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Limitations of NISQ architectures
Expressivity / Trainability
Variational Quantum algorithms have two main drawbacks:

Trainability Issues
Resources (# experiment repetitions: 𝑁total) for training variational
algorithms increase exponentially on the number of qubits (𝑛) for a
fixed accuracy.

Limited computational power
Noise imposes an upper bound on circuit depth and on maximum
algorithmic complexity.
Only constant-depth circuits are realistic in NISQ architectures

From Effect of barren plateaus on gradient-free optimization
Arrasmith et al. Quantum Journal (2021)

https://quantum-journal.org/papers/q-2021-10-05-558/


Fault Tolerance
Error Correction

To go beyond NISQ, extended coherence times are needed. To extend coherence time, active quantum error correction is 
needed. 

Warmup on (classical) error correction.

• The core idea of error correction is to introduce redundant bits to fight noise
• Redundant qubits introduce correlations which can tell us something about noise

The classical repetition code is the following encoding 0→ [000]   1→ [111]
The Parity Check matrix C gives information on whether an error occurred. 

For instance C [000] = [00], C[001] = [10], C[010] = [01], C[100] = [11]
But also C[111] = [00], C[110] = [10], C[101] = [01],  C[011] = [11]

If error probability is low enough (only errors of order less than code distance happen), then correction works.



Fault Tolerance
Bit flip Code (encoding)

Code distance d = 3
Only corrects bit flips.



Fault Tolerance
Bit flip Code (correcting)
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Code distance d = 3
Only corrects bit flips.

We can run this error correcting protocol as often as we like on as many of the qubits as we like, but if the gates and measurements involved are 
imperfect then we may introduce errors into our circuit. The optimal frequency for applying the protocol will depend on the relative sizes of 
errors in the circuit and the gate and measurement errors in the correction protocol. At present measurement errors are usually dominant.

The ancilla qubits used to detect the 
syndromes (errors) can be reused 
after measurement.

These three physical qubits make one 
logical qubit and we will have many 
such logical qubits in a circuit, which 
must be corrected independently.



Fault Tolerance
Bit flip Code (No bit flips)
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Fault Tolerance
Bit flip Code (One bit flip)
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Fault Tolerance
Bit flip Code (One bit flip)
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Fault Tolerance
Bit flip Code (Two bit flips)
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Fault Tolerance
Bit flip Code (One phase flip)
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Fault Tolerance
Pauli Group and Stabiliser Operators
The Pauli group PN for N qubits provides a basis for quantum states:

An operator S stabilises a state |ψ⟩ if S|ψ⟩ = |ψ⟩, i.e. if it is a symmetry of the state. 

An subgroup S of PN is a stabiliser group if it is abelian, namely [Si, Sj] = 0 ∀Si,Sj∈S and it does not 
contain -1 nor i1.  Then the subspace C is stabilised by S

This formalism allows for defining QECC in a compact manner.

Bloch Sphere

X |+⟩ = |+⟩
Y |+i⟩ = |+i⟩
Z |0⟩ = |0⟩



Fault Tolerance
Bit flip Code as Stabiliser Code
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Fault Tolerance
Surface Code I: definition 

The surface code is defined on a square lattice, on each of whose edges sits a qubit.  By introducing periodic 
boundary conditions, we remove two constraints and a 4-fold degeneracy arises in the ground state.



Fault Tolerance
Surface Code I: Example 

The surface code is defined on a square lattice, on each of whose edges sits a qubit.  By introducing periodic 
boundary conditions, we remove two constraints and a 4-fold degeneracy arises in the ground state. 4 vertices, 
4 plaquettes, and 8 qubits. But only 3 vertices and 3 plaquettes are needed to generate the set. So we have 28-

6=22 dimensional space, so two logical qubits.
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Fault Tolerance
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Fault Tolerance
Surface Code I: Example 

The surface code is defined on a square lattice, on each of whose edges sits a qubit.  By introducing periodic 
boundary conditions, we remove two constraints and a 4-fold degeneracy arises in the ground state. Logical 
operators commute with plaquettes and vertices.
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Fault Tolerance
Surface Code I: Example 
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Fault Tolerance
Surface Code I: Syndrome Detection 

0, 1



Fault Tolerance
Surface Code I: Syndrome Detection 
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Fault Tolerance
Surface Code II: decoder and threshold

Minimum Weight Perfect Matching (MWPM) decoding is standard for Pauli errors in topological codes. This way of decoding gives a
threshold of < 1%  If gates have an error rate less than the threshold, it is possible to stabilise the computation using the Surface
code. We must run the error correction protocol often enough that we prevent sufficient physical errors occurring to induce a logical
error, but not too frequently or the errors induced by the correction may become significant.

Physical Errors Syndrome (local) Graph MWPM Correction

Measuring ⟨Sj⟩ = ⟨𝜓|E Sj E|𝜓⟩ = -⟨𝜓| Sj |𝜓⟩ will give us information about the nature of the errors that potentially occurred, which is the
same principle behind the classical parity check matrix.

Once a pattern of flipped plaquette and vertex operators has been obtained, a distribution of chain endpoints of errors can be
constructed, and an algorithm. A logical error occurs when a chain of errors ends up in two boundaries or winds around one hole so
that the chain still commutes with the stabilizer, yet is not part of it, thus affecting the logical information.

To initialise in the logical 0 state ( ) ) put all the physical qubits in 0 states and then measure all the stabiliser operators and apply
corrections. This works because the logical Z commutes with the stabiliser operators and if all qubits are in 0 states they are in
eigenstates of the logical Z operators.



Fault Tolerance
Fault Tolerance Threshold

The main focus of fault-tolerance is how to use noisy components, as will unavoidably be the case, to simulate an error-free
computation at the logical level. Whether this is at all possible is a non-trivial question, and the Threshold Theorem for
quantum computation answers it positively.

The existence of a threshold for a particular architecture is a constructive proof for particular QECCs. Some architectures may
not have a threshold, for instance because the physical error rate has some slight dependence on the code distance. This can
still be useful.

Threshold Theorem: it is possible to create a

quantum computer to perform an arbitrary

quantum computation provided the error rate

per physical gate or time step is below some
constant threshold value



Fault Tolerance
Clifford Operations and Transversality

To ensure that logical qubits undergo logical gates while satisfying the requirement that one
physical error cascades into at most one local error on each logical qubit one needs to use
transversal gates.

Transversal gates can be done in a qubit-wise fashion (OL = ⊗k Ok), in such a way that an
error on the qubit i will only ever propagate to the qubit i on the other block, leaving all other
qubits invariant.

 On stabiliser codes, Clifford gates can be enacted in a (near) transversal fashion

The Clifford group NN is the normaliser of the Pauli group PN, that is, its action leave it invariant modulo conjugation:

It is important for two reasons:
1) circuits made of Clifford gates are classically simulatable
2) because of transversality (↓↓↓)



Fault Tolerance
Universality

Ultimately we want to use a quantum computer to approximate unitary transformations acting
on quantum states.

Question: How to reach all of SU(2N) with a discrete and finite gateset?

Hint: For SU(2) it typically suffices to choose two 1-qubit operators A and B such that [A,B] ≠ 0,
i.e. they generate a dense subset of SU(2). This can be extended to SU(2N) using 2-qubit gates
(for instance CNOT).

The Eastin-Knill Theorem prevents transversal operators OL, i.e.
operators that can be made of single qubit operators OL = ⊗k Ok , to
span the whole logical subspace.

One solution: “Magic States” are states that can be obtained from
noisy ensembles using Clifford + T. This is a very heavy procedure, but
it is the best one that we know to date.



Fault Tolerance
Surface Code III: universality

Surface codes can implement CNOT gates tranversally between logical qubits. With some extra overhead it can also implement
all gates in the Clifford group.

However, in order to attain universal QC, it is necessary to fault-tolerantly create magic states from noisy reservoirs. The
computer parts devoted to this procedure are known as T-factories.

These T-factories are extremely resource consuming, as a fault-tolerant decoding algorithm needs to be done. Current estimates
place the overhead in the ballpark of 105 qubits. This will be relevant for estimate of runtime of the QPE algorithm for
quantum chemistry.

From Efficient magic state factories with a catalyzed |CCZ⟩ to 2|T⟩ transformation
Craig Gidney and Austin G. Fowler. Quantum Journal (2019)

https://quantum-journal.org/papers/q-2019-04-30-135/


Quantum Phase Estimation
Recap of DFT and FFT

Quantum Fourier Transform

QPE. Error Analysis. Accuracy considerations



Quantum Phase Estimation
Recap of DFT and FFT

Given a vector x of dimension 2N, the Discrete Fourier Transform of x is given by the 2N–point multiplication y = 
Wx. The elements of the DFT are powers of the roots of unity ω = exp(-2π i/ 2N ) 



Quantum Phase Estimation
Recap of DFT and FFT

Naively, matrix-vector multiplication takes 𝑂(22N) steps.

The Fast Fourier Transform algorithm reduces this to 𝑂(N2N), which renders 
DFT computable in linear time (in the DFT dimension). The this is done is by 
exploiting symmetry of the DFT matrix representation

However, this is still exponential in N…



Quantum Phase Estimation
Quantum Fourier Transform

In ket notation, a state of N qubits corresponds to a vector |x⟩ of dimension 2N with components xj. 

Take the computational basis:

The Fourier transform of state |x⟩ is a state |y⟩, i.e. vector of 2N components yk

.



Quantum Phase Estimation
QFT: one qubit case

Consider the case where N = 1

Then the physical dynamics leading to a DFT is a Hadamard gate



Quantum Phase Estimation
QFT: exploiting the symmetry

Note: adding a qubit to a system doubles the size of its Hilbert space. This fact is critical to understanding how 
the symmetry can be exploited in a way similar to Cooley-Tuckey FFT

By linearity of QM, it will suffice to understand how the QFT acts upon a computational basis vector.



Quantum Phase Estimation
QFT: exploiting the symmetry

By factoring out the first (or last, depending on encoding) qubit the symmetry (odd – even row) becomes apparent



Quantum Phase Estimation
QFT: exploiting the symmetry

A 2N dimensional QFT can be expressed as a controlled operation tensored with a 2N-1-dimensional QFT

Notice that the 𝜔𝑁
𝑗 in (|0⟩ + 𝜔𝑁

𝑗 |1⟩ ) depends on the integer value j, i.e. on the value of all the qubits.

This is implemented by performing controlled rotations on each qubit. The number of controlled rotations 
is the number of remaining qubits in the QFT.



Quantum Phase Estimation
QFT: runtime analysis

The need for controlled rotations from all-to-one qubit means that one needs around N(N-1)/2 gates to implement the DFT 
with a quantum circuit.

The QFT returns the information in reverse ordering of qubits. So a last reversed-ordering step adds N/2 swaps gates, each 
needing 3 CNOTs

The QFT on 𝑁 qubits has a runtime of 𝑂(𝑁2) while the FFT takes about 𝑂(𝑁2𝑁) steps. So we have shown an exponential 
speed-up in terms of operations and memory.



Quantum Phase Estimation
Goal and assumptions

The goal of the QPE algorithm takes two inputs:

• A unitary operator U
• An eigenstate |u⟩ of U

Since U is unitary, its eigenvalues u have modulus 1 and can be written u = e2πi𝜑. The QPE algorithm 
returns the value of 𝜑 corresponding to |u⟩ in binary fraction format with precision t.

Two important assumptions underlie the QPE routine:

• Being able to perform the gate UK controlled by a register of t qubits, for non-negative K.

• Being able to prepare the state |u⟩ as input for the controlled UK. (This can be relaxed at 
the expense of introducing randomness)



Quantum Phase Estimation
Binary Fractions

Quantum Phase Estimation operates on a binary fraction encoding.

Given a real 𝜑 < 1 expressed in decimal basis, its binary fraction 𝜑 = 0. 𝜑0𝜑1𝜑2𝜑3… can be written as

For instance, the number 0.72 in base 10 can be expressed as 0.1011011= 0.7109 ≈ 0.72

The precision of the binary fraction will depend on the number t of bits (or qubits) available.



Quantum Phase Estimation
Algorithm

The first register is necessary to implement the controlled UK

gates. The length of this register determines the accuracy of 
the phase estimation.

The length of the second register will depend on the problem 
under consideration, i.e. the size of |u⟩

+

+

+

+



Quantum Phase Estimation
Success probability

Q2 What happens if 𝜑 = 0. 𝜑0𝜑1𝜑2𝜑3… cannot be expressed exactly using only t qubits?

Q1 And what happens if the prepared state is not |u⟩, but some |u’⟩ = c‖|u⟩ + c⊥|u⊥ ⟩?

Q3 How can we mitigate this fact?
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Q1 And what happens if the prepared state is not |u⟩, but some |u’⟩ = c‖|u⟩ + c⊥|u⊥ ⟩?

A1 The algorithm works with probability c2
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Q3 How can we mitigate this fact?

A3 Adding extra qubits increases accuracy exponentially. For t = n + p qubits and target accuracy εQPE = 2-n and 
failure probability δ on the order of p = O(log(1/δ)) qubits are needed.



Quantum Phase Estimation
Accuracy considerations
The resources needed to estimate 𝜑 to an accuracy ε = 2-t are (*)

• O(log(1/ε)) qubits

• O(1/ε) controlled U gates, and

• O(log(1/ε) 2) gates in the inverse QFT.

This has to be compared with the #repetitions in a single step of the optimization in hybrid classical-quantum
variational algorithms, which scale as #reps ~ O(1/ε2) because of statistical sampling.

This should not be too surprising as QPE is known to be BQP-complete, i.e. as hard as the hardest problem
solvable in poly time by a QC. However, QPE is much more demanding in terms of circuit depth and gate fidelity. It
is not expected to work without error correction.

(*)Assuming that we can prepare a state with sufficiently high overlap with |u⟩



Limitations of FTQC in Q. Chemistry
QPE for Hamiltonian Simulation

State Preparation

Gate overhead



Limitations of QC in Quantum Chemistry
QPE for Chemistry Problems

The QPE can be modified to obtain the ground state energy and eigenstate of a chemical system.

Given a molecular Hamiltonian H, the idea is to use

• U = exp(-2π i H τ) for τ = 1, 2, 4, …2t

• and |u⟩ has non-vanishing overlap with |E0⟩, i.e. |u⟩ = Σi ci|Ei⟩ and c2
0 ≤ 1 

The total coherent simulation time is T ≈ 2t+1 π which entails an accuracy ε = O( 1 / T ), as opposed to what 
can be obtained via statistical sampling ε = O( 1 / T1/2 )   

|u⟩

|෩𝐸𝑖⟩

|u𝑖 ⟩



Limitations of QC in Quantum Chemistry
Qubits to Fermions

One of the main interests of digital QC (opposed to analog quantum simulators) is that it allows us to simulate Fermionic systems using
two-level systems. In order to express a electronic Hamiltonian in a qubit representation, the fermionic anticommutation relations need
to be artificially enforced from a Pauli algebra.

The Jordan-Wigner representation is the most intuitive one:

Whereas the amount of classical memory needed to store the FCI wavefunction is exponential in M (#spin-orbitals), a quantum computer
only needs M qubits  exponential savings in memory



Limitations of QC in Quantum Chemistry
Scaling considerations

For M spin-orbitals, using Gaussian basis functions, the number of interaction terms in the Hamiltonian grows as O(M4), each of which
acts on O(M) qubits.

Now the issue is how to simulate the unitary evolution having access to the Hamiltonian. The simplest/earliest approach relies on
Trotterization of the dynamics:

For a fixed accuracy εTrott, the gate complexity is O(M x M4 x r). The explicit calculation of r is difficult.

Jordan-Wigner



Given M (#qubits) and target accuracy ε, the cost of implementing QPE-based quantum chemistry calculations have
three components:

1. C is the cost of preparing the initial state |u⟩ (i.e. mean field)
2. poly(M) poly(1/ε) is the cost of implementing the QPE algorithm
3. poly(1/S) with S = |〈u|E0〉|

2 is the expected number of repetitions

Unfortunately, there is frequently a hidden dependency of S on M.
In worst case scenario, if the initial state |u⟩ = |Ψ1⟩ … |ΨO(k)⟩ is a product of O(k) non-interacting components, each
of which has an overlap < s with target state, the #reps scales as sO(k)

Limitations of QC in Quantum Chemistry
Bottleneck 1: State Preparation



Limitations of QC in Quantum Chemistry
Bottleneck 1: State Preparation

State preparation is of critical importance to render QPE-based computation practical.

The idea of Adiabatic State Preparation is to start from the ground state of some effective non-interacting Hamiltonian
(Hartree-Fock for instance) and progressively turn on the interaction terms between subsystems.

• Gap The duration T is inversely proportional to the minimum energy gap 𝛥=E1-E0 between the ground state energy and the
first excited state, squared. Only mint 𝛥∼1/poly(M) scaling is acceptable. The gap is unknown a priori!

• Temperature Even for favourable scalings, kBTH ≥ mint 𝛥∼1/poly(M) for large enough problems. Noise will cause transitions
from the ground state into high energy states and decrease success probability.

2



Limitations of QC in Quantum Chemistry
Bottleneck 2: Gate count

The overarching goal of QC for chemistry is to perform calculations with a precision above chemical accuracy εCH= 
1kcal / mol ≈ 1.6 10-3 Hartree

Given a Hamiltonian H, the goal is to simulate the Trotterized unitary UTrott with a quantum circuit መ𝐶 satisfying:

1. መ𝐶 = g1 g2 …gL is synthesized using a discrete set of gates {gi} such that 

2. All the accumulated errors must lie below chemical accuracy

For a fixed number of precision qubits (cf. εQPE) and Trotter step (cf. εTrott), it is possible to estimate L from εSynth



Limitations of QC in Quantum Chemistry
Bottleneck 2: Gate count

The state-of-the-art QECC for achieving fault-tolerance is the surface code, in which universality is achieved through the gateset
{Clifford + T}

Most Clifford gates are transversal in the surface code, which means that they are “easy”, in the sense that can be prepared at 
reasonable time and cost (transversally).  Non-Clifford gates, such as T, rely on a heavy procedure known as “state distillation”, 
in which many noisy T states undergo several steps of decoding to achieve a clean |T⟩ state that will be used to implement π/8 
rotations at the logical level. ~

Estimates for computing E0 of FeMoco using  around 54 space orbitals 

FeMo in
Nitrogenase
(7 Fe, 1 Mo) 

Resources Estimates

# logical qubits ~110

# phys. qubits / log. qubit ~ 103 - 104 

# T-complexity ~102

# qubits per T-factory ~105

Total # qubits ~ 107 - 108

Expected runtime for QPE days to months
(assuming gate speed < 10 nsec)



# qubits

Gate fidelity
Qubit lifetime

10 100 1000

Simulatable

Quantum Advantage

Limitations of QC in Quantum Chemistry
Bottleneck 3: quantity vs quality

Gate fidelity and qubit quality are the most critical factors to building a quantum computer.

 Improving qubit control and implementing active noise suppression is much more important than manufacturing millions of
qubits with limited control/gate fidelity.
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Fault Tolerance
Surface Code I: definition 

Surface codes can have two types of boundary: primal boundaries are associated to plaquettes, whereas dual boundaries
correspond to vertices.

To attain a non-trivial topology some of the inner stabilizer operators will not be enforced, which can be seen as a poking "hole" in
the code. Holes can also be primal or dual, depending on which type of stabilizers are released. Not enforcing one stabilizer
operator will correspond to releasing a two-dimensional subspace from the constraint imposed by the operator, which is consistent
with the idea that logical codewords live in subspaces of the total Hilbert space.

A primal hole is created by not

enforcing plaquette operators, whereas

a dual hole arises from not enforcing

vertex operators.

They encode primal and dual qubits,
respectively.
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