣ψ2⟩ = 1

2
(α (∣0⟩ + ∣1⟩) (∣00⟩ + ∣11⟩) + β (∣0⟩ − ∣1⟩) (∣10⟩ + ∣01⟩) )

=
1

2
( ∣00⟩ (α ∣0⟩ + β ∣1⟩) + ∣01⟩ (α ∣1⟩ + β ∣0⟩) + ∣10⟩ (α ∣0⟩ − β ∣1⟩) + ∣11⟩ (α ∣1⟩ − β ∣0⟩) )
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00Ð→ ∣ψ3(00)⟩ = α ∣0⟩ + β ∣1⟩
01Ð→ ∣ψ3(01)⟩ = α ∣1⟩ + β ∣0⟩
10Ð→ ∣ψ3(10)⟩ = α ∣0⟩ − β ∣1⟩
11Ð→ ∣ψ3(11)⟩ = α ∣1⟩ − β ∣0⟩
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Only the information about the quantum state and not the state itself (no matter or energy) passes from
Alice to Bob.

The teleportation is not faster than light, as Alice has to pass the information to Bob by a classical
channel.



Classical versus Quantum

QUIZZ

http://www.quizzoodle.com/session/077189162e744b2f9a2fe16a3b87272d
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Quantum gates are unitary , and hence reversible.

Classical logical gates are not all reversible, but any irreversible classical algorithm can be transformed
into a reversible algorithm at the expense of having a higher volume of information and the introduction
of the Toffoli gate.

Toffoli gate is a universal reversible gate for classical computing. As it is reversible, it has a quantum
analog, and any classical algorithm has a quantum analog as well.

Example of the half-adder circuit:
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‘Universal’ refers to the fact that any gate can be implemented by using only successions of
these gates.

Classical computing: NAND or NOR or Toffoli are universal gates.

Quantum computing:

1. Toffoli + non trivial single-qubit gate

2. CNOT, rotation gates Rx(θ), Ry(θ) and Rz(θ)
3. Clifford (CNOT + S + H) + T gates

Note: quantum algorithms that is written with Clifford gates can be simulated efficiently on classical
computers.

Non-Clifford relative phase gates are very important ! (Phase-shift gate, S gate, T gate, ...)
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Copies are everywhere in the classical world, they are one of the most powerful means of spreading and
preserving information.

Can we make a copy of an unknown quantum state ?

Suppose the procedure works for two particular pure states ∣ψ⟩ and ∣ϕ⟩, thus

U(∣ψ⟩⊗ ∣s⟩) = ∣ψ⟩⊗ ∣ψ⟩ , U(∣ϕ⟩⊗ ∣s⟩) = ∣ϕ⟩⊗ ∣ϕ⟩
The inner product of the two states give ⟨ψ∣ϕ⟩ = (⟨ψ∣ϕ⟩)2 Ð→ ∣ψ⟩ and ∣ϕ⟩ are either equal or orthogonal.

Hence, a general quantum cloning device is impossible.
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Quantum computing differs from classical computing due to:

▸ Superposition

▸ Entanglement

▸ Measurement (collapse)

▸ No-cloning

▸ Reversibility (unitary operations)

Developing efficient quantum algorithms for practical relevant (industrial or societal) tasks is not trivial,
as it requires a radical change of vision of computing.
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