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Introduction Assumptions

“Chemical” assumptions for this afternoon...

Chemistry is about energy differences!

We consider the time-independent Schrödinger equation

We don’t care about relativistic effects

We decouple nuclei and electrons ⇒ Born-Oppenheimer approximation

Electronic part is solved with the nuclear positions as parameters ⇒ potential energy surface (PES)

We are interested by electrons which are fermions ⇒ Pauli exclusion principle
|α〉 = spin-up electron and |β〉 = spin-down electron

〈α|β〉 = 0 〈α|α〉 = 1 〈β|β〉 = 1
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Introduction Hamiltonian

The Hamiltonian in Chemistry

In the Schrödinger equation
H Φ(r ,R) = E Φ(r ,R)

The total Hamiltonian is
H = Tn + Te + Vne + Vee + Vnn

What are all these terms?

Tn is the kinetic energy of the nuclei

Te is the kinetic energy of the electrons

Vne is the Coulomb attraction between nuclei and electrons

Vee is the Coulomb repulsion between electrons

Vnn is the Coulomb repulsion between nuclei
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Introduction Hamiltonian

The Hamiltonian in Chemistry (Take 2)

In atomic units
(m = e = ~ = 1)

Tn = −
Nnuc∑
A=1

∇2
A

2MA

Te = −
N∑
i=1

∇2
i

2

Vne = −
Nnuc∑
A=1

N∑
i=1

ZA

riA

Vee =
N∑
i<j

1

rij

Vnn =

Nnuc∑
A<B

ZAZB

RAB

∇2 is the Laplace operator (or Laplacian)

MA is the mass of nucleus A

ZA is the charge of nucleus A

riA is the distance between electron i and nucleus A

rij is the distance between electrons i and j

RAB is the distance between nuclei A and B

Electronic Hamiltonian

The electronic Hamiltonian is

He = Te + Vne + Vee + Vnn

Because MA � 1, the nuclear coordinates are “parameters”:
Φ(r ,R) = Ξ(R)Ψ(r , {R})
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Hartree-Fock Theory The Hartree-Fock Approximation

The Hartree-Fock Wave Function

The Hartree-Fock Approximation is...

an independent-particle model ⇒ interactions are taken into account in an average fashion

the starting point of pretty much anything in quantum chemistry!

A Slater Determinant

x = (ω, r) ΨHF(x1, x2, . . . , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣
The variable x combines spin (ω) and spatial (r) coordinates

ΨHF is an antisymmetrized product of one-electron functions known as orbitals
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Hartree-Fock Theory The Hartree-Fock Approximation

The Hartree-Fock Wave Function (Take 2)

Molecular orbitals (MO)

χi (x) = σ(ω)ψi (r) =

{
α(ω)ψi (r)

β(ω)ψi (r)
ψi (r) =

K∑
µ

Cµiφµ(r)

These are restricted spin orbitals ⇒ Restricted Hartree-Fock = RHF

The spin orbitals are orthogonal The spatial orbitals are orthogonal

〈χi |χj〉 = δij =

{
1 if i = j

0 otherwise
〈ψi |ψj〉 = δij = Kronecker delta

The atomic orbitals are not orthogonal

〈φµ|φν〉 = Sµν = Overlap matrix
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Hartree-Fock Theory The Hartree-Fock Energy

The Hartree-Fock energy

We know that
He = Te + Vne + Vee + Vnn

We define a few quantities:

the one-electron Hamiltonian (or core Hamiltonian) = nice guy!

O1 = Te + Vne =
N∑
i=1

h(i) where h(i) = −∇
2
i

2
−

Nnuc∑
A=1

ZA

riA

the two-electron Hamiltonian (electron-electron repulsion) = nasty guy!

O2 = Vee =
N∑
i<j

1

rij

Therefore, we have

He =
N∑
i=1

h(i) +
N∑
i<j

1

rij
+ Vnn
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Hartree-Fock Theory The Hartree-Fock Energy

The Hartree-Fock energy (Take 2)

Nuclear repulsion: 〈ΨHF|Vnn|ΨHF〉 = Vnn〈ΨHF|ΨHF〉 = Vnn

Core Hamiltonian:

〈ΨHF|O1|ΨHF〉 =
N∑
i=1

〈χi (1)|h(1)|χi (1)〉 =
N∑
i=1

hi

Two-electron Hamiltonian:

〈ΨHF|O2|ΨHF〉 =
N∑
i<j

[
〈χi (1)χj (2)|r−1

12 |χi (1)χj (2)〉 − 〈χi (1)χj (2)|r−1
12 |χj (1)χi (2)〉

]

=
N∑
i<j

(
Jij −Kij

)
=

1

2

N∑
i=1

N∑
j=1

(
Jij −Kij

)
because Jii = Kii

EHF =
N∑
i=1

hi +
N∑
i<j

(Jij −Kij )

Coulomb operator Ji (1)|χj (2)〉 = 〈χi (2)|r−1
12 |χi (2)〉|χj (1)〉

Exchange operator Ki (1)|χj (2)〉 = 〈χi (2)|r−1
12 |χj (2)〉|χi (1)〉
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Hartree-Fock Theory Fock Matrix

The Fock matrix

Using the variational principle, one can show that, to minimise the energy, the MOs need to diagonalise the Fock
operator

f (1) = h(1) +
occ∑
j

[Jj(1)−Kj(1)]

For a closed-shell system (i.e. two electrons in each orbital)

f (1) = h(1) +

N/2∑
j

[2Jj(1)− Kj(1)] (closed shell)

These orbitals are called canonical molecular orbitals (= eigenvectors):

f (1)χi (1) = εi (1)χi (1)

and εi are called the MO energies (= eigenvalues)
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Hartree-Fock Theory Roothaan-Hall Equations

Introduction of a basis

Expansion in a basis

ψi (r) =
K∑
µ

Cµiφµ(r) ≡ |i〉 =
K∑
µ

Cµi |µ〉

K AOs gives K MOs: N/2 are doubly-occupied MOs and K − N/2 are vacant/virtual MOs

Roothaan-Hall equations

f |i〉 = εi |i〉 ⇒ f
∑
ν

Cνi |ν〉 = εi
∑
ν

Cνi |ν〉

⇒ 〈µ|f
∑
ν

Cνi |ν〉 = εi 〈µ|
∑
ν

Cνi |ν〉

⇒
∑
ν

Cνi 〈µ|f |ν〉 =
∑
ν

Cνiεi 〈µ|ν〉 ⇒
∑
ν

FµνCνi =
∑
ν

SµνCνiεi
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Hartree-Fock Theory Roothaan-Hall Equations

Atom-centered Gaussian basis sets (cf Emmanuel Giner’s Talk)

φµ(r) = (x − Ax)ax (y − Ay )ay (z − Az)az exp
(
−α|r − A|2

)
A = (Ax ,Ay ,Az) a = (ax , ay , az)
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Hartree-Fock Theory Integral Notations

Chemists vs Physicists or Mulliken vs Dirac (cf Emmanuel Giner’s Talk)

HF energy in the AO basis (closed-shell system)

EHF =
∑
µν

PµνH
c
µν +

1

2

∑
µνλσ

Pµν

[
(µν|λσ)− 1

2
(µσ|λν)

]
Pλσ Pµν = 2

occ∑
i

CµiCνi

Chemist’s notation for two-electron integrals

(µν|λσ) =
x

φµ(1)φν(1)
1

r12
φλ(2)φσ(2)dr1dr2

(µν||λσ) = (µν|λσ)− (µσ|λν)

Physicist’s notation for two-electron integrals

〈µν|λσ〉 =
x

φµ(1)φν(2)
1

r12
φλ(1)φσ(2)dr1dr2

〈µν||λσ〉 = 〈µν|λσ〉 − 〈µν|σλ〉
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Hartree-Fock Theory Unrestricted Hartree-Fock Approximation

Unrestricted HF (UHF)

How to model open-shell systems?

RHF is made to describe closed-shell systems and we have used restricted spin orbitals:

χRHF
i (x) =

{
α(ω)ψi (r)

β(ω)ψi (r)

It does not described open-shell systems

For open-shell systems we can use unrestricted spin orbitals

χUHF
i (x) =

{
α(ω)ψαi (r)

β(ω)ψβi (r)

RHF = Restricted Hartree-Fock ↔ Roothaan-Hall equations

UHF = Unrestricted Hartree-Fock ↔ Pople-Nesbet equations

Restricted Open-shell Hartree-Fock (ROHF) do exist but we won’t talk about it
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Hartree-Fock Theory Unrestricted Hartree-Fock Approximation

RHF, ROHF and UHF

RHF = Restricted Hartree-Fock

UHF = Unrestricted Hartree-Fock

ROHF = Restricted Open-shell Hartree-Fock
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Hartree-Fock Theory Unrestricted Hartree-Fock Approximation

Unrestricted Hartree-Fock Equations

UHF equations for unrestricted spin orbitals

To minimize the UHF energy, the unrestricted spin orbitals must be eigenvalues of the α and β Fock operators:

f α(1)ψαj (1) = εαj ψ
α
j (1) f β(1)ψβj (1) = εβj ψ

β
j (1)

where

f α(1) = h(1) +
Nα∑
i

[Jαi (1)− Kα
i (1)] +

Nβ∑
i

Jβi (1)

The Coulomb and Exchange operators are

Jαi (1) =

∫
ψαi (2)r−1

12 ψ
α
i (2)dr2 Kα

i (1)ψαj (1) =

[∫
ψαi (2)r−1

12 ψ
α
j (2)dr2

]
ψαi (1)
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Electron Correlation Methods Introduction

The correlation energy

HF replaces the e-e interaction by an averaged interaction

The error in the HF method is called the correlation energy

Ec = E − EHF

The correlation energy is small but cannot but neglected!

HF energy roughly 99% of total but chemistry very sensitive to remaining 1%

The correlation energy is always negative

Computing Ec is one of the central problem of quantum chemistry

In quantum chemistry, we usually “freeze” the core electrons for correlated calculations
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Electron Correlation Methods Introduction

Correlation methods

1 Configuration Interaction (CID, CIS, CISD, QCISD)

2 Coupled Cluster (CCD, CCSD, CCSD(T), CCSDT)

3 Møller-Plesset perturbation theory (MP2, MP3, MP4)

4 Multireference methods (MCSCF, CASSCF, RASSCF, MRCC, CASPT2)

5 Explicitly correlated F12 methods (MP2-F12, CCSD-F12, CAS-F12)

6 Density-functional theory (DFT, TDDFT)

7 Stochastic Quantum Monte Carlo methods (VMC, DMC, FCIQMC)
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Electron Correlation Methods Configuration Interaction Methods

Configuration Interaction (CI)

This is the oldest and perhaps the easiest method to understand

CI is based on the variational principle (like HF)

The CI wave function is a linear combination of determinants

CI methods use excited determinants to “improve” the HF wave function

|Φ0〉 = c0|Ψ0〉+
∑
ia

cai |Ψa
i 〉+

∑
i<j
a<b

cabij |Ψab
ij 〉+

∑
i<j<k
a<b<c

cabcijk |Ψabc
ijk 〉+

∑
i<j<k<l
a<b<c<d

cabcdijkl |Ψabcd
ijkl 〉+ . . .

In Ψab
ij , the electrons in occupied spinorbital i and j have been promoted to the virtual spinorbitals a and b
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Electron Correlation Methods Configuration Interaction Methods

CI method and Excited determinants

Excited determinants

HF S-type S-type D-type D-type T-type Q-type 

CI wave function

|Φ0〉 = c0|HF〉+ cS|S〉+ cD|D〉+ cT|T〉+ cQ|Q〉+ . . .
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Electron Correlation Methods Configuration Interaction Methods

Truncated CI

When |S〉 (singles) are taken into account: CIS

|ΦCIS〉 = c0|HF〉+ cS|S〉

NB: CIS is an excited state method

When |D〉 (doubles) are taken into account: CID

|ΦCID〉 = c0|HF〉+ cD|D〉

NB: CID is the cheapest CI method

When |S〉 and |D〉 are taken into account: CISD

|ΦCISD〉 = c0|HF〉+ cS|S〉+ cD|D〉

NB: CISD is the most commonly-used CI method

When |S〉, |D〉 and |T〉 (triples) are taken into account: CISDT

|ΦCISDT〉 = c0|HF〉+ cS|S〉+ cD|D〉+ cT|T〉

CISDTQ, etc.

PF Loos (CNRS@LCPQ) Panorama of the methods in quantum chemistry QC/NP workshop 20 / 56



Electron Correlation Methods Configuration Interaction Methods

Full CI

When all possible excitations are taken into account
this is called a Full CI calculation (FCI)

|ΦFCI〉 = c0|HF〉+ cS|S〉+ cD|D〉+ cT|T〉+ cQ|Q〉+ . . .

FCI gives the exact solution of the Schrödinger equation within a given basis

FCI is becoming more and more fashionable these days (e.g. FCIQMC and SCI methods)

So, why do we care about other methods?

Because FCI is bloody computationally expensive!

Selected CI (SCI) methods have recently resurrected!! Cf Sandeep Sharma’s talk
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Electron Correlation Methods Configuration Interaction Methods

The FCI matrix

|Φ0〉 = c0|HF〉+ cS|S〉+ cD|D〉+ cT|T〉+ cQ|Q〉+ . . .

Before pruning:

|HF〉 |S〉 |D〉 |T〉 |Q〉 · · ·
〈HF| 〈HF|H|HF〉 〈HF|H|S〉 〈HF|H|D〉 〈HF|H|T〉 〈HF|H|Q〉 · · ·
〈S| 〈S|H|HF〉 〈S|H|S〉 〈S|H|D〉 〈S|H|T〉 〈S|H|Q〉 · · ·
〈D| 〈D|H|HF〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T〉 〈D|H|Q〉 · · ·
〈T| 〈T|H|HF〉 〈T|H|S〉 〈T|H|D〉 〈T|H|T〉 〈T|H|Q〉 · · ·
〈Q| 〈Q|H|HF〉 〈Q|H|S〉 〈Q|H|D〉 〈Q|H|T〉 〈Q|H|Q〉 · · ·

...
...

...
...

...
...

...

After pruning:

|HF〉 |S〉 |D〉 |T〉 |Q〉 · · ·
〈HF| 〈HF|H|HF〉 0 〈HF|H|D〉 0 0 · · ·
〈S| 0 〈S|H|S〉 〈S|H|D〉 〈S|H|T〉 0 · · ·
〈D| 〈D|H|HF〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T〉 〈D|H|Q〉 · · ·
〈T| 0 〈T|H|S〉 〈T|H|D〉 〈T|H|T〉 〈T|H|Q〉 · · ·
〈Q| 0 0 〈Q|H|D〉 〈Q|H|T〉 〈Q|H|Q〉 · · ·

...
...

...
...

...
...

...
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Electron Correlation Methods Configuration Interaction Methods

Rules & Observations

1 No coupling between HF ground state |HF〉 and single excitations |S〉
⇒ Brillouin theorem

〈HF|H|S〉 = 0

2 No coupling between |HF〉 and triples |T〉 , quadruples |Q〉 , etc.
⇒ Slater-Condon rules

〈HF|H|T〉 = 〈HF|H|Q〉 = . . . = 0

〈S|H|Q〉 = . . . = 0

3 |S〉 have small effect but mix indirectly with |D〉
⇒ CID 6= CISD

〈HF|H|S〉 = 0 but 〈S|H|D〉 6= 0

4 |D〉 have large effect and |Q〉 more important than |T〉
⇒ CID gives most of the correlation energy

〈HF|H|D〉 � 〈HF|H|Q〉 � 〈HF|H|T〉
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Electron Correlation Methods Configuration Interaction Methods

Size consistency and size extensivity

Truncated CI methods are size inconsistent i.e.

2Ec(H2) 6= Ec(H2····H2)

Size consistent defines for non-interacting fragment

Size extensivity refers to the scaling of Ec with the number of electrons

NB: FCI is size consistent and size extensive
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Electron Correlation Methods Møller-Plesset Perturbation Theory

Møller-Plesset (MP) perturbation theory

In Møller-Plesset perturbation theory, the partition is

H(0) =
N∑
i=1

f (i) =
N∑
i=1

[h(i) + vHF(i)], H(1) =
∑
i<j

1

rij
−
∑
i

vHF(i)

Therefore,

E
(0)
0 =

occ∑
i

εi , E
(1)
0 = −1

2

occ∑
ij

〈ij ||ij〉 ⇒ EHF = E
(0)
0 + E

(1)
0

The first information about the correlation energy is given by the 2nd-order energy

E
(2)
0 =

occ∑
i<j

virt∑
a<b

〈ij ||ab〉2

εi + εj − εa − εb
This is the MP2 energy!!

There’s a similar expression for the MP3 energy, but I was too lazy to type it.
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Electron Correlation Methods Møller-Plesset Perturbation Theory

MP3 energy

The third-order correction is a bit ugly...

E
(3)
0 =

1

8

∑
ijkl

∑
ab

〈ij ||ab〉〈kl ||ij〉〈ab||kl〉
(εi + εj − εa − εb)(εk + εl − εa − εb)

+
1

8

∑
ij

∑
abcd

〈ij ||ab〉〈ab||cd〉〈cd ||ij〉
(εi + εj − εa − εb)(εi + εj − εc − εd)

+
∑
ijk

∑
abc

〈ij ||ab〉〈kb||cj〉〈ac||ik〉
(εi + εj − εa − εb)(εi + εk − εa − εc)

NB:
MP2 and MP3 only requires only doubly excited determinants
MP4 does need singly, doubly, triply and quadruply excited determinant!
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Electron Correlation Methods Illustration

Illustration for the Be atom

Correlation energy of Be in a 4s2p basis set

Scaling Level ∆Ec % Level ∆Ec %

K 5 MP2 0.053174 67.85
K 6 MP3 0.067949 86.70 CISD 0.075277 96.05
K 7 MP4 0.074121 94.58
K 8 MP5 0.076918 98.15 CISDT 0.075465 96.29
K 9 MP6 0.078090 99.64
K 10 MP7 0.078493 100.15 CISDTQ 0.078372 100

MPn is not a variational method, i.e. you can get an energy lower than the true ground state energy!

MPn fails for systems with small HOMO-LUMO gap

The MPn series can oscillate around the exact energy

MPn is size-consistent!
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Electron Correlation Methods Coupled Cluster Methods

Coupled Cluster wave function

Idea behind CC
“Perturbation methods add all types of corrections (S, D, T, Q, etc.) to the reference wave function to a given
order (2, 3, 4, etc.). The idea in CC methods is to include all corrections of a given type to infinite order.

Excitation operator
T = T1 + T2 + T3 + T4 + . . .

Action on the HF wave function

T1Ψ0 =
∑
ia

tai Ψa
i T2Ψ0 =

∑
i<j
a<b

tabij Ψab
ij

CI wave function
ΨCI = (1 + T)Ψ0

CC wave function

ΨCC = eTΨ0 eT = 1 + T +
T2

2
+

T3

6
+ . . . =

∞∑
k=0

Tk

k!
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Electron Correlation Methods Coupled Cluster Methods

Coupled Cluster wave function

eT = 1 + T1 +

(
T2 +

T2
1

2

)
+

(
T3 + T2T1 +

T3
1

6

)
+

(
T4 + T3T1 +

T2
2

2
+

T2T2
1

2
+

T4
1

24

)
+ . . .

singles = T1

doubles = connected doubles T2 + disconnected doubles T2
1

T4 = four electrons interacting simultaneously

T2
2 = two non-interacting pairs of interacting electrons

Compared to CI, CC contains additional terms arising from products of excitations at each excitation level
⇒ CC is size consistent!! but not variational!

CISD lacks T2
2 ⇒ not size consistent
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Electron Correlation Methods Connections

Connections between CI, CC and MP

eT = 1 + T1 +

(
T2 +

T2
1

2

)
+

(
T3 + T2T1 +

T3
1

6

)
+

(
T4 + T3T1 +

T2
2

2
+

T2T2
1

2
+

T4
1

24

)
+ . . .

MP2 and MP3 uses only doubles

MP4 uses singles, doubles, triples (T3) and quadruples (T2
2)

CCD ≈ MP4(DQ) and CCSD ≈ MP4(SDQ)

MP2, MP3 and MP4(SDQ) can be obtained in 1st CCSD iteration

CCSD lacks connected triples T3

1 CCSDT but very expensive!
2 CCSD(T) where triples comes from MP4 (non-iterative)
3 CCSD(T) = Gold Standard Of Quantum Chemistry (for ground state AND weakly correlated systems)
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Electron Correlation Methods Illustration

Illustration for the Be atom

Correlation energy of Be in a 4s2p basis set

Scaling Level ∆Ec % Level ∆Ec % Level ∆Ec %
K5 MP2 0.053174 67.85
K6 MP3 0.067949 86.70 CISD 0.075277 96.05 CCSD 0.078176 99.75
K7 MP4 0.074121 94.58 CCSD(T) 0.078361 99.99
K8 MP5 0.076918 98.15 CISDT 0.075465 96.29 CCSDT 0.078364 99.99
K9 MP6 0.078090 99.64
K10 MP7 0.078493 100.15 CISDTQ 0.078372 100 CCSDTQ 0.078372 100

As a rule of thumb:
HF � MP2 < CISD < MP4(SDQ) ∼ CCSD < MP4 < CCSD(T)
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Quantum Monte Carlo Methods Stochastic Method

Monte Carlo (MC) method

Monte Carlo is a numerical integration method

It is used in problems where it is too difficult or impossible to obtain analytical expressions or the
dimensionality of the integral is large

The method consists in repeating random sampling many times to obtain numerical results:
⇒ this is a non-deterministic or stochastic method.

MC converges as N−1/2 where N is the number of MC step

In 1946, Stanislaw Ulam was the first mathematician to dignify this approach with a name, in honor of his
uncle having a little issue with gambling

Nicolas Metropolis also made important contributions (Metropolis algorithm)
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Quantum Monte Carlo Methods Stochastic Method

Monte Carlo computation of π

∫ 1

−1

∫ 1

−1

f (x , y) dx dy = π with f (x , y) =

{
1, x2 + y 2 ≤ 1,

0, otherwise.

π ≈ 774
1000

= 3.096 π ≈ 3962
5000

= 3.1696 π ≈ 7948
10000

= 3.1792
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Quantum Monte Carlo Methods Variational Monte Carlo

Variational Monte Carlo (VMC) — cf Claudia Filippi’s talk

Within quantum chemistry, VMC is used to obtain expectation values (mainly energies)

In VMC, the expectation value of the Hamiltonian with respect to a trial wave function ΨT is obtained using
a stochastic integration technique

The VMC energy is an upper bound to the exact ground state energy

EVMC =

∫
ΨT(R) H ΨT(R) dR∫

ΨT(R)2 dR
=

∫ H ΨT(R)
ΨT(R)

ΨT(R)2 dR∫
ΨT(R)2 dR

=

∫
EL(R)ΨT(R)2 dR∫

ΨT(R)2 dR

where

EL(R) =
Ĥ ΨT(R)

ΨT(R)
is the local energy and R = (r1, r2, . . . , rn)
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Quantum Monte Carlo Methods Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) — cf Claudia Filippi’s talk

Time-dependent Schrödinger equation written in imaginary time:

∂Φ(R, τ)

∂τ
= (H− S)Φ(R, τ)

For τ →∞, the solution is the exact ground state wave function Φ(R)

DMC generates configurations (or walkers) distributed according to the density ρ(R, τ) = ΨT(R) Φ(R, τ)

∂ρ(R, τ)

dτ
=

1

2
∇2ρ(R, τ)︸ ︷︷ ︸

diffusion

+∇ · [F (R)ρ(R, τ)]︸ ︷︷ ︸
drift

− [EL(R)− ET] ρ(R, τ)︸ ︷︷ ︸
branching

where

F (R) =
∇ΨT(R)

ΨT(R)
is the quantum force

If ΨT(R) has exact nodes, DMC energy = exact energy (fixed-node error)
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Excited-state Methods Introduction

Excited state methods: single-reference methods

HF- and DFT-based methods
Configuration interaction single (CIS)
Time-dependent HF (TDHF)
Time-dependent DFT (TDDFT)
Excited-state HF and KS solutions (MOM)

CC-based methods
Equation-of-motion CC (EOM-CCSD, EOM-CCSDT, etc)
CC2 and CC3 (approximation of CCSD and CCSDT with linear response)

CI-based methods
CIS(D): perturbative approach to CIS that approximately introduces doubles
Symmetry-adapted cluster CI (SAC-CI)

Green’s function-based methods
Algebraic diagrammatic construction (ADC)
Bethe-Salpeter equation (BSE-GW ) formalism
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Excited-state Methods Introduction

Excited state methods: multi-reference methods

Multiconfigurational self-consistent field (MCSCF)
Complete active space self-consistent field (CASSCF)
Complete active space perturbation theory 2nd order (CASPT2)
Restricted active space self-consistent field (RASSCF)

Multireference CI (MRCI)

Multireference CC (MRCC)
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Excited-state Methods Photochemistry

Photochemistry

Energy 

Structure RGS 
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Excited-state Methods Photochemistry
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Excited-state Methods Jablonski diagram

Ground state S0

T1
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IC
Internal conversion Si −→ Sj (non radiative transition)

ISC
Intersystem crossing Si −→ Tj (non radiative transition)

VR
Vibrational Relaxation
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Excited-state Methods Configuration interaction single

Equations for CIS

HF wave function

The HF ground-state wave function is taken as a reference

Ψ0(r1, r2, . . . , rn) ≡ Ψ0(R) = |φ1(r1)φ2(r2) . . . φn(rn)〉

CIS wave function

|ΨCIS〉 =
occ∑
i

virt∑
a

cai |Ψa
i 〉 where |Ψa

i 〉 are singly-excited determinants

CIS energy

H |ΨCIS〉 = ECIS |ΨCIS〉 ⇒
∑
ia

cai H |Ψa
i 〉 = ECIS

∑
ia

cai |Ψa
i 〉

⇒
∑
ia

cai 〈Ψb
j |H|Ψa

i 〉 = ECIS

∑
ia

cai δijδab
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Excited-state Methods Configuration interaction single

Solving the CIS equations

The Slater-Condon rules tell us that

〈Ψb
j |H|Ψa

i 〉 = (E0 + εa − εi )δijδab + (ia||jb)

with (ia||jb) = (ia|jb)− (ij |ab), and

(ia|jb) =
x φi (r1)φa(r1)φj(r2)φb(r2)

|r1 − r2|
dr1dr2

Therefore, ∑
ia

[(εa − εi )δijδab + (ia||jb)]cai = ωCIS

∑
ia

δijδabc
a
i

We obtain ω by diagonalising A

A X = ωX ⇒ (A− ω)X = 0

Aia,jb = (εa − εi )δijδab + (ia||jb)
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Excited-state Methods Configuration interaction single

Comments, properties and limitations of CIS

Comments

1 (εa − εi )δijδab: energy difference between orbitals i and a, which are the ones from which and to which the
electron is excited

2 (ia||jb): linear response of the Coulomb operator to the first-order changes in the one-electron orbitals

Properties and limitations

1 All excited-state total energies are true upper bounds to their exact values

2 CIS is size-consistent

3 One can obtain pure singlet and triplet states (no spin contamination)

4 CIS excitation energies are usually overestimated
(too large by about 0.5-2 eV compared to experimental values)
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Excited-state Methods Time-dependent Hartree-Fock

Time-dependent Hartree-Fock (TDHF)

TDHF wave function

The reference wave function is a time-dependent HF wave function:

ΨHF(r1, . . . , rn, t) ≡ ΨHF(R, t) = |φ1(r1, t)φ2(r2, t) . . . φn(rn, t)〉

TDHF equations

F(R, t)ΨHF(R, t) = i
∂

∂t
ΨHF(R, t) F(R, t) = F(R) + V(R, t) = F(R) +

n∑
i

vi (ri , t)

What physically happens?

1 At t = 0, the system is in a stationary state given by Ψ0(R)

2 A small TD perturbation is applied: φi (r)’s respond only slightly

3 Linear response: we use 1st-order TD perturbation theory to find this response

PF Loos (CNRS@LCPQ) Panorama of the methods in quantum chemistry QC/NP workshop 43 / 56



Excited-state Methods Time-dependent Hartree-Fock

Time-dependent Hartree-Fock (TDHF)

How to solve the TDHF equations?

We have a non-Hermitian problem: (
A B
−B∗ −A∗

)(
Xm

Ym

)
= ωm

(
Xm

Ym

)
Aia,jb = (εa − εi )δijδab + (ia||jb) B ia,jb = (ia||bj)

which can be reduced in a Hermitian eigenvalue equation

Tamm-Dancoff approximation

1 CIS is equivalent to TDHF with B = 0

2 This is the Tamm-Dancoff approximation (TDA)
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Excited-state Methods Time-dependent Hartree-Fock

Comments on TDHF

Comments

1 (εa − εi )δijδab: energy difference between orbitals i and a, which are the ones from which and to which the
electron is excited

2 (ia||jb): linear response of the Coulomb operator to the first-order changes in the one-electron orbitals

3 (ia||bj) linear response of the exchange operator to the first-order changes in the one-electron orbitals

4 TDHF is an extension of CIS:
It includes “singly de-excited” states as well as “singly excited” states

5 TDHF ≡ RPAx and TDHF without exchange is direct RPA (dRPA)

PF Loos (CNRS@LCPQ) Panorama of the methods in quantum chemistry QC/NP workshop 45 / 56



Excited-state Methods Time-dependent Hartree-Fock

Properties and limitations of TDHF

Properties and limitations

1 TDHF is a size-consistent method

2 One can obtain pure singlet and triplet states for closed-shell molecules

3 TDHF has problems with triplets (instabilities)

4 TDHF has not been very successful in the quantum chemistry community

5 Excitation energies calculated with TDHF are slightly smaller than the ones obtained with CIS, but they are
still overestimated

6 TDHF is not a significative improvement over CIS and is slightly more expensive
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Excited-state Methods Time-dependent Density-Functional Theory

Time-dependent density-functional theory (TDDFT)

The Runge-Gross theorem

The Runge-Gross theorem can be seen as the time-dependent analogue of the first Hohenberg-Kohn theorem and
constitutes the cornerstone of the formal foundation of the time-dependent Kohn-Sham (KS) formalism

TDDFT equations

FKS(R, t)ΨKS(R, t) = i
∂

∂t
ΨKS(R, t)

How to solve the TDDFT equations? (
A B
−B∗ −A∗

)(
Xm

Ym

)
= ωm

(
Xm

Ym

)

Aia,jb = (εa − εi )δijδab + (ia|jb) + (ib|fxc|ja)

B ia,jb = (ia|bj) + (ij |fxc|ab)
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Excited-state Methods Time-dependent Density-Functional Theory

TDDFT equations

(ia|fxc|jb) =
x

φi (r1)φa(r1)
δ2Exc

δρ(r1)δρ(r2)
φj(r2)φb(r2)dr1dr2

Tamm-Dancoff approximation

1 In the Tamm-Dancoff approximation (TDA), we set B = 0:
⇒ TDA/TDDFT

2 It’s a very good approximation & it makes the problem Hermitian

Hybrid functionals

Aia,jb = (εa − εi )δijδab + (ia|jb)− cHF(ij |ab) + (1− cHF)(ia|fxc|jb)

B ia,jb = (ia|bj)− cHF(ib|aj) + (1− cHF)(ia|fxc|bj)

where cHF is the fraction of HF exchange in the hybrid functional
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Excited-state Methods Time-dependent Density-Functional Theory

Relationship between CIS, TDHF, DFT and TDDFT

CIS

HF TDHF

DFT TDDFT

TDA

CI B = 0

linear response

υHF
x vs υxc υHF

x vs υxc

linear response

CI
×

B = 0
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Excited-state Methods Multiconfigurational Self-Consistent Field Methods

Multiconfigurational self-consistent field (MCSCF) — cf Stefan Knecht’s talk

MCSCF is a CI on steroids:
both the coefficients in front of the determinants and the MOs used for constructing the determinants are
optimised

MCSCF optimisation is iterative like the SCF procedure in HF or KS

MCSCF are much harder to converge and prone to converge on solutions that are not minima (2nd-order SCF
procedure)

MCSCF wave function is usually smaller than CI because harder to optimise

MCSCF (orbital relaxation) do not recover a large fraction of the correlation energy: static correlation

CI recovers a large fraction of the correlation energy: dynamic correlation
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Excited-state Methods Multiconfigurational Self-Consistent Field Methods

The two faces of correlation energy

Static correlation energy

Energy lowering introduced by adding enough flexibility in the wave function to be able to qualitatively describe
the system. This is essentially the effect of allowing orbitals to become (partly) singly-occupied instead of forcing
double occupation, i.e. describing near-degeneracy effects (two or more configurations having almost the same
energy)

Dynamic correlation energy

The remaining energy lowering by correlating the motion of the electrons and the electronic cusp. The problem is
that there is no rigorous way of separating dynamic and static correlation

Take-home message 1

MCSCF methods are mainly used for generating a qualitatively correct wave function, i.e. recovering the
“static” part of the correlation
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Excited-state Methods Complete Active Space Self-Consistent Field Methods

Complete active space self-consistent field (CASSCF)

In CASSCF, the selection of configurations is done by partitioning the MOs into active and inactive spaces

The active MOs will typically be some of the highest occupied and some of the lowest unoccupied MOs from
HF calculation

The inactive MOs have either 2 or 0 electrons, i.e. always either doubly occupied or empty

[n,m]-CASSCF: n electrons are distributed in all possible ways in m orbitals

CASSCF gets the “static” part of the correlation energy
⇒ CASPT2 is used to get the “dynamical” part
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Excited-state Methods Complete Active Space Self-Consistent Field Methods

CASSCF vs RASSCF
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Excited-state Methods Restricted Active Space Self-Consistent Field Methods

Restricted active space self-consistent field (RASSCF)

The active MOs are divided into three spaces: RAS1, RAS2 and RAS3
1 RAS1 consists of MOs that are doubly occupied in HF reference determinant
2 RAS2 is generated by a FCI (analogously to CASSCF)
3 RAS3 consists of MOs that are empty in HF reference determinant

FCI within RAS2

CISD from RAS1 to RAS3 and from RAS2 to RAS3

This procedure can be customised if required

Take-home message 2

MCSCF methods aren’t BLACK BOX!!
How do we choose the active space?! valence orbitals, chemical intuition, natural orbitals, automatic
selection, etc.
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Excited-state Methods Restricted Active Space Self-Consistent Field Methods

CASSCF vs RASSCF

PF Loos (CNRS@LCPQ) Panorama of the methods in quantum chemistry QC/NP workshop 55 / 56



Books

Good books

Introduction to Computational Chemistry (Jensen)

Essentials of Computational Chemistry (Cramer)

Modern Quantum Chemistry (Szabo & Ostlund)

Molecular Electronic Structure Theory (Helgaker, Jorgensen & Olsen)
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