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Abstract
The purpose of these notes is to explain how to build the quantum circuit that will encode a Pauli string exponential.
These operations play a key role in quantum computation for quantum chemistry as they appear in various quantum
algorithms. We can find them in the quantum circuit encoding of the Unitary Coupled Cluster ansatz for the VQE
algorithm (Variational Quantum Eigensolver), or in the encoding of the time evolution operator for the QPE algorithm
(Quantum Phase Estimation). To help the reader, I will first present all the basic ingredients, then I will explain step
by step the architectures of the circuits.
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1. Basics one- and two-qubit gates and
Pauli-strings

1.1 Pauli operators X,Y, Z

First, let us introduce important single-qubit quantum
transformations : the Pauli operators Xq, Yq and Zq.
Their gate representation is given in figure 1.

X Y Z

Figure 1: Representation of the Pauli gates.

The three different Pauli operators present the fol-
lowing matrix shape in the local basis (associated to the
qubit ”q”)

Xq =

(
0 1
1 0

)
, Yq =

(
0 −i
i 0

)
, Zq =

(
1 0
0 −1

)
(1)

Here we have introduced the index ”q” to refer to the
particular qubit these operators are attached to. Based
on these matrix forms, a pletora of useful properties
can be derived. We are going to enumerate the most
important ones for our future work.

• Pauli operators are hermitian :

Xq = X†
q , Yq = Y †

q , Zq = Z†
q (2)

• Pauli operators are involutory (self-inverse) :

X2
q = Y 2

q = Z2
q = 1q (3)

• Complete matrix product of three Pauli operators
resolve the identity of the qubit q Hilbert space :

1q = −iXqYqZq (4)

• A useful trick is that a Zq operator sandwiched by
two Xq or Yq produces a minus sign :

XqZqXq = YqZqYq = −Zq (5)

This can be demonstrated using the previous defi-
nition (resolution of the identity).

1.1.1 Rotation gates RX,Y,Z(θ)

Now let us focus on the qubit rotations. For any Pauli
operator (Xq, Yq, Zq), a rotation of the qubit q can be gen-
erated via a unitary operator. Such an unitary operator
takes the shape of complex exponential of the associated
Pauli matrix. For example, the following operation

e−iθZq = cos(θ)1q − i sin(θ)Zq (6)
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produces a rotation for the qubit q of angle θ around the
Zq axis. Note that the cosine/sine representation of this
operator holds thanks to the algebraic properties of the
Pauli operator.

Even if this transformation is very general, in the
literature (and in practice) rotations are introduced with
the concept of ”rotation gates” which present a slightly
different angular parametrization. For example, to do a
rotation around the Zq axis we have the following gate

RZq
(θ′) = e−i θ′

2 Zq

= cos(θ′/2)1− i sin(θ/2)Zq

(7)

We see here the presence of a factor 2 which simply
represents a difference of angular parametrization. This
difference is not a problem, but we want here to stress
that in order to implement an angular rotation of θ on a
qubit, we should use in a circuit a rotation gate RZq

(2θ).
Figure 2 illustrates the diagram that is usually employed
to represent a rotation gate.

RZ(2θ)

Figure 2: Diagram of a Zq rotation gate.

1.2 Control-X gate CX
qq′ (CNOT)

Another important gate is the two-qubit CX
qq′ gate whose

matrix shape is

CX
qq′ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (8)

This operator, also called ”CNOT”, depends on two
ingredients : a first control qubit q which, when active,
generates a flip of the state of a second target qubit q′.
In tensorial representation, this operator is described as

CX
qq′ = |0q⟩⟨0q| ⊗ 1q′ + |1q⟩⟨1q| ⊗Xq′ (9)

Based on this, we clearly see that the CX
qq′ operator

is hermitian

CX
qq′ = CX

qq′
† (10)

and involutory

CX
qq′C

X
qq′

† = CX
qq′

†CX
qq′ = 1q ⊗ 1q′ (11)

In a quantum circuit, we will denote the action of this
two-qubit gate via a diagram as illustrated in figure 3.

q

q′

Figure 3: CX
qq′ gate with a control qubit q and a target

qubit q′.

1.3 Pauli strings P

Let us now introduce a central object : the Pauli string.
A Pauli string P refers to a chain (i.e. a tensor product)
of different Pauli operators, each one acting on one qubit.
As an example, we can imagine a Pauli string for 4
different qubits such that

P = Z0 ⊗X1 ⊗ 12 ⊗ Y3 (12)

with Z0 acting on the qubit q = 0, X1 on the qubit
q = 1, and so on. Note that in the following if an identity
is present for any qubit we will intentionally disregard
its notation. Therefore, we can introduce a shorthand
notation for the precedent Pauli string like

P = Z0 ⊗X1 ⊗ 12 ⊗ Y3 −→ Z0X1Y3 (13)

In practice, Pauli strings usually appear when build-
ing the quantum circuit for a Unitary Coupled Cluster
ansatz or for a time evolution propagator (see the lectures
realized during the workshop). Due to the nice properties
of the Pauli operators, we can show that exponential of
Pauli strings actually follows

e−iθP = cos(θ)1− i sin(θ)P (14)

with θ a phase parameter and 1 the resolution of the
identity over the total set of qubits considered.

2. Quantum circuit to implement
exponentials of Pauli strings

2.1 Generating extended Z Pauli string exponentials

Our first tool, will be to use CX gates to sandwich a
Z-rotation gate. We can that this process extend the
effect of this rotation to a second qubit. More precisely,
considering a control qubit q and a target qubit (with
the condition q < q′), we can show that the following
property holds

e−iθZqZq′ = CX
qq′ e

−iθZq′ CX
qq′ (15)

To demonstrate this property, let us use the trigono-
metric decomposition of the complex exponential (intro-
duced in previous section)

CX
qq′ e

−iθZq′ CX
qq′ = cos(θ)1−i sin(θ)CX

qq′ Zq′ C
X
qq′ (16)
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Here we also used the fact that CX
qq′ gates are involutory.

Then, using the tensorial representation of the CX
qq′ gate

and the trick XZX = −Z, we can demonstrate the
following useful property

CX
qq′ Zq′ C

X
qq′ = ZqZq′ (17)

Putting this result back into (16) allows to conclude the
proof of (15) with

e−iθZqZq′ = cos(θ)1− i sin(θ)ZqZq′ (18)

Based on this, we can then define a quantum circuit
architecture to implement any exponential of Z-Pauli
strings. Figures (4-7) illustrate all the possible quantum
circuits realizing such a transformation on a register of
three qubits.

0

1 RZ(2θ)

2

Figure 4: Circuit generating exp(−iθZ0Z1)

0

1

2 RZ(2θ)

Figure 5: Circuit generating exp(−iθZ0Z1Z2)

0

1

2 RZ(2θ)

Figure 6: Circuit generating exp(−iθZ0Z2)

0

1

2 RZ(2θ)

Figure 7: Circuit generating exp(−iθZ1Z2)

2.2 From Z to X,Y operators in exponential

We know how to generate any kind of Z-Pauli string in
an exponential. Starting from this, we will now learn
how to change Zq operator in an exponential with a Xq

or Yq operator. To introduce this trick, we sandwich
the Z-Pauli string exponential by two rotation gates

implementing rotations of π/4 of the qubit q around
the Yq-axis (i.e. RYq

(π/2)). Using the trigonometric
decomposition (see previous section), we can indeed show

RYq
(π/2) e−iθZ0...Zq...ZN R†

Yq
(π/2) =

e
−iθZ0...RYq (π/2)ZqR

†
Yq

(π/2)...ZN

(19)

Then, using the trigonometric decomposition on the
rotation operator we can show

RYq (π/2)ZqR
†
Yq
(π/2) = Xq (20)

Thus, we see here the trick

RYq
(π/2) e−iθZ0...Zq...ZN R†

Yq
(π/2) = e−iθZ0...Xq...ZN

(21)

We can then replace any Zq operator by a Xq using
the rotation RYq

(π/2). Note that the same type of trick
holds if we want to obtain Yq instead of Xq. However in
this case the transformation we should use is RXq (−π/2):
a rotation of −π/4 of the qubit q around the Xq-axis.
Using this rotation, we can show the following property

RXq
(−π/2)ZqR

†
Xq

(−π/2) = Yq (22)

which allows us to change a Zq operator by a Yq in the
exponential.

3. Example of quantum circuit

Finally, if we combine the two tricks we have introduced
before, we can then decompose any exponential of Pauli-
string into a succession of elementary transformations.
To give an example, let us decompose the following uni-
tary :

e−iθZAXB = cos(θ)1− i sin(θ)ZAXB (23)

We have then the following circuit decomposition:

e−iθZAXB = RYB
(π/2) e−iθZAZB RYB

(−π/2)

= RYB
(π/2) CX

AB e−iθZB CX
AB RYB

(−π/2).

(24)

Figure 8 illustrates the circuit architecture that imple-
ments the precedent unitary (with a parameter 2θ).

Remark : my apologies, but in my slides the
circuits introducing the Pauli exponentials should be
reversed around the central Z-rotation gate. Indeed,
when translating a series of operators into a circuit, the
operator on the very right is implemented first in the
circuit, namely on the left. In other terms, the rotations
RY (−π/2) and RX(π/2) should be on the left and not
on the right in the quantum circuits (here, the figure 8
includes this correction).
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Figure 8: Illustration of the quantum circuit implementing the operator e−iθZAXB .
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