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Quantum Stochastic methods for the N-body
“Nuclear” problem (lI)
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m Exact guantum jump method in real-time (Hubbard-Stratonovich

=) Approximate quantum jump method for in-medium collisions

=) Phase-space approaches for Fermi systems

=) Applications




Given a Hamiltonian
and an initial State

Write H into a
quadratic form

Use the Hubbard
Stratonovich
transformation

Interpretation of the
integral in terms of

stochastic

Schrodinger equatior

A few more words on exact stochastic methods

General strategy

S. Levit, PRC21 (1980) 1594.
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Equivalent formulation from information theory/observables evolution

More insight in mean-field dynamics:

Exact state

Trial states

Included part: average evolution

d{4.)

— (|4, H exact Ehrenfest
= (A, H])

evolution

1h

The approximate evolution is obtained
by minimizing the action:

1Q(1))

(1) — |
10 + 8Q) = e2usde| )
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S / ds(Qlikd, — H|Q)

v

Relevant degrees

of freedom
-field

H=P|H+(1~P1)H

Missing part: correlations

) dt, i
|dQ) = Z(Iq,,.-l,, |dQ) = _mpl(t)H |Q)

. d{AaAg)
- ih /
. dt

£ ([A, Ag, H])

Hamiltonian splitting
H = P]H+(l - P])H

System Environment

Complex
self-interacting

The idea is now to treat the missing information
as the Environment for the Relevant part (System)

System




Equivalent formulation from information theory/observables evolution

D. Lacroix, Ann. of Phys. 322 (2007).
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lllustration: simulation of the free wave spreading with “quasi-classical states”

| _, o1 P’ how | 5
][() —ﬁ(')((1*61+5) ][ IEI—T((II —(1)
=0
Reduction of the information: I want to simulate the expansion with Gaussian wave-function
having fixed widths. (z%) =cte, (p*) =cte
"Mean-field" evolution:
- A

Relevant/Missing information: Trial states

Relevant degrees _
of freedom 0 + 30) = e’ | Q)

(z), (p) (%), (7)., (zp) 1 Coherent states

(a*), (a) (@), (@), (a*a) o + dor) = e |)

Missing information



Guessing Stochastic Schroedinger Equation from the existence theorem

Stochastic c-number evolution
from Ehrenfest theorem

Densities do S
o) (Bl (B+dBl = (Blet { df" = df" + dn?
Lo (B with o+ dar) = e o) mean values ‘ fluctuations
d{a) = da d(a?) = 2ada + dePdel
d{at) = dB* d{at+?) = 28*dB* + dnHdyl]
-> X Nature of the stochastic mechanics

X:\/‘Z_”(a+ﬁ*), {dngdt+dz,
P =il /B — ) S

by I
with dzldh:;’: dr

— (D) = L + X2 the quantum wave spreading can
r(Dx*) = 2

be simulated by a classical brownian
—/\> X Tr(Dx?) = Rl + h_—"rz

motion in the complex plane
2y 2m?




SSE for Many-Body Fermions and bosons

. Lacroix, Ann. of Phys. 322 (2007).
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Alternative stochastic methods to treat correlations

Mean-Field
State: Slater det, QP vacuum
information: one-body DOFs

Correlation that built up in time

Ex: BBGKY
Stochastic

unraveling w‘

Replace the initial complex problem by an

ensemble of simpler problem
(mean-field like)

Beyond Hartree-Fock / TDHF

Correct for the improper
Evolution of initial quantum
Fluctuations with
Phase-space approaches



Correlations that built-up
INn time: In medium collisions




Markovian limit, quantum-diffusion and stochastic Schrodinger Equation

GOAL: Restarting from an uncorrelated (Slater) state D = |®¢) (®o| we should:

1-have an estimate of D = |¥(¢)) (¥(¢)|
2-interpret it as an average over jumps between “simple” states

Weak coupling approximation : perturbative treatment
Reinhard and Suraud, Ann. of Phys. 216 (1992)

1T = |B() -%/5@12(5)@(5)) ds — QI?T (//avlz(s)avlz(sf)dsds') 1B(5))

Residual interaction in the mean-field
interaction picture

Statistical assumption in the Markovian limit :

-

We assume that the residual interaction
can be treated as an ensemble of
two-body interaction:

{ dv12(s) =0
dv12(s)dw12(s") o< 5@122(3)3_(5_3’)2/272



Time-scale and Markovian dynamics

Mean-field time-scale
t HMF ~ cte t+Dt

P
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O*gno‘@rollision time ‘ |
A A
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T2coll
Average time between two collisions

Replicas

Hypothesis : 7 & At & Tl

Average Density Evolution:

At TAL

_D: H/ ”.D - r
) zh[ MF, D] o7

[6v12, [v12, D]]



Dissipation: link between Extended TDHF and Lindblad Eq.

One-body density At At
Master equation AD = W[HMF’ D] - ’;h‘) [dv12, [0v12, D]
7 2

step by step

Initial simple state 1 —
e T
D = |®) (®| iheep = [hur, 6l = —=Dp)

p= 2ol

with  (jDi) = {[[af a;,012] , v12])

2p-2h nature I

of the interaction -
~N - /—|&> D([)) = TTQ [?)12, 012]

Y 4
~— ’

) with  Cia = (1 — p1)(1 — p2)viapip2
—p1p2v12(1 — p1)(1 — p2)

N

Separability of the T
interaction v =3 0,(1)0x(2) D(p) =Y v (AxArp + pAr Ay — 2Akp Ar)
A K

® Dissipation contained in Extended TDHF is included
® The master equation is a Lindblad equation
® Associated SSE DL, PRC73 (2006)




Application to Bose-Einstein condensates

1D bose condensate with gaussian two-body interaction

N-body density: D =|N :a) (N : q

SSE on single-particle state :

dt ) dtt ‘
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o B> Correlations that are here

Exact evolution

initially and propagates
can play a major role

A typical example in nuclear physics: deformation Note that phase-space approach
are used in many fields of physics

-626
-627 . .
o | Particle physics

629 %

-630
A o1 = -
-632 /

-633
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Phase-space approach for Fermi systems thtle_b|g bang -
Gelis, Schenke, arxiv 2016

Cold atoms: the truncated
Wigner approach

pij(to) pij (1)

Lacroix, Ayik, EPJA (Review) 50 (2014)

Sinatra, Lobo, Castin, J. Phys. B 35 (2002)



Introduction on Phase-space methods

lllustration
What is the idea behind phase-space methods?
Solution 1:
Schroedinger Eq.

Collective energy landscape Wave evolution d\qb)

) in = = h|g)

dt

» A Ex: Wigner transform

f(r,p,t)

+ dynamical evolution

Many-classical trajectories

Classical mechanics
With random initial
fluctuations

NB: there are many Phase-space
Methods, especially for Bosons

(see Gardiner, Zoller, Quantum noise)



V(z) (arb. units)

Introduction on Phase-space methods

(t-Q? , P
%2 '

Quantum mechanics

iho(x,t) = H(x)p(x,t)

pla, t) = \i/('xp [—
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Example: decay properties

Probability to decay?

Phase-space equivalen

1.0

0.8
0.6

Pdecay(t)

0.4

0.0

0.2

Sampling according to:
Wiq,p) =

(2mopog)

exp {_ (¢ —q0)*>  (p—po)? }

2 2
2ap 2ap

| Followed by a set of classical evolution
1

{ Q’(n) = PM(t)/m

POO(t) = F(P™)(1), Q) (1))

I

i uuaqpnﬂﬁ ]
e I

|— DD;:'// |
i fk lines (Qquantum) )
,,"w symbols (Phase-space)]

1 | 1
0 500 1000

time (arb. units)

mmm) This works surprisingly well

if “true” quantum effects have a weak effect !



Exporting Phase-space methods to the many-body problem

Complex quantum many-
Simple quantum problems body systems

Othree-boo

———>

Important questions/constraints:

Initial fluctuations should reproduce

How to design the initial fluctuations ? in average quantum fluctuations.

Time-dependent Hartree-Fock theory
is a good candidate of “classical like”
limit.

What is the equivalent to classical mechanics ?




What do we call classical for Fermi systems?

Collective phase-space Quantum fluctuations

The dynamics is described
by a set of mean-field
evolutions with random

initial conditions

Ayik, Phys. Lett. B 658, (2008).

dt :F({Aﬁ })

2
atalltime X% = A AM®) — A(n)

Constraint: 220(15 =0) = 0'22 (t=0)



The stochastic mean-field (SMF) concept applied to many-body problem

Collective phase-space Quantum fluctuations

The dynamics is described
by a set of mean-field
evolutions with random
initial conditions

Ayik, Phys. Lett. B 658, (2008).

The average properties of initial sampling should identify with properties of the initial state.

SMF in density matrix space

p(r,r’ 1) ZCD L to)ni @, (r', o) ;‘\jz&jni
&
o) >\5 >'\/-/ = —5"/(5“'/ n; 1—n;)4+n; 1—7’1,2 .
I' I' to) Zq) to pzj I' to) pz] 10]2 9 23 [ ( J) .7( )]

Q(to) N —
o -

o) | 7elt) = (@) ~ @) )




How it works?

TDHF level

ihp = [h(p), pl p(tf) /0 — hilisllo O

0 Part.
0 -
0
0
TDHF with initial fluctuations

. 1
0p30p3y = 50530 [na(1 =) +m; (1= n4)].

Stochastic Mean-Field

2 AV A —
thp™ = [h(p”), p” P
A A
P (tz) P (tf)
-Just N in_dependent times something we know how tc? solve.
-Fluctuations can spontaneously break some symmetries.

-Can be applied with initial thermal equilibrium too.
-predicting power is remarkably good (see below)




Enr/(eN)

Description of large amplitude collective motion with SMF
The case of spontaneous symmetry breaking

Lipkin Model

Vv
+> H=c¢Jy— 5(J+J+ + J_J_)
& I p=1 p=2 .. ; >p_N fo = %;(CLP”»P‘CLPC—’P) Jy = 2%-(# —J)
L o—0—0—0—0—0|-)

See for instance : Ring and Schuck book
Severyukhin, Bender, Heenen, PRC74 (2006)

N 1
Iy = ch,pc—,p’ Jo =T, Jr = §(J+ + J-)
p=1

N=40 particles

0 5 ' I ' I I
. .,
N
N
N

-1.54 -0.77 0.0 0.77 1.54

, -- Mean-field
8 s stationary




Description of large amplitude collective motion with SMF

The stochastic mean-field solution

Enr/(eN)

pomy P

-1.54 -0.77

Formulation in quasi-spin space -
ji=(y/N Ep g 5
0
ji(to) =0
= -9
Jz (to)Jz (to) = 73 (t) 7y (to) = < 10
Initial condition
7s -15
-20

\
/0
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-
-
’/

] \ PR . \‘ -
‘.Aq'nnn‘an/n‘un‘mm
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A T L

0 1 2 3 4 5 6 7 8
Time

Lacroix, Ayik, Yilmaz, PRC 85 (2012)



Description of large amplitude collective motion with SMF
The stochastic mean-field solution

&
\ E
poEy» P =
- - - - =
. . . . -1. -0. . . . =
Formulation in quasi-spin space % 7 00 077 1% g
: ‘A =
TESUAVLM
ji(to) =0 5
1 =
NN — ANF NN — z
Jz (t) 7z (to) = 5 (to)jy (to) = - E
2
Initial conditiop
Jz
E
E
E
2

7. = —20

Lacroix, Ayik, Yilmaz, PRC 85 (2012)




density site 1

-

density site 1

Another example: application to systems on lattice

Lacroix, Hermanns, Hinz, Bonitz, PRB90 (2014)

=_"ZZ(S(' ])CIO' ]a+UZ it 11‘ l¢ t,L’




Why it works so well?
Link with a non-truncated simplified BBGKY hierarchy

Lacroix, Tanimura, Lacroix and Yimaz, EPJA (2016)

(n)
From ihdlc)lt _ [h(p(n))’p(n)]

One can obtain a set of coupled equations for: C;. = (5p(1n) .. .(5p§cn).

The first two equations are: ih%ﬁ(t) = [h(p(t)),p(t)] + Tro [012, C1a]

ihSChy = [ha[p] + halpl, Cra]

dt
+ Tra [D13 + V23, C13p5 + Ca3py | ; Here starts

And more generally: + Tr3 [U13 + V23, C123] the approximation.

. d
Zhaclmk — [Z tayCl...k]

QS: + Independent MF trajectories
+;Trk+l[vak“’cl“'kpk“] Non-truncated BBGKY like hierarchy

k

+ Y  Tret1[ak+1,Ci.(a—1)(at1)...(k+1)Pa)
Z = Some terms are not correct

a=1
) i Starting at second order
+ Z Trrt1[Pak+15 C1...(a—1)(a+1)...kCak+1]
a=1
k . Can we use this to improve
+Z Triq1 [vak+1,Cl...(k+1)] . (6) the approach ?

a=1



Hybrid approach: merging SMF and BBGKY

Czuba, Lacroix, Regnier, Ulgen, Yilmaz, EPJA 56 (2020)

8 fermions on a 1D lattice
1-0'\ s.p. occupation

Stochastic Mean-Field 050
pij(to) pij(t) 00
@2.0-

1.57

1.0
1.5

ochastic Mean-Field

S(t)/N;

. 0.0 | | | |
Pij (t) 0 20 40 60 20 100

Mean-Field: stochastic + average correlation effect



Phase-space method applied
in the nuclear physics context

——

1000 2000 3000 4000 5000 5300 5500 5600




Pairing: from independent particles to independent quasi-particles picture

Nuclear reaction with normal/superfluid nuclei on a mesh
TDHF is a standard tool |cI)Z> : Slater

ih— = [h(p), p) [’ Single-particle evolution
Simenel, Lacroix, Avez, arXiv:0806.2714v2

Introduction of pairing: TDHFB

ih%Rz[H(R),R] R = ( P, )

E’ Quasi-particle evolution
(Active Groups: France, US, Japan...)

TDHFB = 1000 * (TDHF)

=) Full TDHFB (Skyrme-spherical symmetry) Avez, Simenel, Chomaz, PRC 78 (2008).
Full TDHFB (Skyrme-symmetry unrestricted ) Stetcu, Bulgac, Magierski, and Roche, PRC 84 (2011)
(Gogny-axial symmetry) Hashimoto, PRC 88 (2013).

E» Symmetry unrestricted TDBCS limit of TDHFB (also called Canonical basis TDHFB)

Neglect A ) [0() = [T (wx(t) + ve(®)af(Dal (1)) 1), TDBCS = 2-3 * (TDHF)

k>0

Ebata, Nakatsukasa et al, PRC82 (2010)
Scamps, Lacroix, PRC88 (2013).

[’Very good predictive power



Fission of superfluid 2°8Fm

E [MeV]

Identification of main fission paths

At=0.675 zs At=1.8 zs At=1.08 zs

1zs=1021g

Time

QP T@®@ O
P =0 D

+ 29 P D D

SC aef sef




Fission of superfluid 2°8Fm: energetic properties

258p, How do we weight
different paths?

Q20/[b]

Some conclusions

[’ TKE seems compatible with
experiments

£ 120 ﬂaef
Fluctuation is missed

et 40 e -.
P I: sef aef scf

E‘ Dynamic seems almost adiabatic
up to scission point and then is

Well describe by TDHF-BCS

Remaining problem

[» Fluctuations are underestimated

[‘ Weight of each paths?

Scamps, Simenel, DL, PRC 92 (2015) _ ) ) o
Mean-field only will never be able to describe completely fission



single-particle energies (MeV)

Describing Fission with SMF

SMF in density matrix space

p(r,r’ tg) Z 7 (r,to)n; P, (r', to) pf‘j = 0i;n;

IR 1
Sproph, = =070 [ni(1 —nj) +n;(1—ny)].
P (r, 1 1) = E o7 (r, 1o pzjq) (r', to) PijOPjri 9 I [ri( i) i )]

Range of fluctuation fixed by energy cons.
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How to conceal microscopic deterministic approach and randomness ?

Stochastic Mean-Field
pij(to) pij (1)

L J

Constrains:

-Generates a sample of microscopic
trajectories (typically 300)

-Each trajectory is 8-10 days CPU time

8,14

Fd e.12

8.1

08.688

8,86

8.84

8,82




How to conceal microscopic deterministic approach and randomness ?

Theory vs experiment

T T T T T T

(@
Qi = 160 p M
125b -----
expt. ——

17
[
1
| I

relative yield

140 160 180 200 220 240 260

Time

TKE (MeV) .

30 - . 220 b
= L SMF calc. Soa10 f
g 20 _HOHman (1980) EQOO -
’S Hulet (1989) |
g I ......... &
& 10 0525  0.55
© An/A
>

0

100 125 150

Tanimura, Lacroix, Ayik, PRL (2017) fragment mass



Summary and outlook

S e

Quantum Monte Carlo can solve high dimensional quantum problems.

m) Exact stochastic methods

Variational QMC is fast and precise, but relays on a good parametrization of the wavefunction

Green function QMC allows to extract the groundstate of the system using a diffusion in imaginary time

Auxiliary field QMC permits to find the groundstate energy of many-fermions

—L—

Extension to real-time evolution

—

# For perturbative systems, there are alternative jump theories - STDHF

m) Phase-space approaches for Fermi systems (powerful and versatile)

m) Open for discussion: how can we use these approximate approach for static properties ?



