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Approximate quantum jump method for in-medium collisions

Exact quantum jump method in real-time (Hubbard-Stratonovich)

Applications

Phase-space approaches for Fermi systems



A few more words on exact stochastic methods
Auxiliary field technic

Given a Hamiltonian
and an initial  State

Write H into a 
quadratic form 

Use the Hubbard
Stratonovich
transformation  

Interpretation of the 
integral in terms of 
stochastic 
Schrödinger equation     

General strategy 
S. Levit, PRC21 (1980) 1594.

The many-body problem

Oij Oil Ojk 

…



More insight in mean-field dynamics: 

Exact state Trial states

{
The approximate evolution is obtained 
by minimizing the action: 

Included part: average evolution
exact Ehrenfest
evolution

Missing part: correlations 

Environment

System

Complex
self-interacting 

System

Hamiltonian splitting

System Environment

One Body space 

<A1>

<A2>

<B>
Exact evolution

Mean-field

M
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g 
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Relevant degrees 
of freedom

The idea is now to treat the missing information
as the Environment for the Relevant part (System)

Equivalent formulation from information theory/observables evolution



<A1>

Exact evolution

<A2>

<A
1A

2>
- <
A 1
A 2
> M

F 

with

D. Lacroix, Ann. of Phys. 322 (2007).

…
Mean-field

Mean-field level

Mean-field + noise

Theorem :
One can always find a stochastic process for trial 
states such that
evolves exactly over a short time scale.

Valid for 

or
In practice 

Equivalent formulation from information theory/observables evolution



t>0
“Mean-field” evolution:

x
t>0

Reduction of the information: I want to simulate the expansion with Gaussian wave-function 
having fixed widths.

t=0

with

Relevant/Missing information: 

Relevant degrees 
of freedom Missing information

Trial states 

Coherent states 

Illustration: simulation of the free wave spreading with “quasi-classical states”



Stochastic c-number evolution
from Ehrenfest theorem 

Densities 

with

Nature of the stochastic mechanics

with

the quantum wave spreading can 
be simulated by a classical brownian 
motion in the complex plane 

x

x

ti
m

e

x

fluctuationsmean values

Guessing Stochastic Schroedinger Equation from the existence theorem



The method is general.
the SSE are deduced easily

Ehrenfest theorem BBGKY hierarchy

Starting point: 

with

Observables

Fluctuations

with

Stochastic one-body evolution

The mean-field appears naturally 
and the interpretation is easier

extension to Stochastic TDHFB 
DL, arXiv nucl-th 0605033
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two-level system
Bosons

but…

the numerical effort can be 
reduced by reducing the number 
of observables

unstable 
trajectories

SSE for Many-Body Fermions and bosons

D. Lacroix, Ann. of Phys. 322 (2007).



Alternative stochastic methods to treat correlations 
Beyond Hartree-Fock / TDHF

One Body space 

<A1>

<A2>

<B>
Exact evolution

Mean-field

M
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Mean-Field
State: Slater det, QP vacuum
information: one-body DOFs

Stochastic 
unraveling

Replace the initial complex problem by an 
ensemble of simpler problem

(mean-field like)

Ex: BBGKY
(⇢1, ⇢2, · · · )

Correlation that built up in time

Correct for the improper 
Evolution of initial quantum
Fluctuations with
Phase-space approaches  



Correlations that built-up 
in time: in medium collisions



We assume that the residual interaction
can be treated as an ensemble of 
two-body interaction:

Statistical assumption in the Markovian limit :

Weak coupling approximation : perturbative treatment

Residual interaction in the mean-field 
interaction picture

Reinhard and Suraud, Ann. of Phys. 216  (1992)

GOAL: Restarting from an uncorrelated (Slater) state we should:   

2-interpret it as an average over jumps between “simple” states   
1-have an estimate of   

Markovian limit, quantum-diffusion and stochastic Schrödinger Equation



{
t t+Dt

R
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Collision time

Average time between two collisions

Mean-field time-scale 

Hypothesis :

Average Density Evolution:

Time-scale and Markovian dynamics



with 

Initial simple state

One-body density
Master equation 

step by step

2p-2h nature 
of the interaction 

with 

Separability of the 
interaction

Dissipation contained in Extended TDHF is included 
The master equation is a Lindblad equation  
Associated SSE DL, PRC73 (2006)

Dissipation: link between Extended TDHF and Lindblad Eq. 



SSE on single-particle state :

with

time (arb. units)

w
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 o
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he

 
co
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te

mean-field

average evolution

Condensate size

N-body density: 

1D bose condensate with gaussian two-body interaction

The numerical effort is fixed by the number of Ak

r

r(
r)

 (a
rb

. u
ni

ts
)

t=0
t>0

mean-field

average evolution

Density
 evolution

Application to Bose-Einstein condensates



Correlations that are here 
initially and propagates

can play a major role
One Body space 

<A1>

<A2>

<B>
Exact evolution

Mean-field
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Note that phase-space approach
are used in many fields of physics

Little big bang
Gelis, Schenke, arxiv 2016

Particle physics

Cold atoms: the truncated 
Wigner approach

Sinatra, Lobo, Castin, J. Phys. B 35 (2002)

A typical example in nuclear physics: deformation

⇢ij(t0) ⇢ij(t)

Phase-space approach for Fermi systems 

Lacroix, Ayik, EPJA (Review) 50 (2014)



Introduction on Phase-space methods

Collective energy landscape Wave evolution

Solution 1: 
Schroedinger Eq.

i~d|�i
dt

= h|�i

Illustration

Ex: Wigner transform

f(r, p, t)

+ dynamical evolution

Classical mechanics
With random initial 

fluctuations  

ṙ� = p�/m

ṗ� = �@rV (r�)

Many-classical trajectories

NB: there are many Phase-space
Methods, especially for Bosons 

(see Gardiner, Zoller, Quantum noise)

What is the idea behind phase-space methods?



Introduction on Phase-space methods
Example: decay properties

Probability to decay?

Quantum mechanics

i~'̇(x, t) = H(x)'(x, t)
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Phase-space equivalent

Sampling according to:

Followed by a set of classical evolution
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P
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0 500 1000
time (arb. units)

lines (quantum)
symbols (Phase-space)

This works surprisingly well 
if “true” quantum effects have a weak effect !



Exporting Phase-space methods to the many-body problem

Simple quantum problems
Complex quantum many-

body systems

two-body

three-body

one-body

Initial fluctuations should reproduce 
in average quantum fluctuations.

Important questions/constraints:

How to design the initial fluctuations ? 

What is the equivalent to classical mechanics ?
Time-dependent Hartree-Fock theory 
is a good candidate of “classical like” 
limit.



What do we call classical for Fermi systems?  

Ayik, Phys. Lett. B 658, (2008). 

MF

Collective phase-space Quantum fluctuations

The dynamics is described 
by a set of mean-field 

evolutions with random 
initial conditions

Mean-Field theory dhA↵i
dt

= F ({hA�i}) at all time �2
Q = hA2i � hAi2

⌃2
C = A(n)A(n) �A(n)

2

dA(n)
↵

dt
= F

⇣
{A(n)

� }
⌘

Stochastic Mean-Field

{A(n)
↵ }

at all time 

Constraint: ⌃2
C(t = 0) = �2

Q(t = 0)



The stochastic mean-field (SMF) concept applied to many-body problem

Ayik, Phys. Lett. B 658, (2008). 

MF

Collective phase-space Quantum fluctuations

The dynamics is described 
by a set of mean-field 

evolutions with random 
initial conditions

The average properties of initial sampling should identify with properties of the initial state.

SMF in density matrix space

⇢(r, r0, t0) =
X

i

�⇤
i (r, t0)ni�j(r0, t0)

⇢�(r, r0, t0) =
X

ij

�⇤
i (r, t0)⇢

�
ij�j(r0, t0)

⇢�
ij = �ijni

�⇢�
ij�⇢

�
j0i0 =

1
2
�jj0�ii0 [ni(1� nj) + nj(1� ni)] .

SMF in collective space
Q(t0)

Q�(t0)

Q
�(t0) = Q(t0)

�Q(t0) = (Q�(t0)�Q�(t0)
2
)



How it works?

TDHF level

( )⇢ =
1

1
1

1
0

0
0

0
00
0holes
Part.⇢(ti)

⇢(tf )i~⇢̇ = [h(⇢), ⇢]

�⇢�
ij�⇢

�
j0i0 =

1
2
�jj0�ii0 [ni(1� nj) + nj(1� ni)] .

( )⇢ =
1

1
1

1
0

0
0

0
0

6= 0

6= 0

TDHF with initial fluctuations

Stochastic Mean-Field

⇢�(tf )⇢�(ti)

i~⇢̇� = [h(⇢�), ⇢�]

Some advantages -Just N independent times something we know how to solve.
-Fluctuations can spontaneously break some symmetries.
-Can be applied with initial thermal equilibrium too.
-predicting power is remarkably good (see below)



Description of large amplitude collective motion with SMF
The case of spontaneous symmetry breaking

Lipkin Model

e

See for instance : Ring and Schuck book
Severyukhin, Bender, Heenen, PRC74 (2006)

p=1 p=2 … p=N

Jx =
1
2
(J+ + J�)

Jy =
1
2i

(J+ � J�)

E H
F
/(

εN
)

α

N=40 particles

J
z(

t)

Time

Exact dynamics

Mean-field
is stationary



Description of large amplitude collective motion with SMF
The stochastic mean-field solution

j�
i (t0) = 0

j�
x (t0)j�

x (t0) = j�
y (t0)j�

y (t0) =
1

4N
.

jx

jy

jz

jz = �20

Initial condition 
J
z(

t)

Time

One-body observables 

Exact
SMF

Lacroix, Ayik, Yilmaz, PRC 85 (2012)

⇢ ⇢�

ji ⌘ hJii/N j�
i

Formulation in quasi-spin space

E H
F
/(

εN
)

α



Description of large amplitude collective motion with SMF
The stochastic mean-field solution

⇢ ⇢�

ji ⌘ hJii/N j�
i

j�
i (t0) = 0

j�
x (t0)j�

x (t0) = j�
y (t0)j�

y (t0) =
1

4N
.

Formulation in quasi-spin space

jx

jy

jz

jz = �20

Initial condition 

Fluctuations

F
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Lacroix, Ayik, Yilmaz, PRC 85 (2012)



Another example: application to systems on lattice

Lacroix, Hermanns, Hinz, Bonitz, PRB90 (2014)



Why it works so well? 
Link with a non-truncated simplified BBGKY hierarchy

Lacroix, Tanimura, Lacroix and Yimaz, EPJA (2016)
From

One can obtain a set of coupled equations for: 

The first two equations are: 

And more generally:
Here starts 
the approximation.

+ Independent MF trajectories

Non-truncated BBGKY like hierarchy

- Some terms are not correct
Starting at second order

Can we use this to improve 
the approach ? 



Hybrid approach: merging SMF and BBGKY
Czuba, Lacroix, Regnier, Ulgen, Yilmaz, EPJA 56 (2020) 

Stochastic Mean-Field

⇢ij(t0) ⇢ij(t)

Stochastic Mean-Field

⇢ij(t0) ⇢ij(t)

Mean-Field: stochastic + average correlation effect
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Phase-space method applied 
in the nuclear physics context

5300 550020001000 3000 4000 5000 5600

Nuclear Fission

Transfer reactions



Pairing: from independent particles to independent quasi-particles picture

Nuclear reaction with normal/superfluid nuclei on a mesh
TDHF is a standard tool |�ii : Slater

i~d⇢

dt
= [h(⇢), ⇢] Single-particle evolution

Simenel, Lacroix, Avez, arXiv:0806.2714v2

Introduction of pairing: TDHFB

i~ d

dt
R = [H(R),R] R =

✓
⇢ 
�⇤ 1� ⇢

◆

Quasi-particle evolution
(Active Groups: France, US, Japan…)

TDHFB = 1000 * (TDHF)

Full TDHFB (Skyrme-symmetry unrestricted ) Stetcu, Bulgac, Magierski, and Roche, PRC 84 (2011)

(Gogny-axial symmetry)

Full TDHFB (Skyrme-spherical symmetry) Avez, Simenel, Chomaz, PRC 78 (2008).

Hashimoto, PRC 88 (2013).

Symmetry unrestricted TDBCS limit of TDHFB (also called Canonical basis TDHFB)

|�(t)i =
Y

k>0

⇣
uk(t) + vk(t)a†k(t)a†

k̄
(t)

⌘
|�i.Neglect �ij

Ebata, Nakatsukasa et al, PRC82 (2010)
Scamps, Lacroix, PRC88 (2013).

TDBCS = 2-3 * (TDHF)

Very good predictive power



Fission of superfluid 258Fm

1 zs = 10-21 s

Identification of main fission paths
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Fission of superfluid 258Fm: energetic properties

Total Kinetic Energy
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40 SPONTANEOUS FISSION PROPERTIES OF Fm, Md, . . . 777

mounted in a vacuum chamber between two 450-mm
surface-barrier detectors located in the center of a
neutron-detection tank, and fission counted for 98 d. To
avoid contaminating the detectors with Cf, the energy
response of these detectors was calibrated with fission
fragments from our Cf course after we finished the
Md counting. We calculated fragment energies by the

same procedure described earlier, and combined these
events with the previous ones.
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III. RESULTS 160 I I I I

258'~
A. Mass and energy distributions

We present in Figs. 5 and 6 the mass and TKE distri-
butions obtained for the five nuclides after subtracting
background distributions contributed by small and
known amounts of Fm. This correction was made by
scaling downward the distributions we obtained from
250000 events collected from a mass-separated sample of
Fm to equal the total number of Fm events we found

in our sources. The Md distributions were also adjust-
ed for the 11 events coming from a Fm impurity. As
noted in the previous section, no background corrections
were necessary for Md. Unlike most previous studies
where Fm was a major fission component, we found
that subtracting the contribution from Fm had only a
slight impact on any distribution.
For the reason that we recalculated our fragment ener-

gies from the more recent calibration parameters for
Cf (Ref. 30), the histogram distributions shown in Figs.

5 and 6 do not quite correspond to those given in Ref. 1.
Another di8'erence is that we have nearly tripled the
number of observed fission events from Md since the
publication of Ref. 1.
The most significant and unique feature of the TKE

distributions is their pronounced deviation from a single
Gaussian shape. In four of the five nuclides, decided
asymmetry is imparted by conspicuous tailing in either
energy direction from the central peak. This is the first
observation of this phenomenon, the TKE distributions
from other actinides being uniformly Gaussian with only
minor divergences. Detection of this feature was made
possible by reducing the interference from the SF of
Fm and improving the fragment-energy resolution over

that of our earlier work. Closer inspection of these TKE
distributions reveals that the peak of each distribution is
not randomly located along the energy axis, but is posi-
tioned near either 200 or 233 MeV. The asymmetric tails
of the TKE curves result in distributing an appreciable
portion of the events into one or the other of these two
main energy regions.
Based on these observations, we considered that the

TKE curves for at least four of the nuclides were a com-
posite of two separate energy distributions, with each
most likely being Gaussian. The fifth, [104], may well
have a residue of the high-TKE component, but we can-
not be sure because of the statistically few events in the
high-energy region. By taking the FWHM from the
TKE distribution for [104] as a fixed parameter and
model for the lower-energy Gaussian, we resolved each of
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FIG. 5. Provisional mass distributions (no neutron correc-
tions) obtained from correlated fragment energies. The mass
bins have been chosen to be slightly different for each nuclide.
The distributions are net after subtracting a small Fm com-
ponent.
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TKE seems compatible with 
experiments

Dynamic seems almost adiabatic 
up to scission point and then is 
Well describe by TDHF-BCS 

Some conclusions

Scamps, Simenel, DL, PRC 92 (2015)

Remaining problem

Fluctuations are underestimated 

Weight of each paths? 
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Mean-field only will never be able to describe completely fission

258Fm How do we weight 
different paths?

Fluctuation is missed



Describing Fission with SMF

SMF in density matrix space

⇢(r, r0, t0) =
X

i

�⇤
i (r, t0)ni�j(r0, t0)

⇢�(r, r0, t0) =
X

ij

�⇤
i (r, t0)⇢

�
ij�j(r0, t0)

⇢�
ij = �ijni

�⇢�
ij�⇢

�
j0i0 =

1
2
�jj0�ii0 [ni(1� nj) + nj(1� ni)] .
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How to conceal microscopic deterministic approach and randomness ?

TK
E, 

A, …

Lacroix, Ayik, EPJA (Review) 50 (2014)
Quantum'Monte+Carlo'

Stochas3c'TDHF'

Stochas3c'Mean+Field'

⇢ij(t0) ⇢ij(t)

Constrains:
-Generates a sample of microscopic 
trajectories (typically 300)
-Each trajectory is 8-10 days CPU time

Some trajectories illustration



How to conceal microscopic deterministic approach and randomness ?

Tanimura, Lacroix, Ayik, PRL (2017)

From deterministic to statistical approach
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Summary and outlook

Exact stochastic methods

Phase-space approaches for Fermi systems (powerful and versatile)

For perturbative systems, there are alternative jump theories - STDHF  

Extension to real-time evolution

Open for discussion: how can we use these approximate approach for static properties ? 

Part 1 : Lorenzo 

Part 2


