Specific computational aspects in nuclear physics

II. Symmetry-breaking calculations

Benjamin Bally

GDR NBODY/RESANET - 09/02/2021

1 Introduction

2 Bogoliubov quasiparticle states

3 Hartree-Fock-Bogoliubov (HFB)

4 Practical aspects

6 Projected HFB

1 Introduction

Ø Bogoliubov quasiparticle states

Hartree-Fock-Bogoliubov (HFB)

Practical aspects

S Projected HFB

• Static (or collective) correlations are important in nuclear structure

• Examples: pairing, quadrupole and octupole deformations, ...

• Static (or collective) correlations are important in nuclear structure

• Examples: pairing, quadrupole and octupole deformations, ...

• In most cases, mean-field equations favor "deformed" solutions

• Static (or collective) correlations are important in nuclear structure

• Examples: pairing, quadrupole and octupole deformations, ...

• In most cases, mean-field equations favor "deformed" solutions

Symmetry-breaking MF ^{reference states}→ Symmetry-restored BMF

 $(MF \equiv mean field)$

(BMF ≡ beyond mean field)

Example: axial quadrupole deformation

Problem: deformed solutions break the symmetries of H
 ⇒ unphysical in nuclei (finite systems)

- Problem: deformed solutions break the symmetries of H
 ⇒ unphysical in nuclei (finite systems)
- "Symmetry dilemma" of Löwdin

P. Lykos and G. W. Pratt, Rev. Mod. Phys. 35 496 (1963)

- MF ansatz respects the symmetries of H but is variationally limited
- ◊ MF ansatz is variationally general but breaks the symmetries of H

- Problem: deformed solutions break the symmetries of H
 ⇒ unphysical in nuclei (finite systems)
- "Symmetry dilemma" of Löwdin

P. Lykos and G. W. Pratt, Rev. Mod. Phys. 35 496 (1963)

- MF ansatz respects the symmetries of H but is variationally limited
- $\diamond\,$ MF ansatz is variationally general but breaks the symmetries of H
- Examples:

Physical symmetry	Group	Quant. numb.	Correlations
Particle-number inv.	$U(1)_Z \times U(1)_N$	N, Z	Pairing, Finite temp.
Rotational inv.	$SU(2)_A$	J, M _J	Deformation (any)
Parity inv.	Z_{2A}	П	Deformation (odd)
Translational inv.	T_A^3	P	Localization
Isospin	$SU(2)_A$	Τ, Μ _Τ	Pairing n-p

Introduction

2 Bogoliubov quasiparticle states

Hartree-Fock-Bogoliubov (HFB)

Practical aspects

S Projected HFB

• HFB theory \equiv merges HF and BCS theories into coherent MF framework

 $(BCS \equiv Bardeen-Cooper-Schrieffer)$

• HFB theory \equiv merges HF and BCS theories into coherent MF framework

 $(BCS \equiv Bardeen-Cooper-Schrieffer)$

Theory	Variational ansatz
HF	Slater determinants
HFB	Bogoliubov quasiparticle states

• HFB theory \equiv merges HF and BCS theories into coherent MF framework

 $(BCS \equiv Bardeen-Cooper-Schrieffer)$

Theory	Variational ansatz
HF	Slater determinants
HFB	Bogoliubov quasiparticle states

• Bogoliubov quasiparticle state $|\Phi\rangle$ defined as vacuum

 $\beta_k \big| \Phi \big\rangle = 0$

for a set of quasiparticle operators $\left\{ \beta_k; \beta_k^\dagger \right\}$ defined as

$$\begin{pmatrix} \beta \\ \beta^{\dagger} \end{pmatrix} = \begin{pmatrix} U^{\dagger} & V^{\dagger} \\ V^{T} & U^{T} \end{pmatrix} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix} \equiv \mathcal{W}^{\dagger} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix}$$

with

 $\mathcal{W}\mathcal{W}^{\dagger} = \mathcal{W}^{\dagger}\mathcal{W} = \mathbf{1}_{2M}$ (ensures fermionic CAR)

Bogoliubov quasiparticle states II

• Expanded form of the Bogoliubov transformations

$$\beta_k = \sum_i U_{ik}^* c_i + V_{ik}^* c_i^{\dagger}$$
$$\beta_k^{\dagger} = \sum_i U_{ik} c_i^{\dagger} + V_{ik} c_i$$

Bogoliubov quasiparticle states II

• Expanded form of the Bogoliubov transformations

$$\beta_k = \sum_i U_{ik}^* c_i + V_{ik}^* c_i^{\dagger}$$
$$\beta_k^{\dagger} = \sum_i U_{ik} c_i^{\dagger} + V_{ik} c_i$$

• $|\Phi\rangle$ is a product state (but of quasiparticles)

$$|\Phi\rangle = \prod_k \beta_k |0\rangle$$

Bogoliubov quasiparticle states II

• Expanded form of the Bogoliubov transformations

$$\beta_k = \sum_i U_{ik}^* c_i + V_{ik}^* c_i^{\dagger}$$
$$\beta_k^{\dagger} = \sum_i U_{ik} c_i^{\dagger} + V_{ik} c_i$$

• $|\Phi\rangle$ is a product state (but of quasiparticles)

$$|\Phi\rangle = \prod_k \beta_k |0\rangle$$

• $|\Phi\rangle$ is fully characterzied by the one-body densities

$$\rho_{ij} = \frac{\langle \Phi | c_j^{\dagger} c_i | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \left(V^* V^T \right)_{ij} \qquad \rho^{\dagger} = \rho$$

$$\kappa_{ij} = \frac{\langle \Phi | c_j c_i | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \left(V^* U^T \right)_{ij} \qquad \kappa^T = -\kappa$$

Bogoliubov quasiparticle states III

• In its canonical basis $\left\{a_k; a_k^{\dagger}\right\}$

(basis that diagonalizes ρ and puts κ in its canonical form)

$$|\Phi\rangle = \prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \geq 0\\ j \neq [\![1,n]\!]}} \left(u_{j} + v_{j} a_{j}^{\dagger} a_{\overline{j}}^{\dagger} \right) |0\rangle$$

with $u_j^2 + v_j^2 = 1$ and \overline{j} partner of j.

Bogoliubov quasiparticle states III

• In its canonical basis $\left\{a_k; a_k^{\dagger}\right\}$

(basis that diagonalizes ρ and puts κ in its canonical form)

$$|\Phi\rangle = \prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \ge 0\\ j \neq [\![1,n]\!]}} \left(u_{j} + v_{j} a_{j}^{\dagger} a_{\overline{j}}^{\dagger} \right) |0\rangle$$

with $u_j^2 + v_j^2 = 1$ and \overline{j} partner of j.

• Slater determinants are special cases of Bogoliubov quasiparticle states

• For occupied single-particle states, set
$$\left\{ \begin{array}{l} u_j = 0 \\ v_j = 1 \end{array} \right.$$

• For empty single-particle states, set
$$\begin{cases} u_j = 1 \\ v_i = 0 \end{cases}$$

Bogoliubov quasiparticle states III

• In its canonical basis $\left\{a_k; a_k^{\dagger}\right\}$

(basis that diagonalizes ρ and puts κ in its canonical form)

$$|\Phi\rangle = \prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \ge 0\\ j \neq [\![1,n]\!]}} \left(u_{j} + v_{j} a_{j}^{\dagger} a_{\overline{j}}^{\dagger} \right) |0\rangle$$

with $u_j^2 + v_j^2 = 1$ and \overline{j} partner of j.

• Slater determinants are special cases of Bogoliubov quasiparticle states

• For occupied single-particle states, set $\begin{cases} u_j = 0 \\ v_j = 1 \end{cases}$ • For empty single-particle states, set $\begin{cases} u_j = 1 \\ v_j = 0 \end{cases}$

• In the general case, Bogoliubov vacua do not have a good N

• Trivial example:

$$(u_1 + v_1 a_1^{\dagger} a_{\bar{1}}^{\dagger})(u_2 + v_2 a_2^{\dagger} a_{\bar{2}}^{\dagger})|0\rangle = u_1 u_2|0\rangle + v_1 u_2|1\bar{1}\rangle + u_1 v_2|2\bar{2}\rangle + v_1 v_2|1\bar{1}2\bar{2}\rangle$$

- In the general case, Bogoliubov vacua do not have a good N
- Trivial example:

$$(u_1 + v_1 a_1^{\dagger} a_{\bar{1}}^{\dagger})(u_2 + v_2 a_2^{\dagger} a_{\bar{2}}^{\dagger})|0\rangle = u_1 u_2|0\rangle + v_1 u_2|1\bar{1}\rangle + u_1 v_2|2\bar{2}\rangle + v_1 v_2|1\bar{1}2\bar{2}\rangle$$

• More generally, we have the superposition

Bogoliubov quasiparticle states V

• Structure of U, V can be chosen to conserve specific symmetries

$$\beta_k = \sum_i U_{ik}^* c_i + V_{ik}^* c_i^{\dagger}$$
$$\beta_k^{\dagger} = \sum_i U_{ik} c_i^{\dagger} + V_{ik} c_i$$

 \Rightarrow construct U, V that do not mix the $\{c_k; c_k^{\dagger}\}$ with \neq quantum numbers

Bogoliubov quasiparticle states V

• Structure of U, V can be chosen to conserve specific symmetries

$$\beta_k = \sum_i U_{ik}^* c_i + V_{ik}^* c_i^{\dagger}$$
$$\beta_k^{\dagger} = \sum_i U_{ik} c_i^{\dagger} + V_{ik} c_i$$

 \Rightarrow construct U, V that do not mix the $\{c_k; c_k^{\dagger}\}$ with \neq quantum numbers

- Example: separation between protons and neutrons
 - o first half: proton single-particle states
 - second half: neutron single-particle states

$$U = \begin{pmatrix} U_n & 0 \\ 0 & U_p \end{pmatrix} \qquad V = \begin{pmatrix} V_n & 0 \\ 0 & V_p \end{pmatrix}$$

Introduction

Ø Bogoliubov quasiparticle states

3 Hartree-Fock-Bogoliubov (HFB)

Practical aspects

Projected HFB

$$\delta \frac{\langle \Phi | \Omega | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0$$

where

$$\Omega = H - \lambda_N (N - N_0) - \lambda_Z (Z - Z_0)$$

- *N*: Neutron number (one-body) operator *N*₀: Number of neutrons in the nucleus λ_N : Lagrange multiplier determined such that $\langle \Phi | N | \Phi \rangle = N_0$
- Z: Proton number (one-body) operator Z₀: Number of protons in the nucleus λ_Z : Lagrange multiplier determined such that $\langle \Phi | Z | \Phi \rangle = Z_0$

$$\delta \frac{\langle \Phi | \Omega | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0$$

where

$$\Omega = H - \lambda_N (N - N_0) - \lambda_Z (Z - Z_0) - \sum_k \lambda_{O_k} (O_k - O_{0k})$$

- N: Neutron number (one-body) operator N_0 : Number of neutrons in the nucleus λ_N : Lagrange multiplier determined such that $\langle \Phi | N | \Phi \rangle = N_0$
- Z: Proton number (one-body) operator Z₀: Number of protons in the nucleus λ_Z : Lagrange multiplier determined such that $\langle \Phi | Z | \Phi \rangle = Z_0$
- O_k: additional constraint operator
 - O_{0k} : desired average value
 - λ_{O_k} : Lagrange multiplier determined such that $\langle \Phi | O_k | \Phi \rangle = O_{0k}$

• Let us consider an effective H up to two-body operators

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_{i} c_{j} + \frac{1}{(2!)^{2}} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_{i} c^{\dagger}_{j} c_{l} c_{k}$$

- Be careful, if effective: $h^{(0)} \neq 0$, $h^{(1)} \neq T$, $h^{(2)} \neq V$
- They can integrate effects of three-body interaction (nucleus dependent)
 - ◇ Normal-order two-body approximation ⇒ see Thomas' talk
 R. Roth et al., Phys. Rev. Lett. 109, 052501 (2012)
 - In-medium k-body reduction

M. Frosini, T. Duguet, B. Bally, J.-P. Ebran and V. Somà, to be submitted (2021)

• Normal ordering of H with respect to $|\Phi\rangle$

$$\begin{split} H &= H^{00} \\ &+ \frac{1}{1!} \sum_{k_1 k_2} H^{11}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta_{k_2} + \frac{1}{2!} \sum_{k_1 k_2} \left\{ H^{20}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} + H^{02}_{k_1 k_2} \beta_{k_2} \beta_{k_1} \right\} \\ &+ \frac{1}{(2!)^2} \sum_{k_1 k_2 k_3 k_4} H^{22}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta_{k_4} \beta_{k_3} \\ &+ \frac{1}{3!} \sum_{k_1 k_2 k_3 k_4} \left\{ H^{31}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta_{k_4} + H^{13}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta_{k_2} \beta_{k_3} \beta_{k_4} \right\} \\ &+ \frac{1}{4!} \sum_{k_1 k_2 k_3 k_4} \left\{ H^{40}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta^{\dagger}_{k_4} + H^{04}_{k_1 k_2 k_3 k_4} \beta_{k_4} \beta_{k_3} \beta_{k_2} \beta_{k_1} \right\} \end{split}$$

Natural NO in Bogoliubov CC (BCC) or Bogoliubov MBPT (BMBPT)

A. Tichai, R. Roth and T. Duguet, Frontiers in Physics 8 164 (2020)

P. Arthuis, PhD Thesis, Université Paris-Saclay (2018)

• $\delta \langle \Omega \rangle = 0 \Rightarrow$ solving the HFB equations

$$\begin{pmatrix} (h^{(1)} + \Gamma - \lambda) & \Delta \\ -\Delta^* & -(h^{(1)} + \Gamma - \lambda)^* \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}_k = E_k \begin{pmatrix} U \\ V \end{pmatrix}_k$$

where we used the fields

$$\begin{split} \Gamma_{ij} &= \sum_{kl} h_{ikjl}^{(2)} \rho_{lk} & \Gamma^{\dagger} = \Gamma \\ \Delta ij &= \frac{1}{2} \sum_{kl} h_{ijkl}^{(2)} \kappa_{kl} & \Delta^{T} = -\Delta \end{split}$$

• $\delta \langle \Omega \rangle = 0 \Rightarrow$ solving the HFB equations

$$\begin{pmatrix} (h^{(1)} + \Gamma - \lambda) & \Delta \\ -\Delta^* & -(h^{(1)} + \Gamma - \lambda)^* \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}_k = E_k \begin{pmatrix} U \\ V \end{pmatrix}_k$$

where we used the fields

$$\begin{split} & \Gamma_{ij} = \sum_{kl} h_{ikjl}^{(2)} \rho_{lk} & \Gamma^{\dagger} = \Gamma \\ & \Delta_{ij} = \frac{1}{2} \sum_{kl} h_{ijkl}^{(2)} \kappa_{kl} & \Delta^{T} = -\Delta \\ \end{split}$$

• $\delta \langle \Omega \rangle = 0 \Rightarrow$ solving the HFB equations

$$\begin{pmatrix} (h^{(1)} + \Gamma - \lambda) & \Delta \\ -\Delta^* & -(h^{(1)} + \Gamma - \lambda)^* \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}_k = E_k \begin{pmatrix} U \\ V \end{pmatrix}_k$$

where we used the fields

$$\begin{split} & \Gamma_{ij} = \sum_{kl} h_{ikjl}^{(2)} \rho_{lk} & \Gamma^{\dagger} = \Gamma \\ & \Delta_{ij} = \frac{1}{2} \sum_{kl} h_{ijkl}^{(2)} \kappa_{kl} & \Delta^{T} = -\Delta \end{split} \ \left. \begin{array}{c} \text{Only part where } h^{(2)} \text{ is needed} \\ & \text{If } h^{(2)} \text{ large } \rightarrow \text{ parallelization} \end{array} \right. \end{split}$$

• Energy: $E_{\text{HFB}} = h^{(0)} + \text{Tr}(h^{(1)}\rho) + \frac{1}{2} \text{Tr}(\Gamma \rho - \Delta \kappa^*)$

• $\delta \langle \Omega \rangle = 0 \Rightarrow$ solving the HFB equations

$$\begin{pmatrix} (h^{(1)} + \Gamma - \lambda) & \Delta \\ -\Delta^* & -(h^{(1)} + \Gamma - \lambda)^* \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}_k = E_k \begin{pmatrix} U \\ V \end{pmatrix}_k$$

where we used the fields

$$\begin{split} & \Gamma_{ij} = \sum_{kl} h_{ikjl}^{(2)} \rho_{lk} & \Gamma^{\dagger} = \Gamma \\ & \Delta_{ij} = \frac{1}{2} \sum_{kl} h_{ijkl}^{(2)} \kappa_{kl} & \Delta^{T} = -\Delta \\ \end{split} \right\} \begin{array}{l} \text{Only part where } h^{(2)} \text{ is needed} \\ & \text{If } h^{(2)} \text{ large} \rightarrow \text{ parallelization} \\ \end{split}$$

- Energy: $E_{\text{HFB}} = h^{(0)} + \text{Tr}(h^{(1)}\rho) + \frac{1}{2}\text{Tr}(\Gamma\rho \Delta\kappa^*)$
- Self-consistent problem
 - $\diamond \ \ \mathsf{HFB} \ \mathsf{eq}. \ \ \underbrace{\overset{\mathsf{depend}}{\longrightarrow}} \Gamma, \Delta \xrightarrow{\mathsf{depend}} \rho, \kappa \xrightarrow{\mathsf{depend}} U, V$
 - Solved iteratively
 - ♦ Diagon. HFB equations or gradient method: $\delta(\Omega) = 0 \Rightarrow H^{20} = H^{02} = 0$

Example: ¹⁶₈O (doubly closed shell)

 $E_{exp} = -127.619296(0) \text{ MeV}$

	Symmetries	Constraints	Minimum (MeV)
spherical HF	J = 0, Z, N, Π, \mathcal{T} , \mathbb{R}		-101.6
spherical HFB	J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν	-101.6
axial HFB	M_J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν, β	-101.6
(real) general HFB	\mathbb{R}	Ζ, Ν	-101.6

Example: ¹⁶₈O (doubly closed shell)

 $E_{exp} = -127.619296(0) \text{ MeV}$

	Symmetries	Constraints	Minimum (MeV)
spherical HF	$J = 0, Z, N, \Pi, \mathcal{T}, \mathbb{R}$		-101.6
spherical HFB	J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν	-101.6
axial HFB	M_J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν, β	-101.6
(real) general HFB	\mathbb{R}	Ζ, Ν	-101.6
SCGF ADC(3)	Somà et al. PRC 101 0	14318 (2020)	-130.81
			-127.27

 $E_{exp} = -198.257016(24) \text{ MeV}$

	Symmetries	Constraints	Minimum (MeV)
spherical HFB	$J=0, \Pi, \mathcal{T}, \mathbb{R}$	Ζ, Ν	-136.0
axial HFB	M_J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν, β	-151.5

Example: ²⁴₁₂Mg (doubly open shell)

 $E_{exp} = -198.257016(24) \text{ MeV}$

	Symmetries	Constraints	Minimum (MeV)
spherical HFB	$J=0, \Pi, \mathcal{T}, \mathbb{R}$	Ζ, Ν	-136.0
axial HFB	M_J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν, β	-151.5
triaxial HFB	$\Pi, \mathcal{T}, \mathbb{R}$	Z, N, β , γ	-152.9

Example: ²⁴₁₂Mg (doubly open shell)

ŵ

3Ô

20°

 10°

0°

 $E_{exp} = -198.257016(24) \text{ MeV}$

	Symmetries	Constraints	Minimum (MeV)
spherical HFB	$J=0,\ \Pi,\ \mathcal{T},\ \mathbb{R}$	Ζ, Ν	-136.0
axial HFB	M_J = 0, Π , \mathcal{T} , \mathbb{R}	Ζ, Ν, β	-151.5
triaxial HFB	$\Pi, \mathcal{T}, \mathbb{R}$	Z, N, β , γ	-152.9
(real) general HFB	\mathbb{R}	Z, N	-152.9

Introduction

Bogoliubov quasiparticle states

Hartree-Fock-Bogoliubov (HFB)

4 Practical aspects

6 Projected HFB

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle \implies see Alexander's talk I$ $|\hat{a}\rangle \equiv \{|a\rangle, \forall m_{j_a} \in [\![-j_a, j_a]\!]\}$ (multiplet)
- Advantages:
 - \diamond Textbook \Rightarrow easy to code and benchmark
 - $\diamond~$ Commonly used \Rightarrow compare to other solvers, interactions available
 - $\diamond~$ Flexible \Rightarrow symmetry-restricted and unrestricted calculations

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle \implies see Alexander's talk I$ $|\hat{a}\rangle \equiv \{|a\rangle, \forall m_{j_a} \in [\![-j_a, j_a]\!]\}$ (multiplet)
- Advantages:
 - \diamond Textbook \Rightarrow easy to code and benchmark
 - $\diamond~$ Commonly used \Rightarrow compare to other solvers, interactions available
 - $\diamond~$ Flexible \Rightarrow symmetry-restricted and unrestricted calculations
- For simplicity, here: $h^{(2)} = V$ and $h^{(3)} = W$

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle \implies see Alexander's talk I$ $|\hat{a}\rangle \equiv \{|a\rangle, \forall m_{j_a} \in [\![-j_a, j_a]\!]\}$ (multiplet)
- Advantages:
 - \diamond Textbook \Rightarrow easy to code and benchmark
 - $\diamond~$ Commonly used \Rightarrow compare to other solvers, interactions available
 - $\diamond~$ Flexible \Rightarrow symmetry-restricted and unrestricted calculations
- For simplicity, here: $h^{(2)} = V$ and $h^{(3)} = W$
- Need to uncouple the *J*-scheme matrix elements to *m*-scheme

$$\mathbf{V}_{abcd} = \sum_{JM_J} \left[\mathcal{N}_{\hat{a}\hat{b}}(J) \mathcal{N}_{\hat{c}\hat{d}}(J) \right]^{-1} (j_a m_{j_a} j_b m_{j_b} | JM_J) (j_c m_{j_c} j_d m_{j_d} | JM_J) \mathbf{V}_{\hat{a}\hat{b}\hat{c}\hat{d}}^J$$

where

$$\mathcal{N}_{\hat{a}\hat{b}}(J) = \frac{\sqrt{1 + \delta_{\hat{a}\hat{b}}}(-1)^J}{1 + \delta_{\hat{a}\hat{b}}}$$

• Need to uncouple the *J*-scheme matrix elements to *m*-scheme

$$V_{abcd} = \sum_{JM_J} \left[\mathcal{N}_{\hat{a}\hat{b}}(J) \mathcal{N}_{\hat{c}\hat{d}}(J) \right]^{-1} (j_a m_{j_a} j_b m_{j_b} | JM_J) (j_c m_{j_c} j_d m_{j_d} | JM_J) V_{\hat{a}\hat{b}\hat{c}\hat{d}}^J$$

• Different approaches are possible

Strategy	Storage	Limit
On the fly	V ^J _{âbĉd}	CPU
Mixed	$V_{\hat{a}\hat{b}\hat{c}\hat{d}}^{J}$ + interm. info	Mixed
Storage	V _{abcd}	Memory
Factorization	⇒ see Alexander's talk II	

Symmetry reductions of V_{abcd}

• Symmetries of H and SHO basis \Rightarrow reduce the CPU time & storage

Symmetry reductions of V_{abcd}

- Symmetries of H and SHO basis \Rightarrow reduce the CPU time & storage
- V_{abcd} is non-zero only if

$$[H,\Pi] = 0 \quad \Rightarrow \quad (-1)^{\ell_a + \ell_b} = (-1)^{\ell_c + \ell_d} \tag{1}$$

$$[H, J_z] = 0 \quad \Rightarrow \quad m_{j_a} + m_{j_b} = m_{j_c} + m_{j_d} \tag{2}$$

$$[H, T_z] = 0 \quad \Rightarrow \quad m_{t_a} + m_{t_b} = m_{t_c} + m_{t_d} \tag{3}$$

Symmetry reductions of V_{abcd}

- Symmetries of H and SHO basis \Rightarrow reduce the CPU time & storage
- V_{abcd} is non-zero only if

$$[H,\Pi] = 0 \quad \Rightarrow \quad (-1)^{\ell_a + \ell_b} = (-1)^{\ell_c + \ell_d} \tag{1}$$

$$[H, J_z] = 0 \quad \Rightarrow \quad m_{j_a} + m_{j_b} = m_{j_c} + m_{j_d} \tag{2}$$

$$[H, T_z] = 0 \quad \Rightarrow \quad m_{t_a} + m_{t_b} = m_{t_c} + m_{t_d} \tag{3}$$

• V_{abcd} has the exchange symmetries

$$H \in \mathbb{R} \quad \Rightarrow \quad V_{abcd} = V_{abcd}^* \tag{4}$$

$$H^{\dagger} = H + (1) \implies V_{abcd} = V_{cdab}$$
 (5)

Fermions
$$\Rightarrow$$
 $V_{abcd} = -V_{bacd} = -V_{abdc} = V_{badc}$ (6)

$$(5) + (6) \implies V_{abcd} = -V_{bacd} = -V_{abdc} = V_{badc}$$
(7)
$$= -V_{cdba} = -V_{dcba} = V_{dcba}$$

$$= V_{cdab}$$

$$[H, \mathcal{T}] = 0 + (1) \implies V_{abcd} = (-1)^{j_a + j_b + j_c + j_d} V_{-a-b-c-d}$$
(8)

Scaling of V_{abcd} with the basis size

- (4-8): red → orange ~ Memory
- 13 octets/matrix element

- Symmetries of H and SHO basis \Rightarrow reduce the CPU time & storage
- *W_{abcdef}* is non-zero only if

$$[H,\Pi] = 0 \quad \Rightarrow \quad (-1)^{\ell_a + \ell_b + \ell_c} = (-1)^{\ell_d + \ell_e + \ell_f} \tag{9}$$

$$[H, J_{z}] = 0 \quad \Rightarrow \quad m_{j_{a}} + m_{j_{b}} + m_{j_{c}} = m_{j_{d}} + m_{j_{e}} + m_{j_{f}} \tag{10}$$

$$[H, T_z] = 0 \implies m_{t_s} + m_{t_b} + m_{t_c} = m_{t_d} + m_{t_e} + m_{t_f}$$
(11)

• W_{abcdef} has the exchange symmetries

$$H \in \mathbb{R} \quad \Rightarrow \quad W_{abcdef} = W^*_{abcdef} \tag{12}$$

$$H^{\dagger} = H + (12) \implies W_{abcdef} = W_{defabc}$$
 (13)

Fermions
$$\Rightarrow$$
 $W_{abcdef} = -W_{bacdef} = \dots$ [36 possiblities] (14)

$$(13) + (14) \quad \Rightarrow \quad W_{abcdef} = \dots [72 \text{ possiblities}] \tag{15}$$

$$[H, \mathcal{T}] = 0 + (12) \quad \Rightarrow \quad W_{abcd} = (-1)^{j_a + j_b + j_c - j_d - j_e - j_f} W_{-a-b-c-d-e-f}$$
(16)

- Principal quantum number: $e_a = 2n_a + l_a \implies see Alexander's talk I$
- Limit for single-particle states $|a\rangle$: $\forall a, e_a \leq e_{\max}$

- Principal quantum number: $e_a = 2n_a + l_a \implies see Alexander's talk I$
- Limit for single-particle states $|a\rangle$: $\forall a, e_a \leq e_{\max}$
- Limit for two-particle states $|ab\rangle$: $\forall a, b, e_a + e_b \le e_{2\max} = 2e_{\max}$

generally

 \Rightarrow all elements V_{abcd} taken into account

- Principal quantum number: $e_a = 2n_a + l_a \implies see Alexander's talk I$
- Limit for single-particle states $|a\rangle$: $\forall a, e_a \leq e_{\max}$
- Limit for two-particle states $|ab\rangle$: $\forall a, b, e_a + e_b \le e_{2\max} = 2e_{\max}$
 - \Rightarrow all elements V_{abcd} taken into account
- Limit for three-particle states |abc⟩: ∀a, b, c, e_a + e_b + e_c ≤ e_{3max} < 3e_{max}
 generally
 - \Rightarrow not all elements W_{abcdef} taken into account

Scaling of W_{abcdef} with the basis size

 10^{14}

 10^{13}

 10^{11}

 10^{10}

 10^{9}

 10^{7}

 10^{6}

 10^{5}

Memory (octets

Introduction

Bogoliubov quasiparticle states

Hartree-Fock-Bogoliubov (HFB)

Practical aspects

5 Projected HFB

- Symmetry-breaking MF useful but better to restore the symmetries of H
 - Eigenstates of H have good quantum numbers
 - Selection rules for transitions (e.g. electromagnetic)
 - Some correlations are missing

- Symmetry-breaking MF useful but better to restore the symmetries of H
 - Eigenstates of H have good quantum numbers
 - Selection rules for transitions (e.g. electromagnetic)
 - Some correlations are missing

- Symmetry-projected HFB
 - B. Bally and M. Bender, arXiv:2010.15224 (2020)/PRC (2021)
 - Obtain symmetry-adapted states (with good quantum numbers)
 - ◊ Gain correlation energy (usually)

Let G be a group with a unitary representation R(g).

$$\forall g \in G, [R(g), H] = 0$$

 \Rightarrow G is a symmetry group of H

Let G be a group with a unitary representation R(g).

$$\forall g \in G, [R(g), H] = 0$$

 \Rightarrow G is a symmetry group of H

• Consequence: all "rotated" states have same energy

$$\begin{split} \langle \Phi(g) | H | \Phi(g) \rangle &\equiv \langle \Phi | R^{\dagger}(g) H R(g) | \Phi \rangle \\ &= \langle \Phi | H | \Phi \rangle \end{split}$$

Let G be a group with a unitary representation R(g).

$$\forall g \in G, [R(g), H] = 0$$

 \Rightarrow G is a symmetry group of H

• Consequence: all "rotated" states have same energy

$$\begin{split} \langle \Phi(g) | H | \Phi(g) \rangle &\equiv \langle \Phi | R^{\dagger}(g) H R(g) | \Phi \rangle \\ &= \langle \Phi | H | \Phi \rangle \end{split}$$

• Consider the vector space

$$\operatorname{span}(G|\Phi\rangle) \equiv \begin{bmatrix} \{\sum_{G} f(g) | \Phi(g) \rangle, f(g) \in \mathbb{C} \} & \text{(if } G \text{ finite)} \\ \{\int_{G} dv_{G}(g) f(g) | \Phi(g) \rangle, f \in L^{2}(G) \} & \text{(if } G \text{ Lie group)} \end{bmatrix}$$

Diagonalization of H in span $(G_{tot}|\Phi\rangle)$

Diagonalization of H in span $(G_{tot}|\Phi\rangle)$

• Decomposition in span $(G_{tot} | \Phi \rangle)$

$$\left|\Phi\right\rangle = \sum_{JK\Pi ZN} \sum_{\varepsilon} c^{JK\Pi ZN} \left|\Psi_{\varepsilon}^{JK\Pi ZN}\right\rangle$$

Diagonalization of H in span $(G_{tot}|\Phi\rangle)$

• Decomposition in span $(G_{tot} | \Phi \rangle)$

$$\left|\Phi\right\rangle = \sum_{JK\Pi ZN} \sum_{\varepsilon} c^{JK\Pi ZN} \left|\Psi_{\varepsilon}^{JK\Pi ZN}\right\rangle$$

• Extraction of the components

$$\underbrace{P^{J}_{MK}P^{\Pi}P^{ZN}}_{\substack{\text{projection}\\ \text{operators}}} |\Phi\rangle \xrightarrow{\text{projects}} \left\{ \sum_{\varepsilon} c^{JK\Pi ZN} |\Psi_{\varepsilon}^{JM\Pi ZN}\rangle, K \right\} \xrightarrow{\text{diag. } H} |\Psi_{\varepsilon}^{JM\Pi ZN}\rangle$$

(

Symmetry projection: scaling

• Nice but all projection operators involve sums or integrals

$$\Phi |HP_{MK}^{J}P^{\Pi}P^{ZN}|\Phi\rangle = \frac{2J+1}{16\pi^{2}} \underbrace{\int_{0}^{2\pi} d\alpha \int_{0}^{\pi} d\beta \sin(\beta) \int_{0}^{4\pi} d\gamma}_{\text{discret.} \sim 10^{4-5} \text{ points}} D_{MK}^{J*}(\alpha,\beta,\gamma) \frac{1}{2} \underbrace{\sum_{p=1,\Pi}_{p=1,\Pi} \pi(p)}_{2}$$

$$\frac{1}{4\pi^{2}} \underbrace{\int_{0}^{2\pi} d\varphi_{Z} \int_{0}^{2\pi} d\varphi_{N}}_{\text{discret.} \sim 10^{2} \text{ points}} e^{-i\varphi_{Z}Z} e^{-i\varphi_{N}N} \underbrace{\langle \Phi | HR(\alpha,\beta,\gamma,p,\varphi_{Z},\varphi_{N}) | \Phi \rangle}_{\sim N_{sp}^{3,3}}$$

• Nice but all projection operators involve sums or integrals

$$\langle \Phi | HP_{MK}^{J} P^{\Pi} P^{ZN} | \Phi \rangle = \frac{2J+1}{16\pi^2} \underbrace{\int_{0}^{2\pi} d\alpha \int_{0}^{\pi} d\beta \sin(\beta) \int_{0}^{4\pi} d\gamma}_{\text{discret. } \sim 10^{4-5} \text{ points}} D_{MK}^{J*}(\alpha,\beta,\gamma) \frac{1}{2} \underbrace{\sum_{p=1,\Pi}_{p=1,\Pi} \pi(p)}_{2} \frac{1}{4\pi^2} \underbrace{\int_{0}^{2\pi} d\varphi_Z \int_{0}^{2\pi} d\varphi_N e^{-i\varphi_Z Z} e^{-i\varphi_N N}}_{\text{discret. } \sim 10^2 \text{ points}} \underbrace{\langle \Phi | HR(\alpha,\beta,\gamma,p,\varphi_Z,\varphi_N) | \Phi \rangle}_{\sim N_{sp}^{3,3}}$$

- Scaling: ~ $10^{6-7} N_{sp}^{3,3}$
- · Fortunately, this is an embarassingly parallel problem

Example: 0⁺ state for axially deformed ²⁴⁰Pu

Courtesy of M. Bender

M. Bender, P.-H. Heenen, and P. Bonche, Phys. Rev. C 70, 054304 (2004)

GDR NBODY/RESANET - 09/02/2021

Example: 0⁺ state for axially deformed ²⁴⁰Pu

Courtesy of M. Bender

M. Bender, P.-H. Heenen, and P. Bonche, Phys. Rev. C 70, 054304 (2004)

GDR NBODY/RESANET - 09/02/2021

Better schemes based on projection

• Variation After Projection (VAP): minimizes the projected energy

 \Rightarrow but very costly! (can still be done for $S \equiv N, Z, P$)

Better schemes based on projection

• Variation After Projection (VAP): minimizes the projected energy

 \Rightarrow but very costly! (can still be done for $S \equiv N, Z, P$)

- Projected Generator Coordinate Method (PGCM)
 - Build set of reference states

$$\{ |\Phi(q)\rangle, q\} \longrightarrow \left\{ |\Psi_{\varepsilon}^{JM\Pi ZN}(q)\rangle, q \right\}_{JM\Pi ZN}$$

- Diagonalize *H* among the projected states (not orthogonal ⇒ generalized eigenvalue problem)
- ◊ Final wave function

$$|\Theta_{\xi}^{JM\Pi ZN}\rangle = \sum_{q} f_{\xi\varepsilon}^{JM\Pi ZN}(q) |\Psi_{\varepsilon}^{JM\Pi ZN}(q)\rangle$$

Better schemes based on projection

• Variation After Projection (VAP): minimizes the projected energy

 \Rightarrow but very costly! (can still be done for $S \equiv N, Z, P$)

- Projected Generator Coordinate Method (PGCM)
 - Build set of reference states

$$\{ |\Phi(q)\rangle, q\} \longrightarrow \{ |\Psi_{\varepsilon}^{JM\Pi ZN}(q)\rangle, q \}_{JM\Pi ZN}$$

- ◇ Diagonalize H among the projected states (not orthogonal ⇒ generalized eigenvalue problem)
- Final wave function

$$|\Theta_{\xi}^{JM\Pi ZN}\rangle = \sum_{q} f_{\xi\varepsilon}^{JM\Pi ZN}(q) |\Psi_{\varepsilon}^{JM\Pi ZN}(q)\rangle$$

- Development of new approaches that combine
 - $\diamond~$ symmetry breaking & restoration $\rightarrow~$ includes static correlations
 - $\diamond~$ expansion scheme \rightarrow includes dynamic correlations

- Development of new approaches that combine
 - $\diamond~$ symmetry breaking & restoration $\rightarrow~$ includes static correlations
 - \diamond expansion scheme \rightarrow includes dynamic correlations
- Multi-Reference In-Medium Similarity Renormalization Group (MR-IMSRG)
 H. Hergert, Phys. Scr. 92 023002 (2017)
 J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and H. Hergert, Phys. Rev. Lett. 124, 232501 (2020)
- Projected Bogoliubov Many-Body Perturbation Theory (PBMBPT)
 - T. Duguet, J. Phys. G 42 025107 (2015)
 - T. Duguet and A. Signoracci, J. Phys. G 44 015103 (2017)
 - P. Arthuis, A. Tichai, J. Ripoche and T. Duguet, Comp. Phy. Comm. 261 (2021)

• Projected Bogoliubov Coupled Cluster (PBCC)

see T. Duguet et al. above

- Y. Qiu, T. Henderson, J. Zhao and G. Scuseria, J. Chem. Phys. 149 164108 (2018)
- Y. Qiu, T. Henderson, T. Duguet and G. Scuseria, Phys. Rev. C 99 044301 (2019)