Lecture notes: quantum circuit architecture for Pauli strings exponentials

Saad Yalouz,

Laboratoire de Chimie Quantique de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg
Email: yalouzsaad@gmail.com
Personal website

Abstract

The purpose of these notes is to explain how to build the quantum circuit that will encode a Pauli string exponential. These operations play a key role in quantum computation for quantum chemistry as they appear in various quantum algorithms. We can find them in the quantum circuit encoding of the Unitary Coupled Cluster ansatz for the VQE algorithm (Variational Quantum Eigensolver), or in the encoding of the time evolution operator for the QPE algorithm (Quantum Phase Estimation). To help the reader, I will first present all the basic ingredients, then I will explain step by step the architectures of the circuits.

Contents

1 Basics one- and two-qubit gates and Pauli-strings 1
1.1 Pauli operators $X, Y, Z \quad . .$.
1.1.1 Rotation gates $R_{X, Y, Z}(\theta) \ldots \ldots$.

1.3 Pauli strings \mathcal{P}. 2

2 Quantum circuit to implement exponentials of Pauli strings 2
2.1 Generating extended Z Pauli string exponentials . . 2
2.2 From Z to X, Y operators in exponential 3

3 Example of quantum circuit

1. Basics one- and two-qubit gates and Pauli-strings

1.1 Pauli operators X, Y, Z

First, let us introduce important single-qubit quantum transformations : the Pauli operators X_{q}, Y_{q} and Z_{q}. Their gate representation is given in figure 1.

Figure 1: Representation of the Pauli gates.
The three different Pauli operators present the following matrix shape in the local basis (associated to the qubit "q")

$$
X_{q}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad Y_{q}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z_{q}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Here we have introduced the index " q " to refer to the particular qubit these operators are attached to. Based on these matrix forms, a pletora of useful properties can be derived. We are going to enumerate the most important ones for our future work.

- Pauli operators are hermitian :

$$
\begin{equation*}
X_{q}=X_{q}^{\dagger}, \quad Y_{q}=Y_{q}^{\dagger}, \quad Z_{q}=Z_{q}^{\dagger} \tag{2}
\end{equation*}
$$

- Pauli operators are involutory (self-inverse) :

$$
\begin{equation*}
X_{q}^{2}=Y_{q}^{2}=Z_{q}^{2}=\mathbf{1}_{q} \tag{3}
\end{equation*}
$$

- Complete matrix product of three Pauli operators resolve the identity of the qubit q Hilbert space :

$$
\begin{equation*}
\mathbf{1}_{q}=-i X_{q} Y_{q} Z_{q} \tag{4}
\end{equation*}
$$

- A useful trick is that a Z_{q} operator sandwiched by two X_{q} or Y_{q} produces a minus sign :

$$
\begin{equation*}
X_{q} Z_{q} X_{q}=Y_{q} Z_{q} Y_{q}=-Z_{q} \tag{5}
\end{equation*}
$$

This can be demonstrated using the previous definition (resolution of the identity).

1.1.1 Rotation gates $R_{X, Y, Z}(\theta)$

Now let us focus on the qubit rotations. For any Pauli operator $\left(X_{q}, Y_{q}, Z_{q}\right)$, a rotation of the qubit q can be generated via a unitary operator. Such an unitary operator takes the shape of complex exponential of the associated Pauli matrix. For example, the following operation

$$
\begin{equation*}
e^{-i \theta Z_{q}}=\cos (\theta) \mathbf{1}_{q}-i \sin (\theta) Z_{q} \tag{6}
\end{equation*}
$$

produces a rotation for the qubit q of angle θ around the Z_{q} axis. Note that the cosine/sine representation of this operator holds thanks to the algebraic properties of the Pauli operator.

Even if this transformation is very general, in the literature (and in practice) rotations are introduced with the concept of "rotation gates" which present a slightly different angular parametrization. For example, to do a rotation around the Z_{q} axis we have the following gate

$$
\begin{align*}
R_{Z_{q}}\left(\theta^{\prime}\right) & =e^{-i \frac{\theta^{\prime}}{2} Z_{q}} \tag{7}\\
& =\cos \left(\theta^{\prime} / 2\right) \mathbf{1}-i \sin (\theta / 2) Z_{q}
\end{align*}
$$

We see here the presence of a factor 2 which simply represents a difference of angular parametrization. This difference is not a problem, but we want here to stress that in order to implement an angular rotation of θ on a qubit, we should use in a circuit a rotation gate $R_{Z_{q}}(2 \theta)$. Figure 2 illustrates the diagram that is usually employed to represent a rotation gate.

$$
-R_{Z}(2 \theta)
$$

Figure 2: Diagram of a Z_{q} rotation gate.

1.2 Control-X gate $C_{q q^{\prime}}^{X}$ (CNOT)

Another important gate is the two-qubit $C_{q q^{\prime}}^{X}$ gate whose matrix shape is

$$
C_{q q^{\prime}}^{X}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{8}\\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

This operator, also called "CNOT", depends on two ingredients : a first control qubit q which, when active, generates a flip of the state of a second target qubit q^{\prime}. In tensorial representation, this operator is described as

$$
\begin{equation*}
C_{q q^{\prime}}^{X}=\left|0_{q}\right\rangle\left\langle 0_{q}\right| \otimes \mathbf{1}_{q^{\prime}}+\left|1_{q}\right\rangle\left\langle 1_{q}\right| \otimes X_{q^{\prime}} \tag{9}
\end{equation*}
$$

Based on this, we clearly see that the $C_{q q^{\prime}}^{X}$ operator is hermitian

$$
\begin{equation*}
C_{q q^{\prime}}^{X}=C_{q q^{\prime}}^{X}{ }^{\dagger} \tag{10}
\end{equation*}
$$

and involutory

$$
\begin{equation*}
C_{q q^{\prime}}^{X} C_{q q^{\prime}}^{X}{ }^{\dagger}=C_{q q^{\prime}}^{X}{ }^{\dagger} C_{q q^{\prime}}^{X}=\mathbf{1}_{q} \otimes \mathbf{1}_{q^{\prime}} \tag{11}
\end{equation*}
$$

In a quantum circuit, we will denote the action of this two-qubit gate via a diagram as illustrated in figure 3.

Figure 3: $C_{q q^{\prime}}^{X}$ gate with a control qubit q and a target qubit q^{\prime}.

1.3 Pauli strings \mathcal{P}

Let us now introduce a central object : the Pauli string. A Pauli string \mathcal{P} refers to a chain (i.e. a tensor product) of different Pauli operators, each one acting on one qubit. As an example, we can imagine a Pauli string for 4 different qubits such that

$$
\begin{equation*}
\mathcal{P}=Z_{0} \otimes X_{1} \otimes \mathbf{1}_{2} \otimes Y_{3} \tag{12}
\end{equation*}
$$

with Z_{0} acting on the qubit $q=0, X_{1}$ on the qubit $q=1$, and so on. Note that in the following if an identity is present for any qubit we will intentionally disregard its notation. Therefore, we can introduce a shorthand notation for the precedent Pauli string like

$$
\begin{equation*}
\mathcal{P}=Z_{0} \otimes X_{1} \otimes \mathbf{1}_{2} \otimes Y_{3} \longrightarrow Z_{0} X_{1} Y_{3} \tag{13}
\end{equation*}
$$

In practice, Pauli strings usually appear when building the quantum circuit for a Unitary Coupled Cluster ansatz or for a time evolution propagator (see the lectures realized during the workshop). Due to the nice properties of the Pauli operators, we can show that exponential of Pauli strings actually follows

$$
\begin{equation*}
e^{-i \theta \mathcal{P}}=\cos (\theta) \mathbf{1}-i \sin (\theta) \mathcal{P} \tag{14}
\end{equation*}
$$

with θ a phase parameter and $\mathbf{1}$ the resolution of the identity over the total set of qubits considered.

2. Quantum circuit to implement exponentials of Pauli strings

2.1 Generating extended Z Pauli string exponentials

Our first tool, will be to use C^{X} gates to sandwich a Z-rotation gate. We can that this process extend the effect of this rotation to a second qubit. More precisely, considering a control qubit q and a target qubit (with the condition $q<q^{\prime}$), we can show that the following property holds

$$
\begin{equation*}
e^{-i \theta Z_{q} Z_{q^{\prime}}}=C_{q q^{\prime}}^{X} e^{-i \theta Z_{q^{\prime}}} C_{q q^{\prime}}^{X} \tag{15}
\end{equation*}
$$

To demonstrate this property, let us use the trigonometric decomposition of the complex exponential (introduced in previous section)

$$
\begin{equation*}
C_{q q^{\prime}}^{X} e^{-i \theta Z_{q^{\prime}}} C_{q q^{\prime}}^{X}=\cos (\theta) \mathbf{1}-i \sin (\theta) C_{q q^{\prime}}^{X} Z_{q^{\prime}} C_{q q^{\prime}}^{X} \tag{16}
\end{equation*}
$$

Here we also used the fact that $C_{q q^{\prime}}^{X}$ gates are involutory. Then, using the tensorial representation of the $C_{q q^{\prime}}^{X}$ gate and the trick $X Z X=-Z$, we can demonstrate the following useful property

$$
\begin{equation*}
C_{q q^{\prime}}^{X} Z_{q^{\prime}} C_{q q^{\prime}}^{X}=Z_{q} Z_{q^{\prime}} \tag{17}
\end{equation*}
$$

Putting this result back into (16) allows to conclude the proof of (15) with

$$
\begin{equation*}
e^{-i \theta Z_{q} Z_{q^{\prime}}}=\cos (\theta) \mathbf{1}-i \sin (\theta) Z_{q} Z_{q^{\prime}} \tag{18}
\end{equation*}
$$

Based on this, we can then define a quantum circuit architecture to implement any exponential of Z-Pauli strings. Figures (4-7) illustrate all the possible quantum circuits realizing such a transformation on a register of three qubits.

Figure 4: Circuit generating $\exp \left(-i \theta Z_{0} Z_{1}\right)$

Figure 5: Circuit generating $\exp \left(-i \theta Z_{0} Z_{1} Z_{2}\right)$

Figure 6: Circuit generating $\exp \left(-i \theta Z_{0} Z_{2}\right)$

Figure 7: Circuit generating $\exp \left(-i \theta Z_{1} Z_{2}\right)$

2.2 From Z to X, Y operators in exponential

We know how to generate any kind of Z-Pauli string in an exponential. Starting from this, we will now learn how to change Z_{q} operator in an exponential with a X_{q} or Y_{q} operator. To introduce this trick, we sandwich the Z-Pauli string exponential by two rotation gates
implementing rotations of $\pi / 4$ of the qubit q around the Y_{q}-axis (i.e. $\left.\quad R_{Y_{q}}(\pi / 2)\right)$. Using the trigonometric decomposition (see previous section), we can indeed show

$$
\begin{align*}
& R_{Y_{q}}(\pi / 2)
\end{align*} e^{-i \theta Z_{0} \ldots Z_{q} \ldots Z_{N}} R_{Y_{q}}^{\dagger}(\pi / 2)=, ~\left(\quad e^{-i \theta Z_{0} \ldots R_{Y_{q}}(\pi / 2) Z_{q} R_{Y_{q}}^{\dagger}(\pi / 2) \ldots Z_{N}}\right.
$$

Then, using the trigonometric decomposition on the rotation operator we can show

$$
\begin{equation*}
R_{Y_{q}}(\pi / 2) Z_{q} R_{Y_{q}}^{\dagger}(\pi / 2)=X_{q} \tag{20}
\end{equation*}
$$

Thus, we see here the trick

$$
\begin{equation*}
R_{Y_{q}}(\pi / 2) e^{-i \theta Z_{0} \ldots Z_{q} \ldots Z_{N}} R_{Y_{q}}^{\dagger}(\pi / 2)=e^{-i \theta Z_{0} \ldots X_{q} \ldots Z_{N}} \tag{21}
\end{equation*}
$$

We can then replace any Z_{q} operator by a X_{q} using the rotation $R_{Y_{q}}(\pi / 2)$. Note that the same type of trick holds if we want to obtain Y_{q} instead of X_{q}. However in this case the transformation we should use is $R_{X_{q}}(-\pi / 2)$: a rotation of $-\pi / 4$ of the qubit q around the X_{q}-axis. Using this rotation, we can show the following property

$$
\begin{equation*}
R_{X_{q}}(-\pi / 2) Z_{q} R_{X_{q}}^{\dagger}(-\pi / 2)=Y_{q} \tag{22}
\end{equation*}
$$

which allows us to change a Z_{q} operator by a Y_{q} in the exponential.

3. Example of quantum circuit

Finally, if we combine the two tricks we have introduced before, we can then decompose any exponential of Paulistring into a succession of elementary transformations. To give an example, let us decompose the following unitary :

$$
\begin{equation*}
e^{-i \theta Z_{A} X_{B}}=\cos (\theta) 1-i \sin (\theta) Z_{A} X_{B} \tag{23}
\end{equation*}
$$

We have then the following circuit decomposition:

$$
\begin{align*}
e^{-i \theta Z_{A} X_{B}} & =R_{Y_{B}}(\pi / 2) e^{-i \theta Z_{A} Z_{B}} R_{Y_{B}}(-\pi / 2) \\
& =R_{Y_{B}}(\pi / 2) C_{A B}^{X} e^{-i \theta Z_{B}} C_{A B}^{X} R_{Y_{B}}(-\pi / 2) \tag{24}
\end{align*}
$$

Figure 8 illustrates the circuit architecture that implements the precedent unitary (with a parameter 2θ).

Remark : my apologies, but in my slides the circuits introducing the Pauli exponentials should be reversed around the central Z-rotation gate. Indeed, when translating a series of operators into a circuit, the operator on the very right is implemented first in the circuit, namely on the left. In other terms, the rotations $R_{Y}(-\pi / 2)$ and $R_{X}(\pi / 2)$ should be on the left and not on the right in the quantum circuits (here, the figure 8 includes this correction).

Figure 8: Illustration of the quantum circuit implementing the operator $e^{-i \theta Z_{A} X_{B}}$.

