## Specific computational aspects in nuclear physics

## II. Symmetry-breaking calculations

## Benjamin Bally

## GDR NBODY/RESANET - 09/02/2021

## UÁM

Universidad Autónoma de Madrid

(1) Introduction
(2) Bogoliubov quasiparticle states
(3) Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
(5) Projected HFB

## Table of contents

(1) Introduction

2 Bogoliubov quasiparticle states
(3) Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
(5) Projected HFB

- Static (or collective) correlations are important in nuclear structure
- Examples: pairing, quadrupole and octupole deformations, ...
- Static (or collective) correlations are important in nuclear structure
- Examples: pairing, quadrupole and octupole deformations, ...
- In most cases, mean-field equations favor "deformed" solutions


## Basic principles

- Static (or collective) correlations are important in nuclear structure
- Examples: pairing, quadrupole and octupole deformations, ...
- In most cases, mean-field equations favor "deformed" solutions
- Symmetry-breaking MF $\xrightarrow{\text { reference states }}$ Symmetry-restored BMF
(MF $\equiv$ mean field)
(BMF $\equiv$ beyond mean field)


# Example: axial quadrupole deformation 



- Problem: deformed solutions break the symmetries of $H$ $\Rightarrow$ unphysical in nuclei (finite systems)


## Symmetry dilemma

- Problem: deformed solutions break the symmetries of $H$ $\Rightarrow$ unphysical in nuclei (finite systems)
- "Symmetry dilemma" of Löwdin
P. Lykos and G. W. Pratt, Rev. Mod. Phys. 35496 (1963)
$\diamond$ MF ansatz respects the symmetries of $H$ but is variationally limited
$\diamond$ MF ansatz is variationally general but breaks the symmetries of $H$


## Symmetry dilemma

- Problem: deformed solutions break the symmetries of $H$ $\Rightarrow$ unphysical in nuclei (finite systems)
- "Symmetry dilemma" of Löwdin
P. Lykos and G. W. Pratt, Rev. Mod. Phys. 35496 (1963)
$\diamond$ MF ansatz respects the symmetries of $H$ but is variationally limited
$\diamond$ MF ansatz is variationally general but breaks the symmetries of $H$
- Examples:

| Physical symmetry | Group | Quant. numb. | Correlations |
| :--- | :--- | :--- | :--- |
| Particle-number inv. | $U(1)_{Z} \times U(1)_{N}$ | $N, Z$ | Pairing, Finite temp. |
| Rotational inv. | $S U(2)_{A}$ | $J, M_{J}$ | Deformation (any) |
| Parity inv. | $Z_{2 A}$ | $\Pi$ | Deformation (odd) |
| Translational inv. | $T_{A}^{3}$ | $\vec{P}$ | Localization |
| Isospin | $S U(2)_{A}$ | $T, M_{T}$ | Pairing n-p |

## Table of contents

(1) Introduction
(2) Bogoliubov quasiparticle states
(3) Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
© Projected HFB

- HFB theory $\equiv$ merges HF and BCS theories into coherent MF framework (BCS ミBardeen-Cooper-Schrieffer)
- HFB theory $\equiv$ merges HF and BCS theories into coherent MF framework (BCS $\equiv$ Bardeen-Cooper-Schrieffer)

Theory Variational ansatz
HF Slater determinants
HFB Bogoliubov quasiparticle states

## Bogoliubov quasiparticle states I

- HFB theory $\equiv$ merges HF and BCS theories into coherent MF framework (BCS $\equiv$ Bardeen-Cooper-Schrieffer)

| Theory | Variational ansatz |
| :--- | :--- |
| HF | Slater determinants |
| HFB | Bogoliubov quasiparticle states |

- Bogoliubov quasiparticle state $|\Phi\rangle$ defined as vacuum

$$
\beta_{k}|\Phi\rangle=0
$$

for a set of quasiparticle operators $\left\{\beta_{k} ; \beta_{k}^{\dagger}\right\}$ defined as

$$
\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{c}{c^{\dagger}} \equiv \mathcal{W}^{\dagger}\binom{c}{c^{\dagger}}
$$

with

$$
\mathcal{W} \mathcal{W}^{\dagger}=\mathcal{W}^{\dagger} \mathcal{W}=1_{2 M} \quad \text { (ensures fermionic CAR) }
$$

## Bogoliubov quasiparticle states II

- Expanded form of the Bogoliubov transformations

$$
\begin{aligned}
& \beta_{k}=\sum_{i} U_{i k}^{*} c_{i}+V_{i k}^{*} c_{i}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{i} U_{i k} c_{i}^{\dagger}+V_{i k} c_{i}
\end{aligned}
$$

## Bogoliubov quasiparticle states II

- Expanded form of the Bogoliubov transformations

$$
\begin{aligned}
& \beta_{k}=\sum_{i} U_{i k}^{*} c_{i}+V_{i k}^{*} c_{i}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{i} U_{i k} c_{i}^{\dagger}+V_{i k} c_{i}
\end{aligned}
$$

- $|\Phi\rangle$ is a product state (but of quasiparticles)

$$
|\Phi\rangle=\prod_{k} \beta_{k}|0\rangle
$$

## Bogoliubov quasiparticle states II

- Expanded form of the Bogoliubov transformations

$$
\begin{aligned}
& \beta_{k}=\sum_{i} U_{i k}^{*} c_{i}+V_{i k}^{*} c_{i}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{i} U_{i k} c_{i}^{\dagger}+V_{i k} c_{i}
\end{aligned}
$$

- $|\Phi\rangle$ is a product state (but of quasiparticles)

$$
|\Phi\rangle=\prod_{k} \beta_{k}|0\rangle
$$

- $|\Phi\rangle$ is fully characterzied by the one-body densities

$$
\begin{array}{ll}
\rho_{i j}=\frac{\langle\Phi| c_{j}^{\dagger} c_{i}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=\left(V^{*} V^{T}\right)_{i j} & \rho^{\dagger}=\rho \\
\kappa_{i j}=\frac{\langle\Phi| c_{j} c_{i}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=\left(V^{*} U^{T}\right)_{i j} & \kappa^{T}=-\kappa
\end{array}
$$

## Bogoliubov quasiparticle states III

- In its canonical basis $\left\{a_{k} ; a_{k}^{\dagger}\right\}$
(basis that diagonalizes $\rho$ and puts $\kappa$ in its canonical form)

$$
|\Phi\rangle=\prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \geq 0 \\ j \neq \llbracket 1, n \rrbracket}}\left(u_{j}+v_{j} a_{j}^{\dagger} a_{j}^{\dagger}\right)|0\rangle
$$

with $u_{j}^{2}+v_{j}^{2}=1$ and $\bar{j}$ partner of $j$.

## Bogoliubov quasiparticle states III

- In its canonical basis $\left\{a_{k} ; a_{k}^{\dagger}\right\}$
(basis that diagonalizes $\rho$ and puts $\kappa$ in its canonical form)

$$
|\Phi\rangle=\prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \geq 0 \\ j \llbracket \llbracket 1, n \rrbracket}}\left(u_{j}+v_{j} a_{j}^{\dagger} a_{j}^{\dagger}\right)|0\rangle
$$

with $u_{j}^{2}+v_{j}^{2}=1$ and $\bar{j}$ partner of $j$.

- Slater determinants are special cases of Bogoliubov quasiparticle states
$\diamond$ For occupied single-particle states, set $\left\{\begin{array}{l}u_{j}=0 \\ v_{j}=1\end{array}\right.$
$\diamond$ For empty single-particle states, set $\left\{\begin{array}{l}u_{j}=1 \\ v_{j}=0\end{array}\right.$


## Bogoliubov quasiparticle states III

- In its canonical basis $\left\{a_{k} ; a_{k}^{\dagger}\right\}$
(basis that diagonalizes $\rho$ and puts $\kappa$ in its canonical form)

$$
|\Phi\rangle=\prod_{i=1}^{n} a_{i}^{\dagger} \prod_{\substack{j \geq 0 \\ j \neq \llbracket 1, n \rrbracket}}\left(u_{j}+v_{j} a_{j}^{\dagger} a_{j}^{\dagger}\right)|0\rangle
$$

with $u_{j}^{2}+v_{j}^{2}=1$ and $\bar{j}$ partner of $j$.

- Slater determinants are special cases of Bogoliubov quasiparticle states
$\diamond$ For occupied single-particle states, set $\left\{\begin{array}{l}u_{j}=0 \\ v_{j}=1\end{array}\right.$
$\diamond$ For empty single-particle states, set $\left\{\begin{array}{l}u_{j}=1 \\ v_{j}=0\end{array}\right.$



## Bogoliubov quasiparticle states IV

- In the general case, Bogoliubov vacua do not have a good $N$


## Bogoliubov quasiparticle states IV

- In the general case, Bogoliubov vacua do not have a good $N$
- Trivial example:

$$
\left(u_{1}+v_{1} a_{1}^{\dagger} a_{1}^{\dagger}\right)\left(u_{2}+v_{2} a_{2}^{\dagger} a_{2}^{\dagger}\right)|0\rangle=u_{1} u_{2}|0\rangle+v_{1} u_{2}|1 \overline{1}\rangle+u_{1} v_{2}|2 \overline{2}\rangle+v_{1} v_{2}|1 \overline{1} 2 \overline{2}\rangle
$$

## Bogoliubov quasiparticle states IV

- In the general case, Bogoliubov vacua do not have a good $N$
- Trivial example:

$$
\left(u_{1}+v_{1} a_{1}^{\dagger} a_{1}^{\dagger}\right)\left(u_{2}+v_{2} a_{2}^{\dagger} a_{2}^{\dagger}\right)|0\rangle=u_{1} u_{2}|0\rangle+v_{1} u_{2}|1 \overline{1}\rangle+u_{1} v_{2}|2 \overline{2}\rangle+v_{1} v_{2}|1 \overline{1} 2 \overline{2}\rangle
$$

- More generally, we have the superposition



## Bogoliubov quasiparticle states V

- Structure of $U, V$ can be chosen to conserve specific symmetries

$$
\begin{aligned}
& \beta_{k}=\sum_{i} U_{i k}^{*} c_{i}+V_{i k}^{*} c_{i}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{i} U_{i k} c_{i}^{\dagger}+V_{i k} c_{i}
\end{aligned}
$$

$\Rightarrow$ construct $U, V$ that do not mix the $\left\{c_{k} ; c_{k}^{\dagger}\right\}$ with $\neq$ quantum numbers

- Structure of $U, V$ can be chosen to conserve specific symmetries

$$
\begin{aligned}
& \beta_{k}=\sum_{i} U_{i k}^{*} c_{i}+V_{i k}^{*} c_{i}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{i} U_{i k} c_{i}^{\dagger}+V_{i k} c_{i}
\end{aligned}
$$

$\Rightarrow$ construct $U, V$ that do not mix the $\left\{c_{k} ; c_{k}^{\dagger}\right\}$ with $\neq$ quantum numbers

- Example: separation between protons and neutrons
$\diamond$ first half: proton single-particle states
$\diamond$ second half: neutron single-particle states

$$
U=\left(\begin{array}{cc}
U_{n} & 0 \\
0 & U_{p}
\end{array}\right) \quad V=\left(\begin{array}{cc}
V_{n} & 0 \\
0 & V_{p}
\end{array}\right)
$$

## Table of contents

(1) Introduction
(2) Bogoliubov quasiparticle states
(3 Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
(5) Projected HFB

## Hartree-Fock-Bogoliubov (HFB) I

- Minimization of the energy in the space of Bogoliubov quasiparticle states

$$
\delta \frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0
$$

where

$$
\Omega=H-\lambda_{N}\left(N-N_{0}\right)-\lambda_{Z}\left(Z-Z_{0}\right)
$$

- $N$ : Neutron number (one-body) operator
$N_{0}$ : Number of neutrons in the nucleus
$\lambda_{N}$ : Lagrange multiplier determined such that $\langle\Phi| N|\Phi\rangle=N_{0}$
- Z: Proton number (one-body) operator
$Z_{0}$ : Number of protons in the nucleus
$\lambda_{Z}$ : Lagrange multiplier determined such that $\langle\Phi| Z|\Phi\rangle=Z_{0}$


## Hartree-Fock-Bogoliubov (HFB) I

- Minimization of the energy in the space of Bogoliubov quasiparticle states

$$
\delta \frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0
$$

where

$$
\Omega=H-\lambda_{N}\left(N-N_{0}\right)-\lambda_{Z}\left(Z-Z_{0}\right)-\sum_{k} \lambda_{O_{k}}\left(O_{k}-O_{0 k}\right)
$$

- $N$ : Neutron number (one-body) operator
$N_{0}$ : Number of neutrons in the nucleus
$\lambda_{N}$ : Lagrange multiplier determined such that $\langle\Phi| N|\Phi\rangle=N_{0}$
- Z: Proton number (one-body) operator
$Z_{0}$ : Number of protons in the nucleus
$\lambda_{Z}$ : Lagrange multiplier determined such that $\langle\Phi| Z|\Phi\rangle=Z_{0}$
- $O_{k}$ : additional constraint operator
$O_{0 k}$ : desired average value
$\lambda_{O_{k}}$ : Lagrange multiplier determined such that $\langle\Phi| O_{k}|\Phi\rangle=O_{0 k}$
- Let us consider an effective $H$ up to two-body operators

$$
H=h^{(0)}+\sum_{i j} h_{i j}^{(1)} c_{i}^{\dagger} c_{j}+\frac{1}{(2!)^{2}} \sum_{i j k l} \bar{h}_{i j k l}^{(2)} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k}
$$

- Be careful, if effective: $h^{(0)} \neq 0, h^{(1)} \neq T, h^{(2)} \neq V$
- They can integrate effects of three-body interaction (nucleus dependent)
$\diamond$ Normal-order two-body approximation $\Rightarrow$ see Thomas' talk
R. Roth et al., Phys. Rev. Lett. 109, 052501 (2012)
$\diamond$ In-medium $k$-body reduction
M. Frosini, T. Duguet, B. Bally, J.-P. Ebran and V. Somà, to be submitted (2021)


## Hartree-Fock-Bogoliubov (HFB) III

- Normal ordering of $H$ with respect to $|\Phi\rangle$

$$
\begin{aligned}
H & =H^{00} \\
& +\frac{1}{1!} \sum_{k_{1} k_{2}} H_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{H_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+H_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\} \\
& +\frac{1}{(2!)^{2}} \sum_{k_{1} k_{2} k_{3} k_{4}} H_{k_{1} k_{2} k_{3} k_{4}}^{22} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \\
& +\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{H_{k_{1} k_{2} k_{3} k_{4}}^{31} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}+H_{k_{1} k_{2} k_{3} k_{4}}^{13} \beta_{k_{1}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}}\right\} \\
& +\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{H_{k_{1} k_{2} k_{3} k_{4}}^{40} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger}+H_{k_{1} k_{2} k_{3} k_{4}}^{04} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}} \beta_{k_{1}}\right\}
\end{aligned}
$$

- Natural NO in Bogoliubov CC (BCC) or Bogoliubov MBPT (BMBPT)
A. Tichai, R. Roth and T. Duguet, Frontiers in Physics 8164 (2020)
P. Arthuis, PhD Thesis, Université Paris-Saclay (2018)


## Hartree-Fock-Bogoliubov (HFB) IV

- $\delta\langle\Omega\rangle=0 \Rightarrow$ solving the HFB equations

$$
\left(\begin{array}{cc}
\left(h^{(1)}+\Gamma-\lambda\right) & \Delta \\
-\Delta^{*} & -\left(h^{(1)}+\Gamma-\lambda\right)^{*}
\end{array}\right)\binom{U}{V}_{k}=E_{k}\binom{U}{V}_{k}
$$

where we used the fields

$$
\begin{aligned}
\Gamma_{i j} & =\sum_{k l} h_{i k j l}^{(2)} \rho_{l k} & \Gamma^{\dagger}=\Gamma \\
\Delta i j & =\frac{1}{2} \sum_{k l} h_{i j k l}^{(2)} \kappa_{k l} & \Delta^{T}=-\Delta
\end{aligned}
$$

## Hartree-Fock-Bogoliubov (HFB) IV

- $\delta\langle\Omega\rangle=0 \Rightarrow$ solving the HFB equations

$$
\left(\begin{array}{cc}
\left(h^{(1)}+\Gamma-\lambda\right) & \Delta \\
-\Delta^{*} & -\left(h^{(1)}+\Gamma-\lambda\right)^{*}
\end{array}\right)\binom{U}{V}_{k}=E_{k}\binom{U}{V}_{k}
$$

where we used the fields

$$
\left.\begin{array}{ll}
\Gamma_{i j}=\sum_{k l} h_{i k j l}^{(2)} \rho_{l k} & \Gamma^{\dagger}=\Gamma \\
\Delta i j=\frac{1}{2} \sum_{k l} h_{i j k l}^{(2)} \kappa_{k l} & \Delta^{T}=-\Delta
\end{array}\right\} \quad \begin{aligned}
& \text { Only part where } h^{(2)} \text { is needed } \\
& \text { If } h^{(2)} \text { large } \rightarrow \text { parallelization }
\end{aligned}
$$

## Hartree-Fock-Bogoliubov (HFB) IV

- $\delta\langle\Omega\rangle=0 \Rightarrow$ solving the HFB equations

$$
\left(\begin{array}{cc}
\left(h^{(1)}+\Gamma-\lambda\right) & \Delta \\
-\Delta^{*} & -\left(h^{(1)}+\Gamma-\lambda\right)^{*}
\end{array}\right)\binom{U}{V}_{k}=E_{k}\binom{U}{V}_{k}
$$

where we used the fields

$$
\left.\begin{array}{rlrl}
\Gamma_{i j} & =\sum_{k l} h_{i k j l}^{(2)} \rho_{l k} & & \Gamma^{\dagger}=\Gamma \\
\Delta i j & =\frac{1}{2} \sum_{k l} h_{i j k l}^{(2)} \kappa_{k l} & & \Delta^{T}=-\Delta
\end{array}\right\} \quad \begin{aligned}
& \text { Only part where } h^{(2)} \text { is needed } \\
& \text { If } h^{(2)} \text { large } \rightarrow \text { parallelization }
\end{aligned}
$$

- Energy: $E_{\mathrm{HFB}}=h^{(0)}+\operatorname{Tr}\left(h^{(1)} \rho\right)+\frac{1}{2} \operatorname{Tr}\left(\Gamma \rho-\Delta \kappa^{*}\right)$


## Hartree-Fock-Bogoliubov (HFB) IV

- $\delta\langle\Omega\rangle=0 \Rightarrow$ solving the HFB equations

$$
\left(\begin{array}{cc}
\left(h^{(1)}+\Gamma-\lambda\right) & \Delta \\
-\Delta^{*} & -\left(h^{(1)}+\Gamma-\lambda\right)^{*}
\end{array}\right)\binom{U}{V}_{k}=E_{k}\binom{U}{V}_{k}
$$

where we used the fields

$$
\left.\begin{array}{rlrl}
\Gamma_{i j} & =\sum_{k l} h_{i k j l}^{(2)} \rho_{l k} & & \Gamma^{\dagger}=\Gamma \\
\Delta i j & =\frac{1}{2} \sum_{k l} h_{i j k l}^{(2)} \kappa_{k l} & & \Delta^{T}=-\Delta
\end{array}\right\} \begin{aligned}
& \text { Only part where } h^{(2)} \text { is needed } \\
& \text { If } h^{(2)} \text { large } \rightarrow \text { parallelization }
\end{aligned}
$$

- Energy: $E_{\mathrm{HFB}}=h^{(0)}+\operatorname{Tr}\left(h^{(1)} \rho\right)+\frac{1}{2} \operatorname{Tr}\left(\Gamma \rho-\Delta \kappa^{*}\right)$
- Self-consistent problem
$\diamond$ HFB eq. $\xrightarrow{\text { depend }} \Gamma, \Delta \xrightarrow{\text { depend }} \rho, \kappa \xrightarrow{\text { depend }} U, V$
$\diamond$ Solved iteratively
$\diamond$ Diagon. HFB equations or gradient method: $\delta\langle\Omega\rangle=0 \Rightarrow H^{20}=H^{02}=0$


## Example: ${ }_{8}^{16} \mathrm{O}$ (doubly closed shell)



$$
\mathrm{E}_{\exp }=-127.619296(0) \mathrm{MeV}
$$

|  | Symmetries | Constraints | Minimum $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| spherical HF | $J=0, Z, N, \Pi, \mathcal{T}, \mathbb{R}$ |  | -101.6 |
| spherical HFB | $J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N$ | -101.6 |
| axial HFB | $M_{J}=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta$ | -101.6 |
| (real) general HFB | $\mathbb{R}$ | $Z, N$ | -101.6 |

## Example: ${ }_{8}^{16} \mathrm{O}$ (doubly closed shell)



$$
E_{\exp }=-127.619296(0) \mathrm{MeV}
$$

|  | Symmetries | Constraints | Minimum (MeV) |
| :--- | :---: | :---: | :---: |
| spherical HF | $J=0, Z, N, \Pi, \mathcal{T}, \mathbb{R}$ |  | -101.6 |
| spherical HFB | $J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N$ | -101.6 |
| axial HFB | $M J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta$ | -101.6 |
| (real) general HFB | $\mathbb{R}$ | $Z, N$ | -101.6 |
| SCGF ADC(3) | Somà et al. PRC $101014318(2020)$ |  | -130.81 |
|  |  |  |  |

## Example: ${ }_{12}^{24} \mathrm{Mg}$ (doubly open shell)



$$
E_{\exp }=-198.257016(24) \mathrm{MeV}
$$

|  | Symmetries | Constraints | Minimum $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| spherical HFB | $J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N$ | -136.0 |
| axial HFB | $M_{J}=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta$ | -151.5 |

## Example: ${ }_{12}^{24} \mathrm{Mg}$ (doubly open shell)


$\mathrm{E}_{\exp }=-198.257016(24) \mathrm{MeV}$


|  | Symmetries | Constraints | Minimum $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| spherical HFB | $J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N$ | -136.0 |
| axial HFB | $M=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta$ | -151.5 |
| triaxial HFB | $\Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta, \gamma$ | -152.9 |

## Example: ${ }_{12}^{24} \mathrm{Mg}$ (doubly open shell)



$$
\mathrm{E}_{\exp }=-198.257016(24) \mathrm{MeV}
$$

|  | Symmetries | Constraints | Minimum $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| spherical HFB | $J=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N$ | -136.0 |
| axial HFB | $M=0, \Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta$ | -151.5 |
| triaxial HFB | $\Pi, \mathcal{T}, \mathbb{R}$ | $Z, N, \beta, \gamma$ | -152.9 |
| (real) general HFB | $\mathbb{R}$ | $Z, N$ | -152.9 |

## Table of contents

(1) Introduction
(2) Bogoliubov quasiparticle states
(3) Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
© Projected HFB

## Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle \Rightarrow$ see Alexander's talk ।
$|\hat{a}\rangle \equiv\left\{|a\rangle, \forall m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket\right\} \quad$ (multiplet)
- Advantages:
$\diamond$ Textbook $\Rightarrow$ easy to code and benchmark
$\diamond$ Commonly used $\Rightarrow$ compare to other solvers, interactions available
$\diamond$ Flexible $\Rightarrow$ symmetry-restricted and unrestricted calculations


## Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle \Rightarrow$ see Alexander's talk ।
$|\hat{a}\rangle \equiv\left\{|a\rangle, \forall m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket\right\} \quad$ (multiplet)
- Advantages:
$\diamond$ Textbook $\Rightarrow$ easy to code and benchmark
$\diamond$ Commonly used $\Rightarrow$ compare to other solvers, interactions available
$\diamond$ Flexible $\Rightarrow$ symmetry-restricted and unrestricted calculations
- For simplicity, here: $h^{(2)}=V$ and $h^{(3)}=W$


## Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle \Rightarrow$ see Alexander's talk I
$|\hat{a}\rangle \equiv\left\{|a\rangle, \forall m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket\right\} \quad$ (multiplet)
- Advantages:
$\diamond$ Textbook $\Rightarrow$ easy to code and benchmark
$\diamond$ Commonly used $\Rightarrow$ compare to other solvers, interactions available
$\diamond$ Flexible $\Rightarrow$ symmetry-restricted and unrestricted calculations
- For simplicity, here: $h^{(2)}=V$ and $h^{(3)}=W$
- Need to uncouple the $J$-scheme matrix elements to $m$-scheme

$$
V_{a b c d}=\sum_{J M_{J}}\left[\mathcal{N}_{\hat{a} \hat{b}}(J) \mathcal{N}_{\hat{c} \hat{d}}(J)\right]^{-1}\left(j_{a} m_{j_{a}} j_{b} m_{j_{b}} \mid J M_{J}\right)\left(j_{c} m_{j_{c}} j_{d} m_{j_{d}} \mid J M_{J}\right) V_{\hat{a} \hat{b} \hat{c} \hat{d}}^{J}
$$

where

$$
\mathcal{N}_{\hat{a} \hat{b}}(J)=\frac{\sqrt{1+\delta_{\hat{a} \hat{b}}(-1)^{J}}}{1+\delta_{\hat{a} \hat{b}}}
$$

## Choice of basis: Spherical Harmonic Oscillator II

- Need to uncouple the $J$-scheme matrix elements to $m$-scheme

$$
V_{a b c d}=\sum_{J M_{J}}\left[\mathcal{N}_{\hat{a} \hat{b}}(J) \mathcal{N}_{\hat{c} \hat{d}}(J)\right]^{-1}\left(j_{a} m_{j_{a}} j_{b} m_{j_{b}} \mid J M_{J}\right)\left(j_{c} m_{j_{c}} j_{d} m_{j_{d}} \mid J M_{J}\right) V_{\hat{a} \hat{b} \hat{c} \hat{d}}^{J}
$$

- Different approaches are possible

| Strategy | Storage | Limit |
| :--- | :--- | :--- |
| On the fly | $V_{\hat{a} \hat{b} \hat{c} \hat{d}}^{J}$ | CPU |
| Mixed | $V_{\hat{a} \hat{\hat{b} \hat{c} \hat{d}}}^{J}+$ interm. info | Mixed |
| Storage | $V_{a b c d}$ | Memory |
| Factorization | $\Rightarrow$ see Alexander's talk II |  |

## Symmetry reductions of $V_{a b c d}$

- Symmetries of $H$ and SHO basis $\Rightarrow$ reduce the CPU time \& storage


## Symmetry reductions of $V_{a b c d}$

- Symmetries of $H$ and SHO basis $\Rightarrow$ reduce the CPU time \& storage
- $V_{a b c d}$ is non-zero only if

$$
\begin{array}{rll}
{[H, \Pi]=0} & \Rightarrow & (-1)^{\ell_{a}+\ell_{b}}=(-1)^{\ell_{c}+\ell_{d}} \\
{\left[H, J_{z}\right]=0} & \Rightarrow & m_{j_{a}}+m_{j_{b}}=m_{j_{c}}+m_{j_{d}} \\
{\left[H, T_{z}\right]=0} & \Rightarrow & m_{t_{a}}+m_{t_{b}}=m_{t_{c}}+m_{t_{d}} \tag{3}
\end{array}
$$

## Symmetry reductions of $V_{a b c d}$

- Symmetries of $H$ and SHO basis $\Rightarrow$ reduce the CPU time \& storage
- $V_{a b c d}$ is non-zero only if

$$
\begin{array}{rll}
{[H, \Pi]=0} & \Rightarrow & (-1)^{\ell_{a}+\ell_{b}}=(-1)^{\ell_{c}+\ell_{d}} \\
{\left[H, J_{z}\right]=0} & \Rightarrow & m_{j_{a}}+m_{j_{b}}=m_{j_{c}}+m_{j_{d}} \\
{\left[H, T_{z}\right]=0} & \Rightarrow & m_{t_{a}}+m_{t_{b}}=m_{t_{c}}+m_{t_{d}} \tag{3}
\end{array}
$$

- $V_{a b c d}$ has the exchange symmetries

$$
\begin{array}{rlrl}
H \in \mathbb{R} & \Rightarrow & V_{a b c d}=V_{a b c d}^{*} \\
H^{\dagger}=H+(1) & \Rightarrow & V_{a b c d} & =V_{c d a b} \\
\text { Fermions } & \Rightarrow & V_{a b c d} & =-V_{b a c d}=-V_{a b d c}=V_{b a d c} \\
(5)+(6) & \Rightarrow & V_{a b c d} & =-V_{b a c d}=-V_{a b d c}=V_{b a d c} \\
& & & -V_{c d b a}=-V_{d c a b}=V_{d c b a} \\
& & =V_{c d a b} \\
{[H, \mathcal{T}]=0+(1)} & \Rightarrow & V_{a b c d} & =(-1)^{j_{a}+j_{b}+j_{c}+j_{d}} V_{-a-b-c-d} \tag{8}
\end{array}
$$

## Scaling of $V_{a b c d}$ with the basis size

- (1-3): green $\rightarrow$ red $\sim$ CPU
- (4-8): red $\rightarrow$ orange $\sim$ Memory
- 13 octets/matrix element

| $\mathrm{N}_{\text {SHO }}$ | $\mathrm{N}_{\mathrm{sp}}$ |
| :---: | :---: |
| 1 | 4 |
| 2 | 16 |
| 3 | 40 |
| 4 | 80 |
| 5 | 140 |
| 6 | 224 |
| 7 | 336 |
| 8 | 480 |
| 9 | 660 |
| 10 | 880 |
| 11 | 1144 |
| 12 | 1456 |
| 13 | 1820 |
| 14 | 2240 |
| 15 | 2720 |
| 16 | 3264 |
| 17 | 3876 |
| 18 | 4560 |
| 19 | 5320 |



## Symmetry reductions of $W_{\text {abcdef }}$

- Symmetries of $H$ and SHO basis $\Rightarrow$ reduce the CPU time \& storage
- $W_{\text {abcdef }}$ is non-zero only if

$$
\begin{array}{rll}
{[H, \Pi]=0} & \Rightarrow & (-1)^{\ell_{a}+\ell_{b}+\ell_{c}}=(-1)^{\ell_{d}+\ell_{e}+\ell_{f}} \\
{\left[H, J_{z}\right]=0} & \Rightarrow & m_{j_{a}}+m_{j_{b}}+m_{j_{c}}=m_{j_{d}}+m_{j_{e}}+m_{j_{f}} \\
{\left[H, T_{z}\right]=0} & \Rightarrow & m_{t_{a}}+m_{t_{b}}+m_{t_{c}}=m_{t_{d}}+m_{t_{e}}+m_{t_{f}} \tag{11}
\end{array}
$$

- $W_{\text {abcdef }}$ has the exchange symmetries

$$
\begin{align*}
H \in \mathbb{R} & \Rightarrow W_{\text {abcdef }}=W_{a b c d e f}^{*}  \tag{12}\\
H^{\dagger}=H+(12) & \Rightarrow W_{\text {abcdef }}=W_{\text {defabc }}  \tag{13}\\
\text { Fermions } & \Rightarrow W_{\text {abcdef }}=-W_{b a c d e f}=\ldots[36 \text { possiblities }]  \tag{14}\\
(13)+(14) & \Rightarrow W_{\text {abcdef }}=\ldots[72 \text { possiblities }]  \tag{15}\\
{[H, \mathcal{T}]=0+(12) } & \Rightarrow W_{\text {abcd }}=(-1)^{j_{a}+j_{b}+j_{c}-j_{d}-j_{e}-j_{f}} W_{-a-b-c-d-e-f} \tag{16}
\end{align*}
$$

## Reduction through $e_{3 \max }$

- Principal quantum number: $e_{a}=2 n_{a}+l_{a} \Rightarrow$ see Alexander's talk I
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\text {max }}$


## Reduction through $e_{3 \max }$

- Principal quantum number: $e_{a}=2 n_{a}+l_{a} \Rightarrow$ see Alexander's talk I
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\text {max }}$
- Limit for two-particle states $|a b\rangle: \forall a, b, e_{a}+e_{b} \leq e_{2 \max }=2 e_{\max }$ $\underbrace{}_{\text {generally }}$
$\Rightarrow$ all elements $V_{\text {abcd }}$ taken into account


## Reduction through $e_{3 \text { max }}$

- Principal quantum number: $e_{a}=2 n_{a}+l_{a} \Rightarrow$ see Alexander's talk I
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\text {max }}$
- Limit for two-particle states $|a b\rangle: \forall a, b, e_{a}+e_{b} \leq e_{2 \text { max }} \underbrace{=2 e_{\text {max }}}_{\text {generally }}$
$\Rightarrow$ all elements $V_{\text {abcd }}$ taken into account
- Limit for three-particle states $|a b c\rangle: \forall a, b, c, e_{a}+e_{b}+e_{c} \leq e_{3 \max }<3 e_{\max }$ generally $\Rightarrow$ not all elements $W_{\text {abcdef }}$ taken into account


## Scaling of $W_{\text {abcdef }}$ with the basis size

- (9-11): green $\rightarrow$ red ~ CPU
- (12-16): red $\rightarrow$ orange ~ Memory
- 17 octets/matrix element

| $\mathrm{N}_{\mathrm{SHO}}$ | $\mathrm{N}_{\mathrm{sp}}$ |
| :---: | :---: |
| 1 | 4 |
| 2 | 16 |
| 3 | 40 |
| 4 | 80 |
| 5 | 140 |
| 6 | 224 |
| 7 | 336 |
| 8 | 480 |
| 9 | 660 |
| 10 | 880 |
| 11 | 1144 |
| 12 | 1456 |
| 13 | 1820 |
| 14 | 2240 |
| 15 | 2720 |
| 16 | 3264 |
| 17 | 3876 |
| 18 | 4560 |
| 19 | 5320 |



## Table of contents

(1) Introduction
(2) Bogoliubov quasiparticle states
(3) Hartree-Fock-Bogoliubov (HFB)
(4) Practical aspects
(5) Projected HFB

- Symmetry-breaking MF useful but better to restore the symmetries of $H$
$\diamond$ Eigenstates of $H$ have good quantum numbers
$\diamond$ Selection rules for transitions (e.g. electromagnetic)
$\diamond$ Some correlations are missing
- Symmetry-breaking MF useful but better to restore the symmetries of $H$
$\diamond$ Eigenstates of $H$ have good quantum numbers
$\diamond$ Selection rules for transitions (e.g. electromagnetic)
$\diamond$ Some correlations are missing
- Symmetry-projected HFB
B. Bally and M. Bender, arXiv:2010.15224 (2020)/PRC (2021)
$\diamond$ Obtain symmetry-adapted states (with good quantum numbers)
$\diamond$ Gain correlation energy (usually)



## Symmetry group of $H$

## Definition

Let $G$ be a group with a unitary representation $R(g)$.

$$
\forall g \in G,[R(g), H]=0
$$

$\Rightarrow G$ is a symmetry group of $H$

## Symmetry group of $H$

## Definition

Let $G$ be a group with a unitary representation $R(g)$.

$$
\forall g \in G,[R(g), H]=0
$$

$\Rightarrow G$ is a symmetry group of $H$

- Consequence: all "rotated" states have same energy

$$
\begin{aligned}
\langle\Phi(g)| H|\Phi(g)\rangle & \equiv\langle\Phi| R^{\dagger}(g) H R(g)|\Phi\rangle \\
& =\langle\Phi| H|\Phi\rangle
\end{aligned}
$$



## Symmetry group of $H$

## Definition

Let $G$ be a group with a unitary representation $R(g)$.

$$
\forall g \in G,[R(g), H]=0
$$

$\Rightarrow G$ is a symmetry group of $H$

- Consequence: all "rotated" states have same energy

$$
\begin{aligned}
\langle\Phi(g)| H|\Phi(g)\rangle & \equiv\langle\Phi| R^{\dagger}(g) H R(g)|\Phi\rangle \\
& =\langle\Phi| H|\Phi\rangle
\end{aligned}
$$



- Consider the vector space

$$
\operatorname{span}(G|\Phi\rangle) \equiv\left[\begin{array}{ll}
\left\{\sum_{G} f(g)|\Phi(g)\rangle, f(g) \in \mathbb{C}\right\} & \text { (if } G \text { finite) } \\
\left\{\int_{G} d v_{G}(g) f(g)|\Phi(g)\rangle, f \in L^{2}(G)\right\} & \text { (if } G \text { Lie group) }
\end{array}\right.
$$

## Definition

Diagonalization of $H$ in $\operatorname{span}\left(G_{\text {tot }}|\Phi\rangle\right)$

## Definition

Diagonalization of $H$ in $\operatorname{span}\left(G_{\text {tot }}|\Phi\rangle\right)$

- Decomposition in $\operatorname{span}\left(G_{\text {tot }}|\Phi\rangle\right)$

$$
|\Phi\rangle=\sum_{J K \Pi Z N} \sum_{\varepsilon} c^{J K \Pi Z N}\left|\Psi_{\varepsilon}^{J K \Pi Z N}\right\rangle
$$

## Definition

## Diagonalization of $H$ in $\operatorname{span}\left(G_{\text {tot }}|\Phi\rangle\right)$

- Decomposition in $\operatorname{span}\left(G_{\text {tot }}|\Phi\rangle\right)$

$$
|\Phi\rangle=\sum_{J K \Pi Z N} \sum_{\varepsilon} c^{J K \Pi Z N}\left|\Psi_{\varepsilon}^{J K \Pi Z N}\right\rangle
$$

- Extraction of the components



## Symmetry projection: scaling

- Nice but all projection operators involve sums or integrals

$$
\begin{aligned}
&\langle\Phi| H P_{M K}^{J} P^{\Pi} P^{Z N}|\Phi\rangle=\frac{2 J+1}{16 \pi^{2}} \underbrace{\int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma}_{\text {discret. } \sim 10^{4-5} \text { points }} D_{M K}^{J *}(\alpha, \beta, \gamma) \frac{1}{2} \underbrace{\sum_{p=1, \Pi}}_{2} \pi(p) \\
& \frac{1}{4 \pi^{2}} \underbrace{\int_{0}^{2 \pi} d \varphi_{Z} \int_{0}^{2 \pi} d \varphi_{N}}_{\text {discret. } \sim 10^{2} \text { points }} e^{-i \varphi_{Z} Z} e^{-i \varphi_{N} N} \underbrace{\langle\Phi| H R\left(\alpha, \beta, \gamma, p, \varphi_{Z}, \varphi_{N}\right)|\Phi\rangle}_{\sim N_{\mathrm{sp}}^{3,3}}
\end{aligned}
$$

## Symmetry projection: scaling

- Nice but all projection operators involve sums or integrals

$$
\begin{aligned}
&\langle\Phi| H P_{M K}^{J} P^{\Pi} P^{Z N}|\Phi\rangle=\frac{2 J+1}{16 \pi^{2}} \underbrace{\int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma}_{\text {discret. } \sim 10^{4-5} \text { points }} D_{M K}^{J *}(\alpha, \beta, \gamma) \frac{1}{2} \underbrace{\sum_{p=1, \pi} \pi(p)}_{2} \\
& \frac{1}{4 \pi^{2}} \underbrace{\int_{0}^{2 \pi} d \varphi_{Z} \int_{0}^{2 \pi} d \varphi_{N}}_{\text {discret. } \sim 10^{2} \text { points }} e^{-i \varphi_{Z} Z} e^{-i \varphi_{N} N} \underbrace{\langle\Phi| H R\left(\alpha, \beta, \gamma, p, \varphi_{Z}, \varphi_{N}\right)|\Phi\rangle}_{\sim N_{\mathrm{sp}}^{3,3}}
\end{aligned}
$$

- Scaling: $\sim 10^{6-7} N_{\mathrm{sp}}^{3,3}$
- Fortunately, this is an embarassingly parallel problem

Example: $0^{+}$state for axially deformed ${ }^{240} \mathrm{Pu}$


Courtesy of M. Bender
M. Bender, P.-H. Heenen, and P. Bonche, Phys. Rev. C 70, 054304 (2004)

## Example: $0^{+}$state for axially deformed ${ }^{240} \mathrm{Pu}$



Courtesy of M. Bender
M. Bender, P.-H. Heenen, and P. Bonche, Phys. Rev. C 70, 054304 (2004)

## Better schemes based on projection

- Variation After Projection (VAP): minimizes the projected energy

$$
\underbrace{\delta \frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0}_{\text {HFB }} \rightarrow \underbrace{\delta \frac{\langle\Phi| \Omega P^{S}|\Phi\rangle}{\langle\Phi| P^{S}|\Phi\rangle}=0}_{\text {VAP }}
$$

$\Rightarrow$ but very costly! (can still be done for $S \equiv N, Z, P$ )

## Better schemes based on projection

- Variation After Projection (VAP): minimizes the projected energy

$$
\underbrace{\delta \frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0}_{\text {HFB }} \longrightarrow \underbrace{\delta \frac{\langle\Phi| \Omega P^{S}|\Phi\rangle}{\langle\Phi| P^{S}|\Phi\rangle}=0}_{\text {VAP }}
$$

$\Rightarrow$ but very costly! (can still be done for $S \equiv N, Z, P$ )

- Projected Generator Coordinate Method (PGCM)
$\diamond$ Build set of reference states

$$
\{|\Phi(q)\rangle, q\} \longrightarrow\left\{\left|\Psi_{\varepsilon}^{J M \Pi Z N}(q)\right\rangle, q\right\}_{J M \Pi Z N}
$$

$\diamond$ Diagonalize $H$ among the projected states (not orthogonal $\Rightarrow$ generalized eigenvalue problem)
$\diamond$ Final wave function

$$
\left|\Theta_{\xi}^{J M \Pi Z N}\right\rangle=\sum_{q} f_{\xi \varepsilon}^{J M \Pi Z N}(q)\left|\Psi_{\varepsilon}^{J M \Pi Z N}(q)\right\rangle
$$

## Better schemes based on projection

- Variation After Projection (VAP): minimizes the projected energy

$$
\underbrace{\delta \frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0}_{\text {HFB }} \longrightarrow \underbrace{\delta \frac{\langle\Phi| \Omega P^{S}|\Phi\rangle}{\langle\Phi| P^{S}|\Phi\rangle}=0}_{\text {VAP }}
$$

$\Rightarrow$ but very costly! (can still be done for $S \equiv N, Z, P$ )

- Projected Generator Coordinate Method (PGCM)
$\diamond$ Build set of reference states

$$
\{|\Phi(q)\rangle, q\} \longrightarrow\left\{\left|\Psi_{\varepsilon}^{J M \Pi Z N}(q)\right\rangle, q\right\}_{\text {JMחZN }}
$$

$\diamond$ Diagonalize $H$ among the projected states (not orthogonal $\Rightarrow$ generalized eigenvalue problem)
$\diamond$ Final wave function

$$
\left|\Theta_{\xi}^{J M \Pi Z N}\right\rangle=\sum_{q} f_{\xi \varepsilon}^{J M \Pi Z N}(q)\left|\Psi_{\varepsilon}^{J M \Pi Z N}(q)\right\rangle
$$

## New approaches in ab initio nuclear physics

- Development of new approaches that combine
$\diamond$ symmetry breaking \& restoration $\rightarrow$ includes static correlations
$\diamond$ expansion scheme $\rightarrow$ includes dynamic correlations


## New approaches in ab initio nuclear physics

- Development of new approaches that combine
$\diamond$ symmetry breaking \& restoration $\rightarrow$ includes static correlations
$\diamond$ expansion scheme $\rightarrow$ includes dynamic correlations
- Multi-Reference In-Medium Similarity Renormalization Group (MR-IMSRG)
H. Hergert, Phys. Scr. 92023002 (2017)
J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and H. Hergert, Phys. Rev. Lett. 124, 232501 (2020)
- Projected Bogoliubov Many-Body Perturbation Theory (PBMBPT)
T. Duguet, J. Phys. G 42025107 (2015)
T. Duguet and A. Signoracci, J. Phys. G 44015103 (2017)
P. Arthuis, A. Tichai, J. Ripoche and T. Duguet, Comp. Phy. Comm. 261 (2021)
- Projected Bogoliubov Coupled Cluster (PBCC)
see T. Duguet et al. above
Y. Qiu, T. Henderson, J. Zhao and G. Scuseria, J. Chem. Phys. 149164108 (2018)
Y. Qiu, T. Henderson, T. Duguet and G. Scuseria, Phys. Rev. C 99044301 (2019)

