
Gabriel Stoltz

An Introduction to Machine Learning

April 14, 2025

IP Paris – M1 Applied Mathematics and Statistics





Preface

Machine learning is not a spectators’ sport

Bibliographical guide

The main reference for this course is the introductory book [40] by Kevin Murphy, which focuses
on algorithms and numerical methods. It covers a wide range of methods and techniques, and can
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https://probml.github.io/pml-book/book1.html

Another important reference, for the more theoretical parts of the course, is the book on learning
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tamizadeh and A. Talwalkar, Foundations of Machine Learning D. Barber, Bayesian Reasoning
and Machine Learning C. Bishop, Pattern Recognition and Machine Learning E. Alpaydin, Intro-
duction to Machine Learning P. Mehta, M. Bukov, C.-H. Wang, A.G.R. Day, C. Richardson, C.K.
Fisher, D.J. Schwab, A high-bias, low-variance introduction to Machine Learning for physicists,
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Exercises

�More difficult questions are indicated by this symbol in the margin. These questions would typically
not be asked at the exam.

Some practical comments

This set of lecture notes is the first typed version I have on this material. It therefore certainly
contains various typos. Do not hesitate to point me out anything you spot!

Paris, 18 July 2023

Gabriel Stoltz
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Not everything can be learned. The question which underlies machine learning at large is:
What can be learned, and under which conditions? This chapter gives an introduction to machine
learning, by first discussing in Section 1.1 what machine learning is about through some overview
of the field. We next turn in Section 1.2 to supervised learning, which is the type of learning we
will mostly consider in these lecture notes. We conclude this introductory chapter with our first
examples of machine learning methods, based on local averaging, in particular K-nearest neighbors
(see Section 1.3).

1.1 What is machine learning?

We give here an overview of machine learning based on [40, Chapter 1], [3, Chapter 1], [39,
Chapter 1], [6, Chapter 13] and [49, Chapter 1].
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1.1.1 The (big) data paradigm

Although machine learning as a scientific field has been present since decades, it gained a lot of
popularity in the past decade, thanks to a new paradigm where

• data can be abundant and easily obtained, and therefore comes first in many settings (before
the system is even being modeled);

• efficient computing devices are available.

Examples of situations where data is easily obtained include: internet trafic (creation of data when
visiting webpages), music or movie ratings (when liking songs on some apps, writing a review for
a movie, ...), customer behaviors (recording information on products bought online), etc.

Gathering data is not a goal in itself. What one ultimately aims at is to predict new events or
behaviors based on the gathered information. For instance, a supermarket chain may want to be
able to say which customer is likely to buy which product, when, how much, ... while the customer
may want to find products that fit his/her needs. Another example is spam classification: the
user may want to tailor the classifier so that it better sorts the incoming emails. A last example is
character recognition in images, for instance for automatic recognition of amounts when depositing
bank checks. In all these situations, one may lack a good knowledge of the underlying process, and
be unable to model it convincingly. The idea is then to make up for this by relying on accumulated
experience in the form of data. This can be coined as “re-cognizing” events or data, relying on the
definition of “cognize” as “perceive, become aware of”.

1.1.2 Definitions

Machine learning is a subfield of artificial intelligence,1 and has strong links with data mining,
data analysis and data visualization. It can be defined in various ways, including

• automatically detecting meaningful patterns in data;
• transforming past information/experience (data) into predictions as accurate as possible;
• improving the performance at certain tasks when having more experience.

All these statements explicitly or implicitly suggest that machine learning is about designing accu-
rate and efficient prediction algorithms (to be emphasized as a clear list of instructions/procedures
to follow in order to obtain a result). The so-obtained algorithm should be able to adapt to modifi-
cations in behaviors. Illustrative examples to this end are spam classification and fraud detection.

1.1.2.1 Machine learning tasks

The application domains of machine learning are ubiquitous:

• science (processing of measurement data in astronomy, physics; DNA analysis in biology, ...)
• medicine (for instance medical diagnosis)
• image recognition/segmentation (for medical applications, social media, etc)
• text analysis/classification
• speech processing/natural language processing (for instance translations)
• finance/banking (credit applications, fraud detection, prediction of stock market prices, ...)
• playing games (chess, go)

These application domains require machine learning tools for various tasks:

1 There are many definitions of artificial intelligence (AI)... We use here elements from the Wikipedia
page of the topic. In these notes, we consider AI as a scientific field studying and developing “the
intelligence of machines or software, as opposed to the intelligence of humans or other animals [...] The
various subfields of IA research are centered around particular goals and the use of particular tools.
The traditional goals of AI research include reasoning, knowledge representation, planning, learning,
natural language processing, perception, and support for robotics. General intelligence (the ability to
complete any task performable by a human) is among the field’s long-term goals.”
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• classification (many possible applications: credit scoring, digit classification, face recognition
and biometrics, ...), see for instance Chapters 3 and 6;

• regression, see for instance Chapter 2;
• ranking (which corresponds to ordering items given a criterion, e.g. webpages when performing

a query on google);
• clustering (for example to find communities in social networks), see Chapter 9;
• dimensionality reduction (e.g. for image compression), see Chapter 5 and Section 8.3;
• data generation (for instance with tools such as ChatGPT, Code-Llama, Dall-E, ...).

Exercise 1.1. Find other examples of machine learning tasks.

1.1.2.2 Relationship with other scientific fields

Machine learning is a proteiform scientific field, at the crossroad of various other fields, in partic-
ular:

• probability and statistics. Distinctive features of machine learning are (i) the fact that the
distribution of the data is unknown (distribution free setting), so that theoretical results are
established over (large) classes of distributions; (ii) non asymptotic results are of prime interest,
as the number of data points may not be large in comparison with the number of degrees
of freedom/unknowns of the machine learning model; (iii) the key ouput of machine learning
algorithms are predictions on unseen data, so that metrics of success are based on this criterion,
and not on the quality of the estimation of the parameters of the model as in statistics.
Somehow, machine learning cares less about checking statistical hypotheses than finding causes
for the observed data. It also has a more computer science oriented mindset than traditional
statistics.

• optimization theory, as many models of machine learning require some form of parameter
optimization with respect to some loss/cost function. This optimization is performed in (very)
high dimension, often for non convex targets.

• computer science, as the algorithmic part of machine learning is pivotal. A particular attention
is paid to equilibrating the prediction performance and the computational cost of the methods
which are being implemented.

• artificial intelligence: machine learning can be considered as a specific component, which allows
to transform “experience” (in the form of data) into “actions” (based on the prediction provided
by the algorithm). There is however no attempt to emulate or reproduce human intelligence in
machine learning.

1.1.3 Types of learning

In these lecture notes, we will mostly perform supervised learning, although unsupervised learning
will also be considered to some extent. This will be done in a statistical framework, using batch
learning with a passive teacher. In order to make sense of these sentences, let us comment on the
various alternative options:

• Supervised learning is described more precisely in Section 1.2. In short, this means that data
points come with labels, as opposed to unsupervised learning where data is unlabeled. Some-
times, a semi-supervised setting is considered, where only a fraction of the data points are
labeled. A typical example of supervised learning is spam detection, for which the training
database needs to include examples of spams and legitimate emails in order to make pre-
dictions on new incoming emails. An example of unsupervised learning for emails would be
anomaly detection, i.e. marking a new incoming email as deviating from the usual email con-
tent. Supervised learning is intuitively more efficient, as some extra information is available
compared to unsupervised learning. However, attaching a label to the data requires some (pos-
sibly costly and time consuming) preprocessing of the data – think for instance about medical
diagnosis, where a medical doctor needs to go over various images and pinpoint whether there
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is a pathology or not. This motivates working with unlabeled data, or only with a fraction of
labeled data.

• Active learning corresponds to settings where the algorithm can request new data to be gen-
erated in some regions of data space; whereas, in passive learning, the data is given to the
algorithm without the possibility to give some feedback on the next data location.

• Online learning arises in situations where data continuously flows in, while batch learning
corresponds to settings where the data is handed out at the beginning of the procedure. One
example of online learning is finance, where stockbrokers aim at predicting stock market prices
in real time for their daily decisions.

• Passive vs. adversarial training depends on the helpfulness of the teacher. A passive teacher
is encountered when the data is random, which corresponds to the framework of statistical
learning. This should be contrasted with the adversarial scenario, where data is generated in
order to trick the learner into making mistakes. This is useful for algorithms targeted at fraud
detection for instance, or more generally to obtain guarantees in the worst case scenario (in
opposition to typical scenarios, as in the statistical learning framework).

Unsupervised learning. From a mathematical viewpoint, and anticipating to some extent on
the presentation of supervised learning in Section 1.2, unsupervised learning aims at fitting an
unconditional model pdata(x) which can generate new data x, as opposed to supervised learning
which considers data points x and labels y, and fits a conditional model pdata(x|y) in order to
make predictions. In essence, unsupervised learning aims at finding compact descriptions of data.
The main interest of this learning framework is that it avoids to collect labeled data. It can also be
considered in situations where the labeling is ambiguous (as for text or image classifications when
some categories are close to each other). More generally, it allows to find patterns or “explanations”
in high dimensional data instead of focusing on low dimensional inputs only.

One difficulty with unsupervised learning is the absence of ground truth provided by labels.
Evaluating the quality of the model therefore requires some work. Possible approaches to this
end are (i) to check the likelihood of the generated data (using some test data and density es-
timations); (ii) to use the learned unsupervised (reduced) representation of the data for classi-
fication/regression tasks and hope to be more efficient than with the full data; (iii) sometimes,
a qualitative gain in the understanding of the model (“interpretability”) can be considered as a
good enough motivation for unsupervised learning.

Reinforcement learning. Another learning framework, which we will not touch upon, is pro-
vided by reinforcement learning, where an agent learns to interact with an environment, through
some policy (list of actions), which is updated using some reward function. In this framework,
data is also unlabeled, but the output of the algorithm is a balance between exploration of new
data (which can be seen as taking actions in a dynamic environment) and exploitation of the data
collected until now (to update the parameters of the method in order to make better predictions,
the metric for the quality of the prediction being some reward function). A prominent example is
provided by learning to play chess or go. In essence, reinforcement learning amounts to “learning
with a critic” (with some occasional thumbs up or down) as opposed to “learning with a teacher”.

1.1.4 Learning stages

We briefly discuss in this section the overall workflow associated with machine learning techniques.
Only the first step is made precise below, the other ones being discussed in the following chapters:

(1) Preparation of the data: The first step is to collect data/examples, to preprocess them by
curating the dataset, and next apply some featurization procedure and label the data points
for supervised learning. The dataset can then be decomposed into three subsets: a training
dataset, a validation dataset (which will be used to find the best parameters of the model) and
a test set. The latter set is never used to find the parameters of the model; its sole purpose is
to assess the quality of the prediction.

(2) Choose a loss function, which measures the performance of the prediction.
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(3) Choose the hypothesis set (i.e. the class of models which is considered) and the hyperparam-
eters for the algorithm.

(4) Find the parameters of the model leading to the best prediction by (i) for a given value of the
hyperparameters, finding the parameters of the model giving the smallest loss for the training
dataset; (ii) selecting the hyperparameters to obtain the smallest loss on the validation set;
(iii) assessing the quality of the so-obtained prediction on the test set.

A focus on data preparation. The nature and quality of the data is key to the success of
the learning process. Although this is of paramount importance in practice and requires quite
some care, we consider in these lecture notes that the data has been correctly prepared, and
therefore focus on the algorithmic and theoretical aspects of learning. In order to test methods,
there are nowadays various benchmark datasets, of increasing complexity. For instance, for image
classification, one can start with the rather simple MNIST dataset for which the task is to classify
handwritten digits, and then progressively complexify the classification task by considering fashion-
MNIST (recognizing clothing items), the various CIFAR datasets, the ImageNet dataset, etc. Some
websites such as Kaggle gather standard datasets (see also the references on the course webpage).

After collecting raw data, the first task is to remove duplicates, and check for missing data.
Various rules exist in the latter case to make up for missing fields (mean value imputation, use
of generative methods to fill in fields, etc). Categorical data, such as colors (for a wine, an item
of clothing, an animal, etc), genders, etc., require some care in the way they are handled, as al-
gorithms and computers work with numbers. The customary way of proceeding is to use one-hot
encoding to transform a categorical variable with K possible values into a vector {0, 1}K with
only one non-zero entry; more precisely, the categorical component xi is transformed into the vec-
tor (1xi=1, . . . ,1xi=K) (the interest of this transformation will become more clear in contexts such
as the one of Section 3.2.4 on multiclass logistic regression). This is one instance of featurization,
the process of transforming the raw data into a more relevant input. This featurization step can be
much more involved for certain applications. For instance, in order to predict forces in atomistic
models of materials, the raw input, which is the atomistic configuration of a system, is featurized
using various functions computing radial and angular moments of the distribution of neighboring
atoms around each other atom. Another example is provided by data inputs which are not of the
same sizes, such as sequences of words or chunks of temporal series. Let us emphasize here that
coming up with (or learning) a good representation of the data is still an active research field
in various application domains of machine learning. In any case, some exploratory data analysis
needs to be conducted in order to understand the salient properties of the dataset; and possibly
remove some attributes/features (for instance through pairwise scatter plots to identify redundant
or irrelevant features).

In the remainder of these lecture notes, we always consider that the data is organized in the
following design matrix, where each row represents one of the n data point xi = (xi,1, . . . , xi,d) ∈
R1×d, and each of the d columns represents a feature (also called attribute):

X =

á
x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
...

. . .
...

xn,1 xn,2 . . . xn,d

ë
∈ Rn×d.

Normalization. In many methods, it is convenient to have data features of similar sizes, and in
fact of order 1. This can be achieved through linear transformations. The three main options to
this end are

• standardization: this corresponding to a normalization of the data component by component,
i.e. centering the data in each column and rescaling it so that the empirical variance is 1.
More precisely, this amounts to setting x̃i,k = (xi,k − bk)/ak (alternatively, xi,k = akx̃i,k + bk)
with ak, bk chosen such that

n∑
i=1

x̃i,k = 0,
1

n

n∑
i=1

x̃2i,k = 1. (1.1)
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The values ak, bk can in fact be analytically computed, see Exercise 1.2 below.
• whitening: this corresponds to a global normalization of the data, i.e. applying an affine trans-

formation so that the data is centered and with a unit empirical covariance. The empirical
covariance of the data inputs is

Σn =
1

n

n∑
i=1

(xi − xn)
>

(xi − xn) ∈ Rd×d. (1.2)

Note that the matrix Σn is positive symmetric. Assuming moreover that it is definite, one can

consider Σ
−1/2
n by spectral calculus, and introduce

x̃i = (xi − xn)Σ−1/2n . (1.3)

A simple computation shows that the transformed data set {x̃1, . . . , x̃n} is by construction
centered and with unit covariance; see Exercise 1.3. The original data inputs can be recovered

by undoing the transformation as xi = xn + x̃iΣ
1/2
n .

• scaling: this corresponds to a linear transformation mapping the data to the interval [0, 1],
with minimal value 0 and maximal value 1 in each column. More precisely,

x̃i,k =
xi,k −mk

Mk −mk
, mk = min

16j6n
xj,k, Mk = max

16j6n
xj,k.

In all cases, when the machine learning method is trained on the transformed data set {x̃1, . . . , x̃n},
some preprocessing is necessary to make predictions for a new (test) data point x′, as one first needs
to transform it the same way the data points were transformed. When normalization is considered,
this means that the prediction is performed on x̃′ whose components are x̃′k = (x′ − bk)/ak; when

whitening is applied, prediction is performed on x̃′ = Σ
−1/2
n (x′ − xn); for scaling, prediction is

done on x̃′ = (x′ − mk)/(Mk − mk). Let us emphasize that, in all cases, the parameters of the
transformation are those computed on the training data set.

Exercise 1.2 (Standardization). Prove that the values ak, bk which allow to satisfy (1.1) are
the empirical standard deviation and the empirical average:

ak =

Ã
1

n

n∑
i=1

(xi,k − xn)
2
, bk = xn =

1

n

n∑
i=1

xi,k.

Correction. One first determines bk from the centering condition (first equality in (1.1)), and
then ak from the moment condition (second equality in (1.1)).

Exercise 1.3 (Whitening). Prove that the transformed data points (1.3) are such that

1

n

n∑
i=1

x̃i = 0 ∈ Rd,
1

n

n∑
i=1

x̃>i x̃i = Idd.

Correction. The first equality is easily obtained as

n∑
i=1

x̃i =

[
n∑
i=1

(xi − xn)

]
Σ−1/2n ,

the sum on the right hand side being 0. For the second equality, one writes

1

n

n∑
i=1

x̃>i x̃i =
1

n
Σ−1/2n

(
n∑
i=1

(xi − xn)
>

(xi − xn)

)
Σ−1/2n = Σ−1/2n ΣnΣ

−1/2
n = Idd,

from which the conclusion follows.
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1.2 Supervised learning

We make precise the mathematical framework behind the subclass of machine learning problems
corresponding to supervised learning, as this will be the core topic considered in these lectures.
The presentation is based on [4, Sections 2.1 and 2.2] and [39, Section 2.4.2].

1.2.1 Mathematical framework

Given a dataset of n elements D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y (couples of inputs/outputs
or features/labels), the aim of supervised learning is to predict the output or label y ∈ Y on an
unseen data point x ∈ X (“test data”). Equivalently, this amounts to learning a mapping X → Y.

In many practical cases, X is (isomorphic to) Rd, either explicitly or implicitly (for instance
when using kernels, see Section 5.5.2 and Chapter 6). Typical examples include physical measure-
ments of various quantities at different locations (e.g. pressure, temperture, wind speed, humidity,
etc. at various places in France for weather forecasting), or pixel values for images.

The label or output space Y depends on the type of problem which is considered. For classi-
fication (see Section 1.2.1.1) it is a discrete space: Y = {0, 1} or {−1, 1} for binary classification,
and Y = {1, . . . ,K} when there are K classes. For regression problems, Y = R or a higher dimen-
sional space RK .

The measure of performance, i.e. the quality of the mapping f : X → Y which is learnt, depends
on the task (classification vs. regression). Let us however warn the reader that the criterion for
performance is in practice not always defined as precisely as in these lecture notes. Moreover, it
can be the case that the ouput y cannot be a deterministic function of the input x, for instance
when there is some measurement noise, or when there are extra features which are unobserved. A
typical example would be the determination of the gender of a person depending on the height,
weight and shoe size. In any case, the function f can be quite complicated, and nonlinear.

There are two (related) key challenges, which we will constantly encounter, when trying to
learn the function f : X → Y:

• the number of data points n which are observed can be rather small in view of the complexity
of the function to learn. This requires to carefully assess the interpolation and extrapolation
capabilities of the mapping f . Typically, interpolation is much easier than extrapolation: loosely
speaking, prediction at new inputs in between data points is more reliable than predictions in
regions not covered by data points.

• the input space can be of very large dimension d (the so-called “curse of dimensionality”). This
raises scalability issues for the algorithms, and also limits the capacity of the model to make
correct predictions on new data – the so-called generalization ability.

Formalizing the learning framework. We consider the paradigm of statistical learning, where
elements in the dataset are assumed to be identically and independently distributed (i.i.d.) ac-
cording to some unknown probability measure pdata(dx dy). Expectations with respect to the
latter probability measure are denoted by E. The mapping X → Y to be learned is parametrized
by θ ∈ Θ, so that the model is sought in the parametric class of functions {fθ, θ ∈ Θ}. The ideal
learning problem can then be formulated as the following minimization of the expected risk:

min
θ∈Θ
R(θ), R(θ) = E [` (y, fθ(x))] , (1.4)

for some loss function ` : Y×Y → R (typically having nonnegative values). In practice, only a finite
number of data points are available through a dataset D = {(x1, y1), . . . , (xn, yn)} ⊂ (X × Y)n.
In this context, a learning algorithm is formally an application which associates a function f ∈
F (X ,Y) (the set of measurable functions from X to Y) to a dataset D of size n. This is done in
practice by relying on the so-called empirical risk minimization (see Definition 1.3 for a more formal
presentation), where the expectation in (1.4) is approximated by a finite sum. More precisely, the
algorithm returns fθ̂n with
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θ̂n ∈ argmin
θ∈Θ

“Rn(θ), “Rn(θ) =
1

n

n∑
i=1

` (yi, fθ(xi)) .

Exercise 1.4. For θ fixed, give sufficient conditions on ` and pdata ensuring that “Rn(θ) converges
to R(θ) as n→ +∞, and make precise in which sense convergence holds.

Correction. The convergence result is based on the Law of Large Numbers. We assume to
this end that

E (|`(y1, fθ(x1))|) =

ˆ
X×Y

|`(y, fθ(x))| pdata(dx dy) < +∞,

and therefore obtain that, for any θ ∈ Θ, the empirical risk “Rn(θ) almost surely converges to
the population risk R(θ) as n→ +∞.

Let us however already emphasize that the goal of machine learning is not to minimize the loss
on the training data, but on future data not yet seen, to guarantee some good prediction ability.
This generalization performance can be discussed within the framework of decision theory, see
Section 1.2.2 below and Chapter 10.

1.2.1.1 Classification

In classification problems, the aim is to predict a label y ∈ Y in a discrete set Y. For multiclass
classification, Y = {1, . . . ,K}, with K the number of classes considered in the classification prob-
lem. For binary classification, Y = {0, 1} for certain algorithms (for instance logistic regression, see
Chapter 3), while Y = {−1, 1} for others (for instance support vector machines, see Chapter 6).
One example besides the MNIST dataset, and which we will consider for the hands-on, is the Iris
data set (see for instance [40, Section 1.2.1.1]), for which there are d = 4 features and K = 3
classes.

There are various choices for the loss functions. A natural one is `(z, y) = 1y 6=z, for which
the associated risk function R(θ) = P(y 6= fθ(x)) in (1.4) is called the misclassification error.
However, as discussed in Section 3.1, the corresponding risk function is difficult to optimize. The
use of gradient-like optimization algorithms, as those presented in Chapter 4, suggests to resort to
smooth surrogate loss functions. Appropriate choices for these surrogate functions are discussed
in Section 3.1.

Let us conclude this section by presenting a typical way of predicting classes in multiclass
classification, relying on the softmax function, which takes as argument (a1, . . . , aK) ∈ RK and
returns

SK(a1, . . . , aK) =

Ç
ea1∑K
k=1 eak

,
ea2∑K
k=1 eak

, . . . ,
eaK∑K
k=1 eak

å
∈ [0, 1]K .

Note that the denominators in the arguments of SK ensure that the components of SK sum to 1,
so that SK returns a discrete probability. The choice of an exponential function is convenient to
transform real numbers into positive ones.

The prediction is based on some function fθ : X → RK , so that the vector SK(fθ(x)) gives,
for a new input x ∈ X , the probabilities of the label y to be in one of the classes; more precisely,
the probability that y = k is the k-th component of SK(fθ(x)), denoted by SK(fθ(x))k. A natural
classification rule is therefore

y ∈ argmax
16k6K

{SK(fθ(x))k} .

In fact, the choice fθ(x) = W>x+ b, with θ = (W, b) where W ∈ Rd×K and b ∈ RK (we interpret
here x as a column vector), corresponds to multinomial logistic regression (see Section 3.2.4). The
part W of the parameter θ is called weight, while the part b is called bias (let us however emphasize
that this has nothing to do with the notion of bias for estimators, as encountered in statistics).
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Remark 1.1. For K = 2 classes (binary classification), a simple computation shows that

S2(a1, a2) =

Å
ea1

ea1 + ea2
, 1− ea1

ea1 + ea2

ã
= (σ(a1 − a2), 1− σ(a1 − a2)),

where we introduced the sigmoid function

σ(z) =
1

1 + e−z
=

ez

1 + ez
.

This shows that it suffices to learn a1 − a2, and not a1, a2 separately. The model can then be
parametrized using only σ(fθ(x)) with fθ(x) = W>x+ b ∈ R where W ∈ RK and b ∈ R.

1.2.1.2 Regression

Regression problems correspond to situations where the space Y is continuous, typically Y = RK .
The most famous choice of loss function is the square loss `(y, z) = ‖y − z‖22 (with ‖ · ‖2 the
standard Euclidean norm on RK), for which the associated empirical risk minimization reads“Rn(θ) =

1

n

n∑
i=1

‖yi − fθ(xi)‖22 . (1.5)

Other loss functions can be considered, for instance the mean absolute loss (with y = (y1, . . . , yK))

`(y, z) = ‖y − z‖1 =

K∑
k=1

|yk − zk|,

or generalizations of the latter loss. The interest of these functions is that large deviations are less
penalized, which is important to limit the impact of outliers in the dataset and make regression
more robust.

Exercise 1.5. Prove that (1.5) is proportional to the log-likelihood of the sample D in a statistical
model where y is distributed according to a Gaussian distribution centered on fθ(x) with given
variance σ2 > 0.

Correction. The log-likelihood writes

Ln(θ) =

n∏
i=1

…
1

2πσ2
exp

Å
−‖fθ(xi)− yi‖

2
2

2σ2

ã
,

so that “Rn(θ) = −2σ2

n

(
logLn(θ) +

n

2
log(2πσ2)

)
.

Typical instances of models used in regression are:

• linear regression fθ(x) = b +

d∑
j=1

wjxj for x = (x1, . . . , xd) ∈ Rd, with θ = (b, w1, . . . , wd) ∈

Rd+1;
• polynomial regression, where some data point x ∈ R is first featurized as φ(x) = (1, x, . . . , xp)

(with p the degree of the polynomial), and then a prediction is made as fθ(x) = θ>φ(x) for
some vector θ ∈ Rp+1. Note that this regression is still linear in the parameter θ to estimate;
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• regression using (deep) neural networks, presented in Chapter 8, and various other models
generically relies on the prediction function fθ(x, θ) = w>φ(x, v), where the parameters θ =
(w, v) are decomposed in two parts: a part w which is used to linearly combine the output
of a (nonlinear) featurization function, and a part v which characterizes the featurization
function φ(x, v). For neural networks for instance, this featurization function is of the form

φ(x, v) = ρL (ρL−1 (ρL−2(. . . ρ1(x,W1, b1)),WL−1, bL−1) ,WL, bL) ,

where L is the number of layers, and v = (W1, b1, . . . ,WL, bL) gathers the parameters to be
learnt at each layer.

1.2.2 Decision theory and statistical learning

Decision theory (see Section 1.2.2.1) is a mathematical framework which allows to construct the
best predictor when the distribution of the data pdata is known. However, as mentioned earlier, this
distribution is typically not known in practice. One should therefore see the predictor provided
by decision theory as some ideal choice which provides some baseline lower bound to the loss/risk
which can be actually achieved. Statistical learning (see Section 1.2.2.2) aims at obtaining quanti-
tative bounds/guarantees on how much the model which is learnt departs from the optimal choice
provided by decision theory.

1.2.2.1 Decision theory

Definition 1.1 (Expected risk). Given a measurable function f : X → Y, a loss function ` :
Y×Y → R+ and a probability distribution pdata on X×Y, the expected risk of a prediction function
is

R(f) = E [`(Y, f(X))] =

ˆ
X×Y

`(y, f(x)) pdata(dx dy). (1.6)

Note that, in this definition, we distinguished the random variables (X,Y ) ∼ pdata, and their
realizations (x, y) ∈ X × Y. In the remainder of these lectures notes, we will often denote the
random variables with small letters. It should be clear from the context whether (x, y) denotes a
random variable or one of its realizations.

Example 1.1. For classification, the loss function `(y, z) = 1y 6=z leads to the expected risk R(f) =
P(f(x) 6= y), which is the error rate; alternatively, R(f) = 1− P(f(x) = y), where P(f(x) = y) is
the accuracy.

Example 1.2. For regression, a common choice is `(y, z) = ‖y − z‖22, in which case the expected
risk is the mean square error between the random variables f(X) and Y .

Remark 1.2. For some methods, the prediction provided by the function f is itself random, and
depends on extra random variables (think of a binary classification example where one would guess
the label at random). In this case, there is no simple outcome f(x), but rather a distribution
of possible values for f(x). The definition (1.6) then still makes sense, upon further taking the
expectation over the extra randomness.

In order to find the function f? which minimizes the expected risk, we condition the values
of the expected risk on the realizations of the input2 (distinguishing here for clarity the random
variable X and its realizations):

R(f) = E
[
E
(
`(Y, f(X))

∣∣X)] = E [r(f(X) |X)] =

ˆ
X
r (f(x′) |x′) pdata(dx′),

2 Here and in the sequel, we abuse notation and denote pdata and its marginal distributions by the same
symbol.
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where
r(z |x′) = E

(
`(Y, z)

∣∣X = x′
)

is the conditional expectation of the loss. This reformulation makes it clear that, for any re-
alization x′ of X, the associated prediction f(x′) should minimize r(· |x′). This observation is
summarized in the following result.

Proposition 1.1. The expected risk is minimized at a Bayes predictor f? : X → Y defined as3

f?(x′) ∈ argmin
z∈Y

r(z |x′). (1.7)

The Bayes risk is the risk of all Bayes predictors:

R? = E [` (Y, f?(X))] = E
ï

inf
z∈Y

E
(
`(Y, z)

∣∣X)ò .
Let us emphasize that the Bayes predictor defined in (1.7) may not be unique as the set of

minimizers for x′ given may contain several elements. However, all Bayes predictors lead to the
same Bayes risk. The Bayes risk is usually positive, unless the dependence between X and Y is
deterministic.

Definition 1.2 (Excess risk). The excess risk of a measurable function f : X → Y is R(f)−R?.

Machine learning would be trivial if a Bayes predictor f? was known! This would however
require the knowledge of the distribution of outcomes y conditionally on the value of the input x,
which is typically not the case as the distribution of the data is unknown.

Exercise 1.6. Compute the Bayes predictor and the Bayes risk for the loss function considered in
Examples 1.1 (with Y = {0, 1}) and 1.2 (for one-dimensional outputs, i.e. Y = R).

Correction. We first consider binary classification. We compute the conditional expectation
of the loss by distinguishing the realizations of the label Y :

r(z |x′) = `(1, z)P(Y = 1 |X = x′) + `(0, z)P(Y = 0 |X = x′)

= `(1, z)η(x′) + `(0, z)(1− η(x′)),
(1.8)

where η(x′) = P(Y = 1 |X = x′). Therefore, for x′ fixed, the conditional expectation of the
loss r(z |x′) is minimized by retaining the minimum of the terms η(x′) and 1− η(x′), i.e.

f?(x′) =

∣∣∣∣∣0 if η(x′) < 1/2,

1 if η(x′) > 1/2,

which can be summarized as f?(x′) = 1η(x′)>1/2. A specific decision should be made to break
ties when η(x′) = 1/2, for instance choosing the label at random; or, when P(η(X) = 1/2) = 0,
deciding that the label is always 0 or 1. The corresponding Bayes risk is

R? = E[min{η(X), 1− η(X)}].

Let us next consider regression. We also start by computing the conditional expectation of
the loss:

r(z |x′) = E
[
(Y − z)2

∣∣X = x′
]

= E
[
Y 2
∣∣X = x′

]
− 2zE

[
Y
∣∣X = x′

]
+ z2.

3 We assume here that there is a well defined minimizer; otherwise the argmin should be replaced by
an arginf.
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The right hand side is a second order polynomial with a nonnegative prefactor for z2. It is
therefore minimized for z = E

[
Y
∣∣X = x′

]
. This shows the Bayes predictor is the conditional

expectation
f?(x′) = E

[
Y
∣∣X = x′

]
.

The associated Bayes risk is the expectation of the conditional variance:

R? = E
î(
Y − E

[
Y
∣∣X])2ó = E

[
Y 2
]
− E
î(

E
[
Y
∣∣X])2ó = E

(
E
[
Y 2
∣∣X])− E

î(
E
[
Y
∣∣X])2ó

= E
[
Var

(
Y
∣∣X)] .

Exercise 1.7. For binary classification on Y = {−1, 1}, compute the Bayes predictor and the
Bayes risk for the loss function ` : Y × Y → R+ defined by its values `(−1, 1) = c− (cost of
false positive), `(1,−1) = c+ (cost of false negative), and `(−1,−1) = `(1, 1) = 0. Interpret the
so-obtained Bayes predictor.

Correction. We restart from (1.8), adapted to the setting Y = {−1, 1}:

r(z |x′) = `(1, z)η(x′) + `(−1, z)(1− η(x′)),

so that r(1 |x′) = c−(1− η(x′)) and r(−1 |x′) = c+η(x′). Therefore,

f?(x′) =

∣∣∣∣∣ 1 if c−(1− η(x′)) < c+η(x′),

−1 if c−(1− η(x′)) > c+η(x′),

which can be summarized as f?(x′) = 1η(x′)>c−/(c++c−) − 1η(x′)<c−/(c++c−). The associated
Bayes risk is

R? = E [min {c+η(X), c−(1− η(X))}] .

When c− = c+, one recovers the result of Exercise 1.6. When c− < c+ (false negatives are more
penalized then false positives), the prediction function is biased towards predicting positive
outputs 1 compared to the situation when c+ = c−. Conversely, when c− > c+ (false positives
are more penalized then false negatives), the prediction function is biased towards predicting −1
compared to the situation when c+ = c−.

An example of situation where asymmetric cost functions are useful is spam classification.
If the label 1 is for spams, then c− should be (much) larger than c+, as not classifying an email
as spam (false negative) can be considered as a smaller nuisance than classifying a genuine and
potentially important email as spam (false positive).

Exercise 1.8 (Bayes predictor for robust regression). Robust regression amounts to consid-
ering the loss function `(y, z) = |y − z| for regression problems with Y = R, instead of the square
loss (y− z)2. The interest of the loss function based on absolute values and not their square is that
outliers have a smaller impact on the prediction.

(a) Consider a random variable Z which admits a positive continuous density ρ(z) with respect to
the Lebesgue measure, and is integrable. Prove that

m = argmin
c∈R

E|Z − c|

is the median of Z, namely the (here unique) value such that P(Z 6 m) = P(Z > m).
(b) Assume for simplicity that the (unknown) distribution pdata(dx dy) of the data points has a

positive continuous density with respect to the Lebesgue measure dx dy. Compute the Bayes
predictor and the associated Bayes risk.
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(c) We no longer assume that the (unknown) distribution pdata(dx dy) of the data points has a
positive continuous density with respect to the Lebesgue measure dx dy. For a general random
variable, the median is defined as a value m ∈ R such that �

P(Z 6 m) >
1

2
, P(Z > m) >

1

2
.

Note that the inequalities can be strict (in particular when there is a Dirac mass at m). Compute
the Bayes predictor and the associated Bayes risk.

Correction.

(a) It holds

F (c) := E|Z − c| =
ˆ c

−∞
(c− z)ρ(z) dz +

ˆ +∞

c

(z − c)ρ(z) dz.

Note first that F (c) → +∞ as c → ±∞ since F (c) > max(c − E(Z),E(Z) − c), and F is
continuous, so it admits a minimizer. Moreover, the function F is C1, and

F ′(c) =

ˆ c

−∞
ρ(z) dz −

ˆ +∞

c

ρ(z) dz. (1.9)

To establish the differentiability of F , we consider

F (c+ h)− F (c)

h
=

ˆ c

−∞
ρ(z) dz −

ˆ +∞

c

ρ(z) dz

+
1

h

ˆ c+h

c

(c+ h− z)ρ(z) dz − 1

h

ˆ c+h

c

(z − c− h)ρ(z) dz.

The terms on the second line of the previous equality are equal to

1

h

ˆ h

0

(h− t)ρ(c+ t) dt− 1

h

ˆ h

0

(t− h)ρ(c+ t) dt = 2

ˆ h

0

Å
1− t

h

ã
ρ(c+ t) dt.

The latter term goes to 0 as h→ 0, as can be seen for instance by dominated convergence
(the integral can be rewritten as the integral over R of the function fh(t) = 1[0,h](t)(1 −
t/h)ρ(c+t), where fh is uniformly bounded by an integrable function since |fh(t)| 6 ρ(c+t),
and fh(t) converges pointwise to 0 as h → 0 for almost all t ∈ R). This shows that (1.9)
holds.
Note that F ′ is continuous and increasing, tending to −1 as c→ −∞, and to 1 as c→ +∞.
There is therefore a unique critical point m for F , which is necessarily a minimizer – hence
the uniqueness of the minimizer. This minimizer is characterized by the equality

P(Z 6 m) =

ˆ m

−∞
ρ(z) dz =

ˆ +∞

m

ρ(z) dz = P(Z > m).

(b) The Bayes predictor is obtained as

f∗(x) = argmin
z∈R

E
(
|Y − z|

∣∣X = x
)
.

The result of the previous question shows that f∗(x) = m(x) is the median of the conditional
distribution pdata(dy|x):

ˆ m(x)

−∞
pdata(dy|x) =

ˆ +∞

m(x)

pdata(dy|x).

The associated Bayes risk is R∗ = E [|Y −m(X)|].
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(c) The Bayes predictor and risk are the same as in the previous question. To see this (and
upon replacing Z by Z − mZ with mZ a median of Z), we can assume without loss of
generality that mZ = 0 is a median of Z. It suffices to prove that

∀c ∈ R, E|Z − c| 6 E|Z|.

We prove the inequality for c > 0, a similar reasoning holding for c 6 0. Note that |Z −
c| − |Z| = c for Z 6 0, while |Z − c| − |Z| > −c for Z > 0. Therefore,

E (|Z − c| − |Z|) = E [(|Z − c| − |Z|) 1Z60] + E [(|Z − c| − |Z|) 1Z>0]

> cP(Z 6 0)− cP(Z > 0) = c (2P(Z 6 0)− 1) > 0,

where the last inequality follows from the definition of the median.

Exercise 1.9. In a binary classification context on Y = {0, 1} with `(0, 0) = `(1, 1) = 0
and `(1, 0) = `(0, 1), compute the so-called “chance level”, which is the risk associated with the ran-
dom prediction function f(x) = 1U61/2 with U ∼ U [0, 1] a random variable uniformly distributed
on [0, 1], independent of the sample points.

Correction. The prediction function f(x) = 1U61/2 has a random output. The associated
loss is (denoting for clarity as subscripts with respect to each random variable expectations are
taken)

R(f) = EX
(
EY,U

[
`(Y,1U61/2)

∣∣X]) .
Now, recalling the notation η(x′) = P(Y = 1 |X = x′),

EY,U
[
`(Y,1U61/2)

∣∣X = x′
]

= EU
[
`(1,1U61/2)η(x′) + `(0,1U61/2)(1− η(x′))

]
=

1

2
[`(1, 0)η(x′) + `(0, 1)(1− η(x′))] =

1

2
`(1, 0).

For the loss function `(y, z) = 1y 6=z, one therefore obtains R(f) = 1/2.

1.2.2.2 Statistical learning

Decision theory tells us what to do if the distribution pdata of the data is known, in which case
optimal performance can be achieved. Now, in practice, this distribution is unknown. Statistical
learning is a framework to obtain bounds or guarantees quantifying how much the the learned
model departs from the (unknown) optimal choice. A key concept in this endeavor is empirical
risk.

Definition 1.3 (Empirical risk). Given a measurable function f : X → Y, a loss function ` :
Y × Y → R+ and a data set {(x1, y1), . . . , (xn, yn)}, the empirical risk of a prediction function is“Rn(f) =

1

n

n∑
i=1

`(yi, f(xi)).

The empirical risk can in principle be successfully minimized: upon considering a sufficiently
flexible class of predictor functions, one can achieve zero training loss. A successful empirical risk
minimization does however not imply successful predictions, as the prediction function may fit too
closely the training data and learn irrelevant features. This is the celebrated issue of overfitting,
which we will come back to in Chapter 2. The discrepancy between the expected risk and the
empirical risk is measured by the generalization gap
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R(f)− “Rn(f)

The population risk R(f) is approximated in practice by the test risk, which corresponds to some
empirical risk based on data points which have not been seen during training, and can therefore
be considered as new data points sampled from pdata.

add picture here

Let us make precise the various steps involved in training a model and then assessing its quality.
Given a dataset D, we first separate it into a training set Dtrain and a test set Dtest. A typical
ratio is to keep 80% of the data points in the training set, and 20% in the test set. This allows
to balance the need to have many data points in order for the training procedure to see as many
instances as possible, while still keeping enough data points in order to have a sufficiently reliable
estimation of the expected risk. The next step is to find a predictor function f̂n which minimizes
the empirical risk over the data set Dtrain, among a prescribed class F of functions X → Y:

f̂n ∈ argmin
f∈F

 1

|Dtrain|
∑

(xi,yi)∈Dtrain

`(yi, f(xi))

 .

The final step is to approximate the expected risk as

1

|Dtest|
∑

(xj ,yj)∈Dtest

`
Ä
yj , f̂n(xj)

ä
.

In fact, we will see later on that one needs to further divide the training set in an actual training
set, and a validation set, used to fix the hyperparameters of the method. The important point
here is that the test set is never used to determine the predictor function f̂n which minimizes the
empirical risk. It is only used at the very end, to assess the quality of the prediction.

1.2.2.3 Learning from data

Let us conclude this introduction to machine learning by mentioning three important ways to
obtain a (good) prediction from the data at hand rather than from the full knowledge of (the
unknown distribution) pdata:

• in local averaging methods, one relies on some interpolation procedure with the data at hand
to provide predictions for new data points. One famous example is the K-nearest neighbor
method, presented in Section 1.3;

• the most common situation we will consider is to obtain prediction functions from the mini-
mization of the empirical risk;

• we will only briefly consider other ways to find predictors, in particular using the boosting
paradigm (see Section 7.3). One could also rely on probabilistic methods, which we however
do not consider in these lecture notes.

1.3 Local averaging methods

The material in this section is based on [40, Chapter 16] and [4, Chapter 6], as well as [6, Chap-
ter 14] and [49, Chapter 19]. The main idea behind local averaging methods is that “things that
look alike must be alike”, i.e. close-by points should have similar labels. A successful prediction
relies in this context on the smoothness of the data, in the sense that the labels/values y should
depend smoothly on the inputs x (if the labels/values y were truly random, there would be no
way to learn meaningful patterns in the data and generalize this knowledge to new data points...).
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1.3.1 Presentation of the K-nearest neighbor algorithm

Nearest neighbor methods are based on a majority vote among the closest neighbors for classifica-
tion, and some form of averaging over the closest neighbors for regression. They provide a useful
starting method in machine learning since they are easy to code and to understand. In essence,
they amount to memorizing a training set, and predicting the label of a new instance x′ based on
the labels of the closest points xi in the training set.

To make this precise, we first need to choose some metric d : X ×X → R+ to measure distances
between data points. This is a key element in the method. A typical choice is the Euclidean
distance, which however behaves badly in high dimensions (where all points are far away from
each other). A good practice to alleviate these issues is to perform some rescaling of the data, forconfirm
instance through standardization or whitening (recall the discussion at the end of Section 1.1.4),
or to rely on the Mahalanobis distance

d(x, x′) =
»

(x− x′)>Σ−1n (x− x′),

where the covariance Σn of the data inputs is defined in (1.2) (in fact this corresponds to consid-
ering a simple Euclidean distance on the whitened data). Note that the distance function actually
used can be considered as a hyperparameter of the method, to be set using some (cross) validation
procedure.

Additionally, it may be beneficial to first perform some dimensionality reduction (using for
instance principal component analysis, see Chapter 5, or its nonlinear generalization based on
autoencoders, see Section 8.3) – both in order to reduce the computational cost of the method,
and to possibly improve predictions since only the large scale features of the data are retained.
This heuristic consideration is backed up by the theoretical estimates discussed around (1.23).

Algorithm 1.1. Fix a number of neighborsK > 1 and a training data set {(x1, y1), . . . , (xn, yn)} ⊂
X × Y. For a new input x′ ∈ X , sort the data points by increasing distance4

d
(
xi1(x′), x

′) 6 d
(
xi2(x′), x

′) 6 . . . 6 d
(
xin(x′), x

′) , (1.10)

where {i1(x′), . . . , in(x′)} = {1, . . . , n}. The prediction is then performed as

• (classification) y′ is the majority of labels among the labels of theK-closest neighbors {yi1(x′), . . . , yiK(x′)};

• (regression) y′ is the average of the values for the K-closest neighbors: y′ =
1

K

K∑
k=1

yik(x′).

The value K = 1 corresponds to predictions based on a Voronoi tesselation of the input space.
This means in practice that a new input inherits the label or value of the closest input in the data
set. Intuitively, this seems however not very robust a choice, as a small variation in the inputs
can lead to abrupt changes in the predictions. As we will see in Section 1.3.3.3, the variance in
the prediction is indeed large when K is small. On the other hand, when K is large, decision
boundaries separating various values for the predictions will be smoother, and the predictors more
robust. However, the predictions may be quite biased when K is large. Overall, this calls for some
optimal choice of K based on a bias/variance trade-off. We will see both theoretical guidelines
which give firm foundations to this choice (see Section 1.3.3), as well as a practical manner of fixing
the value of K based on a key procedure in machine learning, cross validation (see Section 1.3.2).

Let us finally discuss the algorithmic cost of finding the closest neighor. A priori, this scales
as O(nd) (when computing the distance to all elements in the data set), but the cost can be reduced
by clever algorithmic strategies based on a tree search (see the discussions in [40, Section 16.1.3]
and [49, Section 19.3]). This also suggests that it makes sense to sparsify to some extent the
training set and keep only the most relevant points.

4 with some rule to break ties, for instance ik(x′) 6 ik+1(x′) (i.e. always choose the smallest index), or
choosing at random among equidistant points.
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1.3.2 Choosing K by (cross) validation

We give here a brief introduction to (cross) validation, referring to Section 10.2 for complements.
We distinguish two cases, depending on whether the training data set is large or not.

1.3.2.1 Large training data sets

When enough data is available, the training data set D is decomposed into an actual training
data set Dtrain and a validation set Dval. The validation set should be large enough so that the
population risk can be well approximated by computing the empirical risk over it; while most
of the data should still be used for training. A common rule of thumb is to devote 20% of the
initial data D for validation, and keep 80% for training. The assignement to Dtrain,Dval is done
at random, typically by shuffling the data.

Once these sets are obtained, the validation procedure amounts to iterating over the possible
values of the hyperparameters of the method, here the number of neighbors K > 1, training the
model for these hyperparameters (which need not be done for K-nearest neighbors as no training
is required in the method), and then computing the empirical risk on the validation set:“Rval

n (K) =
1

|Dval|
∑

(xj ,yj)∈Dval

` (yj , ŷj) ,

where n = |Dtrain| is here the size of the actual training set Dtrain, and ŷj is the prediction for the

input xj of the method trained on Dtrain. One then chooses the value of K for which “Rval
n (K) is

minimal.
Let us emphasize once again that the procedure crucially relies on Dtrain ∩ Dval = ∅, i.e.

no validation data is used in the training procedure. The statistical consistency of validation is
discussed in Section 10.2.

1.3.2.2 Small training data sets

When the data set D is small, there are two obstructions to the validation procedure described in
Section 1.3.2.1: first, the validation set would be small, and so the approximation of the population
risk by the empirical risk computed on the validation set would be unreliable; second, one would
prefer not to loose data on validation, and use as much data as possible for training. Cross-
validation is a procedure to address these two issues.

Concretely, the data set D is first shuffled, then decomposed into L folds of same sizes |D|/L
(assuming that this number is an integer). Among these folds, one is kept for validation, while
the remaining L− 1 ones are used for training. The empirical risk is next computed with the data
of the fold which was chosen for validation. This is then repeated for all possible L choices for
the validation set, the approximation of the expected risk being obtained as the average of the
empirical risks computed for each validation fold. More precisely, denoting by Dk for 1 6 k 6 L
the various folds and by n = |D| the size of the initial data set, the expected risk is approximated
as “RCV

n,L =
1

L

L∑
k=1

“R (D \ Dk,Dk) , (1.11)

where “R (Dtrain,Dval) =
1

|Dval|
∑

(xj ,yj)∈Dval

`
Ä
yj , ŷ

Dtrain
j

ä
,

with ŷDtrain
j the prediction for the input xj and the method trained on Dtrain.

Usual values for L are in the range 5 − 10. Another option is to consider L = n, which
corresponds to the so-called “leave-one-out” cross-validation procedure. Similarly to the validation
procedure described in Section 1.3.2.1, the cross-validation risk (1.11) is computed for various
values of the hyperparameters of the method (here, the number K of nearest neighbors), choosing
in the end the hyperparameter leading to the smallest cross-validation risk.
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1.3.3 Theoretical analysis of the K-nearest neighbor algorithm

Recall that the aim of machine learning, as discussed in Section 1.2.2, is to estimate the Bayes
predictor f?, knowing only training data points Dtrain = {(xi, yi)16i6n}, in order to minimize
the excess risk R(f) − R? = E[`(Y, f(X))] − R?. We first describe in Section 1.3.3.1 the general
framework allowing to study the theoretical properties of a broader class of estimators known as
local methods; then perform a consistency analysis for this class of estimators in Section 1.3.3.2,
finally specifying to K-nearest neighbors in Section 1.3.3.3.

1.3.3.1 Local methods

Local methods, such as K-nearest neighbors, approximate f? without any form of optimization.
Conceptually, this is done by approximating the conditional distribution pdata(dy |x) of labels y
given inputs x by some distribution p̂(dy |x), so that the minimization problem (1.7)

f?(x) ∈ argmin
z∈Y

ˆ
Y
`(y, z) pdata(dy |x)

is approximated by

f̂(x) ∈ argmin
z∈Y

ˆ
Y
`(y, z) p̂(dy |x).

This corresponds to some form of plug-in estimator, as encountered in Statistics. Let us illustrate
this general strategy for two prominent examples:

• for multi-class classification over C classes, with the 0-1 loss `(y, z) = 1y 6=z,

f̂(x) ∈ argmin
z∈{1,...,C}

{
C∑
k=1

1z 6=k p̂(y = k |x)

}
= argmin
z∈{1,...,C}

{
1−

C∑
k=1

1z=k p̂(y = k |x)

}
,

so that
f̂(x) ∈ argmax

k∈{1,...,C}
p̂(y = k |x); (1.12)

• for regression with the square loss, the predictor is the conditional expectation associated
with p̂:

f̂(x) =

ˆ
Y
y p̂(dy |x). (1.13)

We further consider here linear estimators, for which the approximation to the conditional
distribution pdata(dy |x) is a convex combination of Dirac masses at yi, namely

p̂(dy |x) =

n∑
i=1

ŵi(x)δyi(dy),

where the weights depend only on x and x1, . . . , xn (and not on the labels) and are such that

∀x ∈ X , ∀i ∈ {1, . . . , n}, ŵi(x) > 0,

n∑
i=1

ŵi(x) = 1. (1.14)

In addition to K-nearest neighbors, partition estimators and kernel density estimators (known as
Nadaraya–Watson estimators) also belong to this class; see [4, Section 6.2]. In this setting, the
estimators (1.12) and (1.13) respectively read

f̂(x) ∈ argmax
k∈{1,...,C}

{
n∑
i=1

ŵi(x)1yi=k

}
,
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and

f̂(x) =

n∑
i=1

ŵi(x)yi.

The K-nearest neighbors methods corresponds to the choice

ŵj(x) =

∣∣∣∣∣∣
1

K
if j ∈ {i1(x), . . . , iK(x)},

0 otherwise.
(1.15)

1.3.3.2 Consistency analysis for local methods

We discuss the consistency of local methods for regression; see the introduction of [4, Section 6.3]
for comments and references on the classification case. Consistency is understood here as the excess
risk converging to 0 in some sense as the number of training data points goes to infinity. This notion
of consistency (rather than, say, quantifying the convergence of predictors to the Bayes predictor)
is adapted to machine learning problems as the aim is to devise good predictors, as measured by
the fact that the prediction error is small.

We make the following assumptions, to simplify the presentation.

Assumption 1.1. The noise is bounded: There exists σ ∈ R+ such that |Y −E(Y |X)| 6 σ almost
surely.

Assumption 1.2. The Bayes predictor f?(x) = E[Y |X = x] is B-Lipschitz for some continuous
distance function d : X × X → R+:

∀(x1, x2) ∈ X 2, |f?(x1)− f?(x2)| 6 Bd(x1, x2).

A careful inspection of the proof shows that it would be sufficient to assume that E
[
|Y − E(Y |X)|2

]
6

σ2 instead of Assumption 1.1. Weaker conditions than Assumption 1.2 are discussed in [4, Sec-
tion 6.4] (based on the notion of universal consistency).

The first step is to decompose the prediction error as the sum of two contributions, one de-
pending on the realization of the labels yi (which therefore measures some variance) and one
deterministic term for x1, . . . , xn given (akin to some bias). More precisely, recalling the abuse of
notation where yi is a random variable, and using the second condition in (1.14),

f̂(x)− f?(x) =

n∑
i=1

yiŵi(x)− E(Y |X = x)

=

n∑
i=1

ŵi(x) [yi − E(yi |xi)] +

n∑
i=1

ŵi(x) [E(yi |xi)− E(Y |X = x)]

=

n∑
i=1

ŵi(x) [yi − E(yi |xi)] +

n∑
i=1

ŵi(x) [f?(xi)− f?(x)] .

We can then consider the square error, conditionally on the inputs x1, . . . , xn:

E
ï∣∣∣f̂(x)− f?(x)

∣∣∣2∣∣∣∣x1, . . . , xnò
= E

( n∑
i=1

ŵi(x) [yi − E(yi |xi)]

)2
∣∣∣∣∣∣x1, . . . , xn

+

(
n∑
i=1

ŵi(x) [f?(xi)− f?(x)]

)2

=

n∑
i=1

ŵi(x)2E
î
(yi − E(yi |xi))2

∣∣∣xió+

(
n∑
i=1

ŵi(x) [f?(xi)− f?(x)]

)2

.
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The right hand side can be seen as the sum of a variance term and a squared bias, as for standard
mean square errors encountered in the mathematical analysis of estimators in parametric models
of Statistics. In view of Assumptions 1.1 and 1.2, and using a discrete Cauchy–Schwarz inequality
first for the second term,

E
ï∣∣∣f̂(x)− f?(x)

∣∣∣2∣∣∣∣x1, . . . , xnò 6 σ2
n∑
i=1

ŵi(x)2 +

(
n∑
i=1

ŵi(x)

)(
n∑
i=1

ŵi(x) |f?(xi)− f?(x)|2
)

6 σ2
n∑
i=1

ŵi(x)2 +B2
n∑
i=1

ŵi(x)d(xi, x)2. (1.16)

Let us next use these estimates to quantify the excess riskR(f̂)−R?, and in fact the expectation
of the excess risk with respect to realizations of the training data. Let us emphasize that we
consider here only the expected excess risk for simplicity. In some frameworks, such as the probably
approximately correct (PAC) setting (see Chapter 10) one may prefer bounds which hold stronger
than in average, but this requires more work/assumptions on the distribution of the data. For a
given data set, the excess risk can be rewritten as

R(f̂)−R? = E
[Ä
Y ′ − f̂(X ′)

ä2]
−R? = E

[Ä
Y ′ − f?(X ′) + f?(X ′)− f̂(X ′)

ä2]
−R?

= E
[Ä
f?(X ′)− f̂(X ′)

ä2]
+ 2E

î
E (Y ′ − f?(X ′) |X ′)

Ä
f?(X ′)− f̂(X ′)

äó
= E

[Ä
f̂(X ′)− f?(X ′)

ä2]
=

ˆ
X

Ä
f̂(x′)− f?(x′)

ä2
pdata(dx′),

where, as indicated by the last integral, the expectation is over the realizations of the test
data (x′, y′). Therefore, taking now the expectation with respect to the training set (indicated
by ED for clarity; keeing the integral notation for expectations with respect to the test data; note
that f̂ depends on D through the weights ŵi, but does not depend on the test data point), and
next using (1.16),

ED
î
R(f̂)

ó
−R? =

ˆ
X

ED
[Ä
f̂(x′)− f?(x′)

ä2]
pdata(dx′)

6 σ2
n∑
i=1

ˆ
X

ED
(
ŵi(x

′)2
)
pdata(dx′) +B2

ˆ
X

ED

[
n∑
i=1

ŵi(x
′)d(xi, x

′)2

]
pdata(dx′). (1.17)

The first term on the previous right hand side, which arises from the inherent label noise (and
would therefore be present even for the optimal prediction function f?) involves the factor

ED
(
ŵi(x

′)2
)

= ED

ñÅ
ŵi(x

′)− 1

n

ã2ô
+

2

n
− 1

n2

which measures the deviation to uniform weights. Note indeed that uniform weights minimize the
latter quantity since, by a discrete Cauchy–Schwarz inequality,

n

(
n∑
i=1

ŵi(x
′)2

)2

>

(
n∑
i=1

ŵi(x
′)

)2

= 1,

with equality if and only if ŵi(x
′) = 1/n for all 1 6 i 6 n. The expectation of the squares of the

weights is therefore related to overfitting issues, as the variance of the weights is largest when all
the mass is put in one weight, for a data point which changes from a realization of the data set to
another. The second term on the right hand side of (1.17), which depends on the regularity of the
optimal prediction function f?, measures some bias in the prediction. It is smaller when f? varies
less, i.e. B is small. It is related to underfitting as, in the worst case scenario, all weights are the
same and nothing is learned.
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It suffices at this stage to ensure that the two terms on the right hand side of (1.17) converge
to 0 as n → +∞. Ideally, one would also like to make precise the convergence rate here, and to
find guidelines to choose the hyperparameters of the method. This is where one needs to specify
the analysis to the algorithm under consideration.

1.3.3.3 Consistency analysis for K-nearest neighbors

We make precise in this section how the two terms on the right hand side of (1.17) depend on
various parameters, in particular the number of training points n, the number of neighbors K and
the dimension d of the inputs.

The first remark is that the variance term is particularly simple for K-nearest neighbors.
Indeed, in view of (1.15),

∀x′ ∈ X ,
n∑
i=1

ŵi(x
′)2 =

1

K
.

The first term on the right hand side of (1.17) can therefore be bounded by σ2/K. This already
shows that one needs to let the number of neighbors K go to infinity when n → +∞ for the
expected excess risk to converge to 0.

Now, in order to equilibrate between the two contributions in (1.17), we need to more carefully
quantify the bias. This requires bounds on the distances to the nearest neighbors; in fact, in view
of (1.10) and (1.15),

n∑
i=1

ŵi(x
′)d(xi, x

′)2 6 d
(
xiK(x′), x

′)2 , (1.18)

so controlling the distance to the K-th neighbor is key. We need at this stage to introduce another
assumption.

Assumption 1.3. The distribution pdata(dx′) of the inputs has a compact support X ⊂ Rd.

The fact that an additional assumption is needed is related to the so-called no free lunch
theorem, which roughly says that there is no algorithm that can learn a fully arbitrary distribution
(see Section 10.3 for further discussions). In the remainder, we denote by

diam(X ) = max
(x,x′)∈X 2

d(x, x′) < +∞

the diameter of the compact set X (which is closed and bounded), and choose d(x, x′) = ‖x−x′‖∞
with

‖ξ‖∞ = max
16i6d

|ξi|

the `∞ norm on Rd.

Lemma 1.1. Suppose that Assumption 1.3 holds true, and that d > 2. Consider random vari-
ables (X1, . . . , Xn, Xn+1) independently and identically distributed according to p. Then, the ex-
pected squared distance between Xn+1 and its first nearest neighbor among {X1, . . . , Xn} in `∞

norm is upper bounded by 4 diam(X )2n−2/d.

Note that the scaling of the distance with respect to the dimension is not so good, as a very
large number of points n ∼ ε−d is needed in order for the expected squared distance to be of
order ε2.

Proof. Denote by X(i) a nearest-neighbor of Xi among {X1, . . . , Xn+1} \ {Xi}. Note that R2
i =

‖Xi −X(i)‖2∞ has the same distribution for all 1 6 i 6 n+ 1, so that

E(R2
n+1) =

1

n+ 1

n+1∑
i=1

E(R2
i ). (1.19)
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Now, the sets Bi = {x ∈ Rd | ‖x − Xi‖∞ < Ri/2} are disjoint for i 6= j because ‖Xi − Xj‖∞ >
max(Ri, Rj). The union of the sets B1, . . . , Bn+1 has a diameter smaller than 2 diam(X ) and
therefore a volume smaller than 2ddiam(X )d. As a consequence,

n+1∑
i=1

Rdi 6 2ddiam(X )d,

and, by convexity (since d/2 > 1),(
1

n+ 1

n+1∑
i=1

R2
i

)d/2
6

1

n+ 1

n+1∑
i=1

Rdi 6
2ddiam(X )d

n+ 1
. (1.20)

Finally,

1

n+ 1

n+1∑
i=1

R2
i 6

4 diam(X )2

(n+ 1)2/d
.

The desired result follows by combining the latter bound with (1.19). ut

The expected square distance between a new data point and its K-th nearest neighbor among n
independent data points can then be bounded as follows.

Lemma 1.2. Suppose that Assumption 1.3 holds true, and that d > 2. Consider random vari-
ables (X1, . . . , Xn, Xn+1) independently and identically distributed according to p. Then,

E
Ä∥∥Xn+1 −XiK(Xn+1)

∥∥2
∞

ä
6 8 diam(X )2

Å
2K

n

ã2/d
.

Proof. Assume without loss of generality that 2K 6 n (otherwise the bound is trivial). We
randomly split the set X1, . . . , Xn into 2K sets of sizes approximately n/(2K) (some sets have
sizes bn/(2K)c, others have sizes dn/(2K)e), and denote by Xj

(K) a 1-nearest neighbor of Xn+1 in

the j-th set. Then,
∥∥Xn+1 −XiK(Xn+1)

∥∥
∞ is smaller than the K-th term among

∥∥∥Xn+1 −Xj
(K)

∥∥∥
∞

for 1 6 j 6 2K since the minimum to find the K-th nearest neighbor is taken over a smaller set
of elements X1

(K), . . . , X
2K
(K) instead of X1, . . . , Xn.

Now, for a nonnegative sequence of elements a1, . . . , a2K , the k-th smallest term among them
is upper bounded by (a1 + · · · + a2K)/(2K − k) as there are 2K − k terms larger than the k-th

smallest term in the sum a1 + · · ·+a2K . Applying the latter inequality for aj =
∥∥∥Xn+1 −Xj

(K)

∥∥∥2
∞

and k = K gives ∥∥Xn+1 −XiK(Xn+1)

∥∥2
∞ 6

1

K

2K∑
j=1

∥∥∥Xn+1 −Xj
(K)

∥∥∥2
∞
.

We next use Lemma 1.1 to upper bound the expectation of
∥∥∥Xn+1 −Xj

(K)

∥∥∥2
∞

by 4 diam(X )2(n/2K)−2/d

(in fact, we use (1.20) and replace n by bn/(2K)c to obtain this bound). This gives

E
Ä∥∥Xn+1 −XiK(Xn+1)

∥∥2
∞

ä
6

1

K

2K∑
j=1

E
Å∥∥∥Xn+1 −Xj

(K)

∥∥∥2
∞

ã
6

8 diam(X )2

(n/2K)2/d
,

which is indeed the desired bound. ut

The combination of (1.17), (1.18) and Lemma 1.2 finally leads to the following upper bound
for the expected excess risk of prediction for the K-th nearest neighbor method:

0 6 ED
î
R(f̂)

ó
−R? 6 σ2

K
+ 8B2 diam(X )2

Å
2K

n

ã2/d
. (1.21)
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Note that the last term has a bad scaling with respect to the dimension because f is only assumed
to be Lipschitz (and not more regular than this). It is possible at this stage to find the value
of K which minimizes the right hand side of the previous inequality. This gives some theoretical
guidance on the choice of K.

Exercise 1.10. Determine the optimal choice of K for the upper bound as a function of n and the
various parameters of the model (σ, diam(X ) and B), and interpret the various scalings. Write
also the associated upper bound on the expected excess risk.

Correction. Introduce the smooth function U : (0,+∞)→ R+ defined by

U(K) =
σ2

K
+ 8B2 diam(X )2

Å
2K

n

ã2/d
.

Note that U(K)→ +∞ as K → 0 and K → +∞. Moreover,

U ′(K) = − σ
2

K2
+

16

d
B2 diam(X )2

Å
2

n

ã2/d
K2/d−1,

so that U has a unique critical point

K? =

Å
dσ2

24+2/dB2 diam(X )2

ãd/(d+2)

n2/(d+2). (1.22)

In practice, one needs of course to take the closest integer to the right hand side.
In terms of scalings, note that

• K? decreases when f? is less regular, i.e. B is larger (in fact, it is clear from Assump-
tion 1.2 that the correct adimensional parameter to discuss the regularity of the function
is B diam(X )). This is natural as less neighbors should be considered when the target func-
tion varies rapidly;

• K? needs to be increased when there is more noise, i.e. σ is larger. This is natural as
averaging over more neighbors allows to reduce the statistical noise. When there is no
noise (σ = 0), it is in fact optimal to consider K? = 1 (the 1-nearest neighbor method is
consistent);

• K? should be increased when n is increased, but slower than n, so that a data point sees a
vanishing fraction of all the points.

By plugging (1.22) into the expression of the upper bound provided by the function U , we
find that

0 6 ED
î
R(f̂)

ó
−R? 6 U(K?) =

σ2

K?

Å
1 +

d

2

ã
= σ4/(d+2)

Å
1 +

d

2

ãÇ
24+2/dB2 diam(X )2

d

åd/(d+2)

n−2/(d+2).

The previous exercise shows that

0 6 ED
î
R(f̂)

ó
−R? 6 C

n2/(d+2)
.

In view of the first equality in (1.17), and when d is large, this can be rewritten as 
ED

ï∥∥∥f̂ − f?∥∥∥2
L2(pdata)

ò
= O

Ä
n−1/d

ä
. (1.23)
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The estimate on the right hand side is typical of the so-called “curse of dimensionality”. To give
an intuition of the scalings encountered in this context, consider the situation when we have n
points in dimension d, regularly spaced on a grid. The distance between neighboring points is of
order n−1/d in each direction (as there are n = md points overall when there are m points in each
direction; the points being at a distance 1/m in each direction). When f?(x′) is approximated by
the value f?(xi) at the closest grid point xi, the error is of order

|f?(x′)− f?(xi)| ∼ B‖x′ − xi‖ ∼ n−1/d,

which is consistent with (1.23).
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We consider in this chapter a simple (the simplest?) model to predict real valued outputs
in a regression context, namely methods based on least square regression with linear models. In
contrast to other scientific fields, we focus here on the prediction capabilities of the model rather
than on its statistical properties.

Various lessons and features of least square models will be encountered for more complex
models, and therefore serve as basic examples to build up an intuition of statistical learning. In
particular we will see how to derive estimates which allow to

• capture a bias-variance tradeoff;
• make precise how the generalization performance degrades with the dimension when no regu-

larization is considered, and how it can remain stable when regularization is introduced;
• generalize the approach to more complex models with nonlinear features (kernel methods).

Overall, the results obtained in this chapter are simple to derive with rather basic tools of linear
algebra, and no optimization algorithm is needed to find predictors since these predictors are given
by closed form or analytic expressions in many cases (except for Section 2.4).

We start by presenting the general framework of linear least square regression in Section 2.1,
and next introduce the ordinary least square method in Section 2.2. We then discuss two ways
to prevent overfitting in least square regression, by adding either a penalization on the Euclidean
norm of the parameter (ridge regression; see Section 2.3) or on its `1 norm (the so-called LASSO;
see Section 2.4).
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2.1 General framework of linear least square regression

We provide in this section a general framework for linear least square regression problems, in the
case of one dimensional outputs Y = R for simplicity. We follow the presentation in [4, Section 3.2].
The aim of least square regression is to approximate the Bayes predictor f?(x′) = E(y |x = x′)
associated with the loss function1

R(f) = E
(
|y − f(x)|2

)
.

Recall that the Bayes predictor is derived in Exercise 1.2. We consider to this end a parametrized
family of predictors fθ : X → Y for parameters θ ∈ Θ. We also replace the population loss by
an empirical risk. Denoting by D = {(xi, yi)16i6n} the training set, the minimization problem to
consider is therefore

inf
θ∈Θ
“Rn(fθ), “Rn(f) =

1

n

n∑
i=1

(yi − fθ(xi))2 . (2.1)

We denote by θ̂ ∈ Θ a minimizer of the latter problem, assuming that such a minimizer indeed
exists.

Until now we have described a rather general least square regression problem, which is rele-
vant for many models including neural networks (see Chapter 8). Linear least square regression
corresponds to considering functions fθ linear in θ; but possibly nonlinear in x. Generically, these
functions are written as

fθ(x) = θ>ϕ(x) ∈ R, θ ∈ Θ = Rd, (2.2)

where ϕ : X → Rd is a featurization function. Before reformulating the regression problem in a
more abstract manner, let us first give three paradigmatic examples:

• simple linear regression corresponds to the case when fθ(x) = θ0 + θ1x with x ∈ R and θ =
(θ0, θ1) ∈ R2. Therefore, ϕ(x) = (1, x) ∈ R2;

• multiple linear regression extends the previous example to the situation when x = (x1, . . . , xd) ∈
Rd, by considering ϕ(x) = (1, x) ∈ Rd+1 and θ ∈ Rd+1, so that

fθ(x) = θ0 + θ1x1 + · · ·+ θdxd ∈ R;

• polynomial regression is described, for one-dimensional inputs x ∈ R, by the featurization
function ϕ(x) = (1, x, x2, . . . , xk). Therefore, θ ∈ Rk+1 and

fθ(x) = θ0 + θ1x1 + · · ·+ θkx
k ∈ R;

• kernel regression will be mentioned later on in Section 6.4.

Let us conclude the presentation of the general framework by reformulating (2.1) for the

choice (2.2) as (with some abuse of notation on “Rn)

inf
θ∈Rd

“Rn(θ), “Rn(θ) =
1

n
‖Y −Xθ‖22, (2.3)

where ‖ · ‖2 is the standard Euclidean norm on Rn, and

Y =

Ö
y1
...
yn

è
∈ Rn×1, X =

Ö
ϕ(x1)

...
ϕ(xn)

è
∈ Rn×d. (2.4)

Note that Xθ ∈ Rn has the same dimension as Y .

1 Note that we use here the abuse of notation where the random variables x, y are not denoted by capital
letters. We keep the notation X for the matrix gathering the data.
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2.2 Ordinary least square regression

Ordinary least square regression is the simplest regression model, but it is already quite useful,
and its analysis provides a lot of insight. The presentation in this section is based on [4, Sec-
tions 3.3 to 3.5] (see also Section 3.8 for more advanced topics not covered in the lectures) and [40,
Section 11.2].

2.2.1 Derivation of the least square estimator

We make the following key assumption throughout all this section (but not for Sections 2.3 and 2.4).

Assumption 2.1. The dimension of the features d is smaller than the number of data points n,
and the matrix X defined in (2.4) has full rank d.

For polynomial regression, this assumption is satisfied as soon as all the inputs (xi)16i6n ⊂ R
are distinct since X is a Vandermonde matrix.

Exercise 2.1. Prove that the minimization problem (2.3) is well posed ( i.e. there exists a unique
minimizer), and find the expression of this global minimum.

Correction. There are two main ways to prove that the minimization problem is well posed,
and the reader should definitively have the various options in mind.

• A first approach is to note that “Rn is continuous and coercive (goes to infinity at infinity),
so that it admits a global minimizer. Coercivity is proved by noting that

n“Rn(θ) = θ>X>Xθ − 2Y >Xθ + Y >Y, (2.5)

with X>X > ρ in the sense of symmetric matrices. Indeed, the matrix X>X is real, positive
semidefinite and symmetric, hence diagonalizable, so that it suffices to prove that it is
injective to conclude that its smallest eigenvalue ρ is positive. This follows from the fact
that X>Xξ = 0 for some ξ ∈ Rd implies that 0 = ξ>X>Xξ = ‖Xξ‖22, and therefore ξ = 0
since X has full rank. In view of (2.5),

n“Rn(θ) > ρ‖θ‖22 − 2‖X>Y ‖2‖θ‖2 + Y >Y

goes to infinity as ‖θ‖2 → +∞.
Uniqueness can be established by looking at the necessary condition satisfied by a global
minimizer θ̂, namely the Euler–Lagrange equation

0 = ∇“Rn(θ̂) =
2

n

Ä
X>Xθ̂ −X>Y

ä
∈ Rd.

The latter equation has a unique solution θ̂ =
(
X>X

)−1
X>Y .

• A second approach is to realize that “Rn is smooth, and that its Hessian

∇2“Rn(θ) =
2

n
X>X (2.6)

is positive definite (by the same argument as above). Therefore, “Rn is a strongly convex
function, minimized over Rd, and so it admits a unique global minimizer. The characteriza-
tion of the minimizer follows the same lines as above (but this characterization is not used
to prove uniqueness here).
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The above exercise shows that the unique minimizer of (2.3) is

θ̂ =
1

n
“Σ−1X>Y, (2.7)

with “Σ =
1

n
X>X ∈ Rd×d (2.8)

the uncentered covariance of the input data. The normalization factor 1/n ensures that all entries

of the matrix “Σ are of order 1 uniformly in n; and similarly for entries of X>Y/n.

2.2.2 Interpretations of the least square estimator

We provide in this section various reformulations of the least square regression problem, which
allow to make a connection with results seen in Statistics.

Simple regression. For simple regression, for which xi ∈ R, the expression of θ̂ can be made
even more explicit.

Exercise 2.2. Prove that

θ̂0 = y − θ̂1x, θ̂1 =
Cov ({(xi)16i6n}, {(yi)16i6n})

Var{(xi)16i6n}
,

where the empirical means are

x =
1

n

n∑
i=1

xi, y =
1

n

n∑
i=1

yi,

while the empirical covariance and variance are defined as

Cov ({(ak)16k6K}, {(bk)16k6K}) =
1

K

K∑
k=1

akbk −

(
1

K

K∑
k=1

ak

)(
1

K

K∑
k=1

bk

)
,

and Var{(ak)16k6K} = Cov({(ak)16k6K}, {(ak)16k6K}).

Correction. We write the Euler–Lagrange equation associated with the minimization of

n“Rn(θ0, θ1) =

n∑
i=1

|yi − θ0 − θ1xi|2 ,

namely that the gradient of the former function vanishes at θ̂. By computing the partial deriva-
tives with respect to θ0, θ1 respectively, we obtain

n∑
i=1

yi − θ̂0 − θ̂1xi = 0,

n∑
i=1

Ä
yi − θ̂0 − θ̂1xi

ä
xi = 0.

The first equation provides the desired expression for θ̂0, while the second one can be rewritten
as follows:

0 =

n∑
i=1

î
yi − y − θ̂1 (xi − x)

ó
xi =

n∑
i=1

î
yi − y − θ̂1 (xi − x)

ó
(xi − x) ,

thus leading to the claimed expression for θ̂1.
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Maximum likelihood estimation in the Gaussian model. In order to make a connection
with Statistics, we consider a situation where it is assumed that the outputs yi are related to the
inputs xi as

yi = θ>ϕ(xi) + εi,

where εi ∼ N (0, σ2) are independent Gaussian random variables (supposed to be one-dimensional
for simplicity; but the analysis in this section can be straightforwardly extended to the case when
the outputs are multidimensional). In this context, the likelihood of a realization is

n∏
i=1

…
1

2πσ2
exp

Å
− ε2i

2σ2

ã
.

Now, ε2i = (yi − θ>ϕ(xi))
2, so that the likelihood is proportional to

exp

(
− 1

2σ2

n∑
i=1

∣∣∣yi − θ>ϕ(xi)
∣∣∣2) = exp

(
− n

2σ2
“Rn(θ)

)
.

Finding the least square estimator is therefore equivalent in this context to finding the maximum
likelihood estimator for the Gaussian model at hand.

Orthogonal projection. We recall here an interpretation of the vector of predictions “Y = Xθ̂
in terms of an orthogonal projection of Y .

Proposition 2.1. The vector of predictions “Y = X(X>X)−1X>Y is the orthogonal projection
of Y ∈ Rn onto Ran(X) = Span(X1, . . . , Xd) ⊂ Rn, the column space of X.

Proof. Introduce the matrix P = X(X>X)−1X>. Note that P is a projector since P 2 = P .
Moreover, P (Xa) = Xa for any a ∈ Rd, so that Pu = u for any u ∈ Ran(X). Finally,2 given the
expression of P , it is clear that Pu′ = 0 for any u′ ∈ Ker(X>) = Ran(X)⊥. This shows that P is
the orthogonal projector onto Ran(X). ut

Prediction errors. We characterize here the quality of the prediction on the training data set,
using the coefficient of determination. More precisely, when 1n ∈ Ran(X) (which is the case for
instance when the first component of ϕ(x) is 1),“Rn(θ̂) = Var{(yi)16i6n}(1− r2), r2 =

Var{(ŷi)16i6n}
Var{(yi)16i6n}

=

∥∥∥“Y − ŷ1n∥∥∥2
2

‖Y − y1n‖22
.

To prove this equality, we note first that Y and “Y have the same means since Y −“Y is orthogonal
to 1n ∈ Ran(X). We can then decompose Y − y1n as the sum of Y − “Y and “Y − y1n and use
Pythogoras’ theorem to write“Rn(θ̂) =

1

n

∥∥∥Y − “Y ∥∥∥2
2

=
1

n

Å
‖Y − y1n‖22 −

∥∥∥“Y − y1n∥∥∥2
2

ã
= Var{(yi)16i6n} −Var{(ŷi)16i6n}.

The prediction error on the training data set is smaller when r is closer to 1. In fact, since the
triangle ŷ1n, Y , “Y is rectangle in “Y , the ratio of lengths defining r also corresponds to the cosine
of some angle, and eventually corresponds to some normalized covariance of the data:

r =

∥∥∥“Y − ŷ1n∥∥∥
2

‖Y − y1n‖2
=

¨“Y − ŷ1n, Y − y1n∂∥∥∥“Y − ŷ1n∥∥∥
2
‖Y − y1n‖2

=
Cov
Ä“Y , Y ä»

Var(Y )Var(“Y )
,

with some abuse of notation for the arguments of Var and Cov.

2 Alternatively, one could note that (Y − “Y )>Xa = 0 for any a ∈ Rd, which implies that (Id − P )Y is
orthogonal to Ran(X).
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2.2.3 Numerical solution of the ordinary least square problem

We discuss in this section how to solve (2.3) in practice. A first remark is that a good practice is
to standardize the data (recall Section 1.1.4) by replacing xn,j with

x′n,j =
xn,j − xj

σj
, σj =

»
Var{(xi,j)16i6n}.

This allows to replace X with a matrix X ′ where each column has mean 0 and empirical variance 1.
There are then two main approaches to solve (2.3):

• rely on gradient methods to perform a direct minimization of the loss function; see Chapter 4.
This may be the most efficient approach when d is large, although usually plain gradient
methods are not used to find solutions, but rather conjugate gradient methods or quasi-Newton
methods, typical choices considered for computational linear algebra (see [40, Section 11.2.2.3]
and references therein).

• solve the linear system
X>Xθ̂ = X>Y (2.9)

in view of the expression of the global minimizer θ̂ given by (2.7).

We discuss here the second option. The first remark is that it is not a good idea to invert the
matrix X>X as this may be numerically unstable and has a large computational cost O(d3).
Solving the linear system (2.9) is computationally much cheaper and also more stable. There are
two main options to do so (see [40, Section 11.2.2.3]):

• use a singular value decomposition to write X = USV > where U ∈ Rn×n with U>U = Idn,
S ∈ Rn×d contains the r = min(n, d) singular values λ1, . . . , λd on its main diagonal and
entries 0 otherwise, and V ∈ Rd×d with V V > = V >V = Idd. The cost of performing this SVD
is O(nd×min(n, d)).

In order to solve X>Xθ̂ = X>Y , we note that X>X = V (S>S)V >, where S>S ∈ Rd×d is a

diagonal matrix with entries λ21, . . . , λ
2
d. The solution θ̂ is found by first performing the SVD

of X, then computing θ̂ = V (S>S)−1V >X>Y .
See also Remark 2.1 below for a discussion on how to compute predictions when n 6 d (which
is not the situation we consider here).

• a second option is to perform a QR decomposition, where one writes X = QR with Q =
[q1| . . . |qd] ∈ Rn×d and qi · qj = δij , and R ∈ Rd×d an upper triangular matrix. This option is
interesting when n� d. The QR decomposition is obtained by a pivoting strategy where one
writes X1 = r11q1 (which determines q1) then X2 = r12q1 + r22q2 (which determines q2), etc.

The system to solve (2.9) can be rewritten as R>Q>QRθ̂ = R>Rθ̂ = X>Y = R>Q>Y , so

that it suffices to solve the simple triangular system Rθ̂ = Q>Y (which has a cost O(d2) once
the QR decomposition is obtained; the cost of the QR decomposition being O(d3)).

In scikit-learn, the method sklean.linear model.fit calls the routine scipy.linalg.lstsq,
which itself calls by default the LAPACK routine DGELSD, which relies on SVD.

Remark 2.1 (Computing predictions for n 6 d). When n 6 d (with X of full rank n in

this case), one should rewrite the problem to solve as XX>Xθ̂ = XX>Y and use that XX> =
U(SS>)U> ∈ Rn×n, where SS> ∈ Rn×n is a diagonal matrix with entries λ21, . . . , λ

2
n. This is

sufficient to compute the prediction “Y = Xθ̂.

2.2.4 Statistical analysis

We discuss in this section how to prove guarantees on the performance of predictions based on
ordinary least squares. Two settings can be considered:
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• random design: both the inputs xi and the outputs yi are random. This is the classical setting
of machine learning where one wants to generalize predictions to unseen data;

• fixed design: the input data (x1, . . . , xn) is fixed (and therefore not random), and we consider
the prediction error only at these points. In this case, the associated population risk is

R(θ) = EY

ï
1

n
‖Y −Xθ‖22

ò
, (2.10)

where the expectation is over the realizations yi for each input xi. This can be seen as the
so-called “in-sample prediction error”, and corresponds to learning the vector Xθ? of best
predictions instead of a function X → R. In this setting, no generalization to unseen inputs is
attempted.

We consider here the fixed design setting. The main interest of this setting is that it is mathemat-
ically simpler to analyze. We will only hint at generalizations to the random design setting (see [4,
Section 3.8] for further elements).

In view of the no free lunch theorem (see Chapter 10), we need assumptions on how the
data is generated in order to provide guarantees. Throughout this section, we make the following
assumption, which corresponds to the situation of a so-called well specified model:

∃θ? ∈ Rd such that yi = θ>? ϕ(xi) + εi with εi iid, E(εi) = 0, E(ε2i ) = σ2. (2.11)

Some conditions on the noise could weakened; in particular, it would be sufficient to assume that
the εi are independent but not necessarily identically distributed, with E(ε2i ) 6 σ2.

We show below that the minimal value of the excess risk for this model is 0 as the Bayes
predictor belongs to the class of functions upon which the loss is minimized.

Exercise 2.3. Give the expression of the Bayes predictor.

Correction. Recal that the Bayes predictor is f?(x) = E(y |x) (see Exercise 1.6). In view
of (2.11), it holds f?(xi) = θ>? ϕ(xi).

The fact that the model is well specified allows to obtain sharper bounds of order O(1/n)
instead of bounds O(n−1/2) obtained for the general analysis of models in supervised learning (see
Chapter 10.1). To write such bounds, we consider the risk averaged over the realizations of the
data set, i.e. in expectation with respect to realizations of the outputs for fixed inputs, somewhat
similarly to the situation considered for KNNs where the risk was averaged over realizations of the
data set. This leads to the notion of “average excess risk”, where “average” refers to realizations
of the training data set, while the notion of excess risk builds upon the expected risk, which refers
to realizations of test data.

The first result is a decomposition of the risk into a squared bias and a variance, as made
precise in the following exercise.

Exercise 2.4 (Risk decomposition). Assume that (2.11) holds.

(a) Prove that R(θ) = σ2 +
1

n
(θ − θ?)>X>X(θ − θ?).

(b) Deduce that θ? is the unique global minimum of R and compute the value of the minimal
loss R?.

(c) The results of the previous questions imply that

EY
î
R
Ä
θ̂
äó
−R? = EY

ï∥∥∥θ̂ − θ?∥∥∥2“Σò , (2.12)

where ‖a‖“Σ =

»
a>“Σa is the Mahalanobis distance (recall the definition (2.8) of “Σ). Prove

that the following bias-variance decomposition holds for the average excess risk:

EY
î
R
Ä
θ̂
äó
−R? =

∥∥∥EY
î
θ̂
ó
− θ?

∥∥∥2“Σ + EY

ï∥∥∥θ̂ − EY
Ä
θ̂
ä∥∥∥2“Σò . (2.13)
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Correction.

(a) In view of (2.10), and denoting by ε = (ε1, . . . , εn),

R(θ) = Eε

ï
1

n
‖X(θ? − θ) + ε‖2

ò
=

1

n
‖X(θ? − θ)‖2 +

1

n
Eε
(
‖ε‖2

)
=

1

n
(θ? − θ)>X>X(θ? − θ) +

1

n

n∑
i=1

E(ε2i ),

which gives the claimed result.
(b) Recall that “Σ is positive definite (see Exercise 2.1), so that, denoting by ρ > 0 the smallest

eigenvalue of this matrix,
R(θ) > σ2 + ρ ‖θ − θ?‖2 .

This inequality shows that θ? is the unique global minimizer of R. Moreover, R? = R(θ?) =
σ2.

(c) As for classical bias/variance decompositions, the desired equality follows from (2.12) by

introducing EY
Ä
θ̂
ä

in the term on the right hand side of the previous inequality and ex-

panding the square, making use of the fact that the cross term has a vanishing expectation:

EY
(î
θ̂ − EY

Ä
θ̂
äó> “Σ îθ? − EY

Ä
θ̂
äó)

= 0;

while the term θ? − EY
Ä
θ̂
ä

is deterministic.

The next exercise summarizes some properties of θ̂.

Exercise 2.5 (Properties of θ̂). Assume that (2.11) holds.

(a) Prove that θ̂ is an unbiased estimator of θ?, i.e. EY
î
θ̂
ó

= θ? (where we recall that the expectation

is taken only over the realizations of the ouputs).

(b) Show that the covariance of θ̂ is

CovY
Ä
θ̂
ä

= EY
[Ä
θ̂ − θ?

ä Ä
θ̂ − θ?

ä>]
=
σ2

n
“Σ−1 ∈ Rd×d.

Correction.

(a) In view of (2.7), and using that EY (Y ) = Eε(Xθ? + ε) = Xθ? by (2.11),

E
î
θ̂
ó

=
(
X>X

)−1
X>E(Y ) =

(
X>X

)−1
X>Xθ? = θ?.

(b) Since θ̂ − EY (θ̂) = θ̂ − θ? =
(
X>X

)−1
X>ε by (2.7), and using

E
(
εε>

)
= σ2Idn,

it follows that

Cov
Ä
θ̂
ä

= E
[(
X>X

)−1
X>εε>X

(
X>X

)−1]
=
(
X>X

)−1
X>E

(
εε>

)
X
(
X>X

)−1
= σ2

(
X>X

)−1
X>X

(
X>X

)−1
= σ2

(
X>X

)−1
,

which gives the claimed result in view of the definition (2.8) of “Σ.
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We can finally use the information on the estimator θ̂ to obtain guarantees on the average risk.

Proposition 2.2 (Risk of ordinary least square estimator). Assume that (2.11) holds. Then,

the average excess risk of θ̂ is

EY
î
R
Ä
θ̂
äó
−R? =

σ2d

n
.

The interpretation of this result is the following:

(i) the factor d in the numerator shows that ordinary least squares does not work well in high
dimension. Some regularization is needed in order to obtain results which have a better
scaling with respect to the dimension (and possibly additional assumptions on the structure
of the data distribution);

(ii) the result can be extended to the random design setting by replacing the bound of Proposi-
tion 2.2 with

σ2

n
E
î
Tr
Ä
Σ“Σ−1äó , Σ = E

[
ϕ(x)ϕ(x)>

]
, (2.14)

see [4, Proposition 3.10] and Exercise 2.6 below. Obtaining estimates on the trace in the
expectation however requires some non trivial results on random matrices (in particular

concentration inequalities for matrices for good lower bounds on “Σ).

Proof. From (2.13) and Exercise 2.5(a), and since covariance matrices are symmetric,

EY
î
R
Ä
θ̂
äó
−R? = EY

ï∥∥∥θ̂ − θ?∥∥∥2“Σò =

d∑
k,k′=1

“Σk,k′EY Äîθ̂ − θ?ó
k

î
θ̂ − θ?

ó
k′

ä
=

d∑
k,k′=1

“Σk,k′ îCovY (θ̂)
ó
k,k′

= Tr
Ä
CovY (θ̂)“Σä .

We next use Exercise 2.5(b) to obtain

EY
î
R
Ä
θ̂
äó
−R? =

σ2

n
Tr (Idd) ,

which gives the desired equality. ut

Exercise 2.6 (Average excess risk in the random design setting). We consider in this
exercise the random design setting, i.e. a situation in which the inputs x1, . . . , xn in the data
set are independently sampled according to some probability measure pdata(dx), with associated
labels yi = ϕ(xi)

>θ?+εi, where the random variables εi are independent from each other and from
the inputs x1, . . . , xn, with E(εi) = 0 and E(ε2i ) = σ2.

(a) Prove that R(θ)−R? = ‖θ − θ?‖2Σ with R? = σ2 and Σ defined in (2.14).

(b) Assume that “Σ is invertible. Show that

E
î
R(θ̂)

ó
−R? =

σ2

n
E
î
Tr
Ä
Σ“Σ−1äó ,

where the expectation is over the realizations of the data set.

Correction.

(a) We write, the expectation being over realizations of x′ ∼ pdata and ε′ in y′ = ϕ(x′)>θ?+ ε′,

R(θ) = E
[(
y′ − ϕ(x′)>θ

)2]
= E

[(
ϕ(x′)>(θ? − θ) + ε′

)2]
= (θ − θ?)>E

[
ϕ(x′)ϕ(x′)>

]
(θ − θ?) + E

î
(ε′)

2
ó

= (θ − θ?)>Σ(θ − θ?) + σ2,

from which the result immediately follows.
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(b) In view of (2.7) and the equality Y = Xθ? + ε,

θ̂ =
1

n
“Σ−1X>(Xθ? + ε) = θ? +

1

n
“Σ−1X>ε.

Therefore, with an expectation both over the realizations of x1, . . . , xn and ε1, . . . , εn, and
using the identity (2.19) to introduce a trace,

E
î
R(θ̂)

ó
−R? = E

î
(θ̂ − θ?)>Σ(θ̂ − θ?)

ó
=

1

n2
E
[Ä“Σ−1X>εä>Σ“Σ−1X>ε]

=
1

n2
E
î
ε>X“Σ−1Σ“Σ−1X>εó =

1

n2
E
î
Tr
Ä
X>εε>X“Σ−1Σ“Σ−1äó

=
σ2

n2
E
î
Tr
Ä
X>X“Σ−1Σ“Σ−1äó ,

where we took an inner expectation with respect to ε. The result finally follows from the
definition (2.8) of “Σ.

Proposition 2.2 gives a result on the average excess risk, which is necessarily nonnegative. It is
instructive to compare the estimate to the one obtained for the training risk, as provided by the
following exercise.

Exercise 2.7. Assume that (2.11) holds with ε ∼ σN (0, Idn). Prove that the average excess train-
ing risk is

EY
î“Rn Äθ̂äó−R? = −σ

2d

n
.

The key comment is that the average excess training risk is negative, so that the average
training risk is smaller than the Bayes risk; in fact, there is a sign change on the term of the
right hand side compared to the equation in Proposition 2.2. The difference between the risk (as
provided by Proposition 2.2) and the training risk gives an indication of the degree of overfitting.
The larger the difference between these two quantities is, the larger the average excess risk is.
This is akin to some form of generalization gap, but not strictly as we work here in the fixed
design setting. The estimates provided here still allow to perform some model selection and detect
overfitting.

Correction. In view of the expression of “Rn in (2.3),“Rn Äθ̂ä =
1

n

∥∥∥Y −Xθ̂∥∥∥2 =
1

n

∥∥∥Xθ? + ε−X
(
X>X

)−1
X>Y

∥∥∥2
=

1

n

∥∥∥Xθ? + ε−X
(
X>X

)−1
X> (Xθ? + ε)

∥∥∥2
=

1

n

∥∥∥(Idn −X
(
X>X

)−1
X>
)
ε
∥∥∥2 .

Now, P⊥ = Idn −X
(
X>X

)−1
X> is the orthogonal projection onto Ran(X)⊥ (see the proof

of Proposition 2.1). Since Ran(X)⊥ has dimension n− d, Cochran’s theorem implies that“Rn Äθ̂ä =
n− d
n

σ2,

which leads to the desired equality.

Remark 2.2. Note that we actually do not need the Gaussianity assumption on ε since

E
[∥∥P⊥ε∥∥2] = Tr

(
P⊥E

[
εε>

]
P⊥
)

= σ2Tr
(
P⊥
)

= σ2(n− d).
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Exercise 2.7 allows to understand the difference between the training and the test losses.
In fact, the average test loss can be reformulated as follows, by clearly distinguishing between
the test set (for which labels Y ′ are obtained from random variables ε′ independent from the
noise ε used to generate the training data set Y )

EY
î
R
Ä
θ̂
äó

=
1

n
Eε

Å
Eε′
ï∥∥∥X(θ̂ − θ?)− ε′

∥∥∥2
2

òã
=

1

n
Eε
(

Eε′
[∥∥X(X>X)−1X>ε− ε′

∥∥2
2

])
,

where the inner expectation corresponds to R, while the outer expectation corresponds to
the averaging over the training sets. In contrast to this, there is a single expectation in the

difference EY
î“Rn Äθ̂äó − R? between the average training loss and the Bayes risk, over ε

(which amounts to setting ε′ = ε).

2.3 Ridge regression

This section presents a very important idea in machine learning, namely that adding a regular-
ization (penalty) term to the empirical risk to be minimized can in fact improve the predictive
performance of least square estimators. This may seem counterintuitive at first sight, but crucially
relies on the fact that a small training loss may not lead to a small test loss, due to overfitting.
The main motivation for regularization is therefore to avoid overfitting by reducing the effective
size of the parameter space. For ridge regression, the extra penalty term is proportional to the
squared Euclidean norm of the parameter. Our presentation is based on [4, Sections 3.6] and [40,
Sections 4.5, 5.4 and 11.3].

Let us start by giving an example to motivate the need for regularization. Say that we aim at
predicting whether the outcome of a toin cossing is heads or tails; and that out of 3 draws, we get
3 heads. Are we going to predict that all subsequent draws will give heads? Most likely not.

This example illustrates the core issue of the problem: when there are too many parameters in
the model to exactly fit the data (including the inherent noise involved in the realizations of the
random variables at hand), then one actually fits the empirical distribution of the data, and not
the target test distribution. One should therefore prevent a perfect minimization of the training
loss, which would put all the mass on the training data, in order to leave some space to cover the
(unseen) test data. We next formalize this idea with the notion of capacity control, and then turn
to a specific way to obtain such a capacity control, namely ridge penalization.

2.3.1 Capacity control

Capacity control consists in limiting the complexity, or expressivity, of the model by adding a
penalization term to the empirical risk function. More precisely, the objective function to minimize
becomes, for a parametrized class of functions {fθ, θ ∈ Θ},“Rn(fθ) + λΩ(θ), (2.15)

for some penalization function Ω : Θ → R+, and a penalization strength λ > 0. Paradigmatic
examples are

• ridge penalization: Ω(θ) = ‖θ‖22. This is also called “weight decay”, for reasons that will be
made precise below (see Exercise 2.9);

• LASSO (the acronym is motivated and explained in Section 2.4): Ω(θ) = ‖θ‖1;
• elastic net, which is a combination of the previous two penalizations, and therefore corresponds

to adding a penalty term of the form λ1‖θ‖1 + λ2‖θ‖22 for λ1, λ2 > 0.
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Finding the penalization strengh by (cross) validation. The most appropriate value of the
penalization parameter λ is found by cross-validation (see for instance the presentation in [40,
Section 5.4.3]). We describe the procedure in the context of a large data set, as in Section 1.3.2.1,
the adaptation to smaller data sets with K-fold cross validation being straightforward. More
precisely, consider a training set Dtrain and a validation set Dval. One first trains the penalized
empirical risk (2.15) on the training data Dtrain for various values of λ:

θ̂λ ∈ argmin
θ∈Θ

¶“Rn(fθ) + λΩ(θ)
©
.

This defines a family of minimizers fθ̂λ indexed by λ. The best value of λ is then found as the one

minimizing the unpenalized loss on the validation data Dval = {(xm, ym)16m6Nval
}:

λ? ∈ argmin
λ>0

{
1

Nval

Nval∑
m=1

`
Ä
fθ̂λ(xm), ym

ä}
.

Let us emphasize here that one should not add a penalization term to the validation loss, as this
loss is an approximation of the test loss, which is ultimately the quantity one wants to minimize.
The whole point of the (cross) validation procedure is to determine the strength of the penalization
to add to the training loss in order to prevent overfitting and obtain better predictions.

Alternative formulation of capacity control. Regularization is often introduced by adding a
penalty term as in (2.15). The latter loss function can however be seen as the minimization of the
Lagrangian associated with the family of constrained optimization problems (indexed by D > 0):

inf
θ∈Θ

¶“Rn(fθ)
∣∣∣ Ω(θ) 6 D

©
. (2.16)

Note that the unconstrained minimization of “Rn is obtained in the limit D → +∞; whereas
capacity control becomes stronger as D → 0. The parameter D can be seen as the dual parameter
of the penalization strength λ > 0.

We will most often consider the minimization of the penalized loss (2.15), but sometimes it
is useful to consider the dual perspective (2.16) (see for instance the discussion at the end of
Section 2.4.1).

2.3.2 Ridge penalization

We discuss in this section least square regression with a ridge penalization, which corresponds to
the so-called ridge regression.3 One crucial interest of ridge regression is that one can cleary study
the impact and benefit of regularization, as the minimizer of (2.15) has an analytical expression
similar to the one obtained for ordinary least squares in (2.7).

In order to motivate once again the interest of regularization in the context of least square
regression, consider the situation when d/n → 1, or simply n = d. In this case, (2.7) simplifies

as θ̂ = X−1Y (since
(
X>X

)−1
X>X = Idn and X is invertible, so that X−1 =

(
X>X

)−1
X>).

The prediction Xθ̂ = Y then gives a perfect fit to the training data. This is not a great news
in terms of generalizing to unseen data points as all degrees of freedom in θ̂ are used to match
training data points, so that there is absolutely no flexibility to adjust for test data points. The
situation is even worse for d > n, as in this case the solutions to the minimization problem (2.3)
are not unique since one can add to a minimizer an arbitrary element of the kernel of X. Some of
the solutions to the minimization problem can therefore have a very large norm.

3 We do not discuss here the origin of the term ’ridge’, which has a long history dating back to the end
of the 50s.
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Analytical expression of the solution to the ridge regression problem. In this section
and the end of this chapter, we no longer suppose that Assumption 2.1 holds, namely that X has
full rank d. This allows in particular to consider situations where d > n+ 1.

Definition 2.1 (Ridge least square regression). For λ > 0,

θ̂λ = argmin
θ∈Rd

ß
1

n
‖Y −Xθ‖22 + λ‖θ‖22

™
.

Exercise 2.8. Prove that the minimization problem in Definition 2.1 is well posed for λ > 0 (recall
that we no longer assume that X has full rank), and that the minimizer can be explicitly written
as

θ̂λ =
1

n

Ä“Σ + λIdd
ä−1

X>Y, (2.17)

where “Σ is still defined by (2.8).

Correction. Note that
1

n
‖Y −Xθ‖22 + λ‖θ‖22 > λ‖θ‖22,

so that the function to minimize is smooth and coercive. It therefore admits a global minimizer.
Moreover, a simple computation shows that the Hessian of the function is 2(“Σ + λIdd), which
is lower bounded (in the sense of symmetric matrices) by λIdd. This implies that the function
to minimize is stricly convex (in fact strongly convex), so that the minimum is unique.

The unique global minimizer is characterized by the Euler–Lagrange equation

∇θ
Å

1

n
‖Y −Xθ‖22 + λ‖θ‖22

ã∣∣∣∣
θ=θ̂λ

=
2

n
X>
Ä
Xθ̂λ − Y

ä
+ 2λθ̂λ = 0 ∈ Rd.

Therefore, Ä“Σ + λIdd
ä
θ̂λ =

1

n
X>Y. (2.18)

Let us now remark that “Σ is positive semidefinite, so that “Σ + λIdd is invertible. Indeed,
consider ξ ∈ Rd such that (“Σ + λIdd)ξ = 0. Then, by taking the scalar product with ξ,

0 = ξ>
Ä“Σ + λIdd

ä
ξ =

1

n
‖Xξ‖22 + λ‖ξ‖22 > λ‖ξ‖22,

which allows to conclude that ξ = 0. The conclusion is finally obtained by applying the inverse
of “Σ + λIdd on both sides of (2.18).

Exercise 2.9 (Motivating the terminology “weight decay”). Consider a one dimensional
featurization function φ : X → R, and the associated ridge regression problem“Rn,λ(θ) =

1

n

n∑
i=1

(yi − θφ(xi))
2

+ λθ2

for θ ∈ Θ = R and λ > 0. Give the expression of the optimal parameter θ̂λ of Definition 2.1, and
motivate the terminology “weight decay”. other mo-

tivation
(to add):
update in
SGD

Correction. The function to minimize is strongly convex on R for λ > 0, and therefore admits
a unique minimizer characterized by the condition“R′n,λ Äθ̂λä =

2

n

n∑
i=1

Ä
θ̂λφ(xi)− yi

ä
φ(xi) + 2λθ̂λ = 0,
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so that

θ̂λ =

1

n

n∑
i=1

yiφ(xi)

λ+
1

n

n∑
i=1

φ(xi)
2

.

Alternatively, one could have obtained the same expression by writing what (2.17) is in the
context of this exercise.

Compared to the parameter allowing to perform ordinary least squares (which corresponds
to λ = 0), there is an extra factor λ > 0 on the denominator, added to a positive term when at
least one of the φ(xi) is non zero. Therefore,

∀0 6 λ 6 λ′,
∣∣∣θ̂0∣∣∣ 6 ∣∣∣θ̂λ′ ∣∣∣ 6 ∣∣∣θ̂λ∣∣∣ .

The magnitude (in absolute value) of the parameter therefore decreases when the regularization
strength is increased, which motivates the name of the approach.

Exercise 2.10. Show that θ̂λ in (2.17) can be equivalently written as

θ̂λ = X>
(
XX> + nλIdn

)−1
Y.

What could the interest of such a reformulation?

Correction. Let us first comment that the main benefit of this reformulation is that it provides
a computationally cheaper way of obtaining the optimal parameter when d > n+ 1 (i.e. more
features than data points), as it requires solving a linear system involving a n×n matrix instead
of a d× d matrix.

In order to obtain the result, it suffices to prove that

X>
(
XX> + nλIdn

)−1
=
(
X>X + nλIdd

)−1
X>.

Note first that the two matrices to be inverted in the previous expression are indeed invertible,
by an argument similar to the one used in the solution of Exercise 2.8. The above equality is
easily seen to be true by multiplying by XX> + nλIdn on the right, and by X>X + nλIdd on
the left, as one ends up with the same quantity X>XX> + nλX> on both sides.

Numerical solution of the ridge regression problem. Let us first discuss how to adapt the
methods described in Section 2.2.3 for ordinary least squares to ridge regression. The approach
based on SVD can be used as such upon adding λIdd to the matrices SS> or S>S. For gradi-
ent methods and the approach based on QR decompositions, we first show how to reduce the
minimization problem in Definition 2.1 to a minimization problem for ordinary least squares. We
introduce to this end‹X =

Å
X√
nλIdd

ã
∈ R(n+d)×d, ‹Y =

Å
Y
0d

ã
∈ R(n+d)×1.

Then,
1

n
‖Y −Xθ‖22 + λ‖θ‖22 =

1

n

∥∥∥‹Y − ‹Xθ∥∥∥2
2
.

The right hand side of the previous equality is the typical quantity to minimize for ordinary least
squares. This formulation shows that the cost of computing θ̂λ is O((n + d)3) for the approach
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based on the QR decomposition of ‹X; while it remains of order O(n+ d) per gradient step if one
prefers to resort to the (stochastic) gradient approaches described in Chapter 4.

When solutions for several (many) values of λ are needed, in order to perform (cross) validation
in particular, it may be beneficial to consider a regularization path, where one starts by solving
the problem for the largest value of λ at hand, and then successively solves the optimization
problems for decreasing values of λ, using the solution found for the previous value of λ in order
to initialize or approximate the solution for the new value of λ (as some form of warm start in the
optimization procedure). One starts from the largest value of λ as the associated minimization
problem is usually easier to solve that for λ small. In fact, in the limit λ → +∞, the solution to
the minimization problem is simply θ̂∞ = 0, so one expects θ̂λ to be close to 0 for λ large.

2.3.3 Statistical properties of ridge regression

In order to study the statistical performance of ridge regression, we consider as in Section 2.2.4
the fixed design setting and study the average excess risk, namely the expectation of the excess
risk

R(θ)−R∗ = EY ′
ï

1

n
‖Y ′ −Xθ‖22

ò
−R∗

averaged over all possible training sets with inputs fixed, for the predictor based on θ̂λ (which
depends on the training set Y at hand).

Proposition 2.3. Suppose that (2.11) holds. Then the excess risk for ridge regression is

E
î
R
Ä
θ̂λ
äó
−R? = λ2θ>?

Ä“Σ + λIdd
ä−2 “Σθ? +

σ2

n
Tr
(“Σ2

Ä“Σ + λIdd
ä−2)

.

The decomposition on the right hand side of the above equality again allows to interpret the
excess risk as the sum of a squared bias (proportional to λ2) and a variance in the predictions.
This formula deserves several comments:

• the result reduces to the one of Proposition 2.2 for ordinary least squares when λ = 0, as there
is no bias term in this case, while the trace in the variance term is Tr(Idd) = d;

• for large values of λ, the squared bias is of order 1 while the variance is of order 1/(nλ2);
while for small values of λ, the squared bias is of order λ2 and the variance of order 1/n. This
suggests that the value of λ should be chosen in order to equilibriate the two contributions,
namely

λ ∼ 1√
n
.

This corresponds the usual bias/variance tradeoff for minimizing the mean square error. For
the above choice for the scaling of λ, the excess risk can be shown to scale as 1/

√
n (see

Proposition 2.4 below).
• the bias, of order λ, can be seen as some form of approximation error (see Section 10.1). It

increases as λ increases;
• the variance term can be seen as some form of estimation error (see Section 10.1), which

decreases when n and λ increase;
• it is useful to interpret the variance term using the concept of effective number of degrees of

freedom.4 More precisely, denoting by σ̂2
j the eigenvalues of the symmetric, positive semidefinite

matrix “Σ, the effective number of degrees of freedom is

0 6 Tr
(“Σ2

Ä“Σ + λIdd
ä−2)

=

d∑
j=1

σ̂4
jÄ

σ̂2
j + λ

ä2 6 d.

4 Our convention here differs from the more standard one considered in [40, Section 11.3.2] or [24, Sec-
tion 3.4.3] for instance, where the discussion is based on the predictions rather than on the risk.
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When λ = 0, the effective number of degrees of freedom is d as there is no capacity control.
This number converges to 0 as λ→ +∞.

Proof. Recall the risk decomposition (2.13), applied here to θ̂λ:

EY
î
R
Ä
θ̂λ
äó
−R? =

∥∥∥EY
î
θ̂λ
ó
− θ?

∥∥∥2“Σ + EY

ï∥∥∥θ̂λ − EY
Ä
θ̂λ
ä∥∥∥2“Σò .

Let us successively consider the square bias and the variance. For the bias, we use the expres-
sion (2.17) and the assumption (2.11) to write

EY
î
θ̂λ
ó
−θ? =

1

n

Ä“Σ + λIdd
ä−1

X>Xθ?−θ? =
[Ä“Σ + λIdd

ä−1 “Σ − Idd

]
θ? = −λ

Ä“Σ + λIdd
ä−1

θ?,

so that (since matrix valued functions of “Σ commute)∥∥∥EY
î
θ̂λ
ó
− θ?

∥∥∥2“Σ = λ2θ>?
Ä“Σ + λIdd

ä−1 “Σ Ä“Σ + λIdd
ä−1

θ? = λ2θ>?
Ä“Σ + λIdd

ä−2 “Σθ?.
For the variance, we use the following equality for u, v ∈ Rd and M ∈ Rd×d (where vu> ∈ Rd×d is
the matrix with entries viuj for 1 6 i, j 6 d):

u>Mv =

d∑
i,j=1

Mjiujvi = Tr
[(
vu>

)
M>

]
, (2.19)

to write

EY

ï∥∥∥θ̂λ − EY
Ä
θ̂λ
ä∥∥∥2“Σò = Eε

ñ∥∥∥∥ 1

n

Ä“Σ + λIdd
ä−1

X>ε

∥∥∥∥2“Σô
=

1

n2
Eε
[
ε>X

Ä“Σ + λIdd
ä−1 “Σ Ä“Σ + λIdd

ä−1
X>ε

]
=

1

n2
Tr
[
X>E

(
εε>

)
X
Ä“Σ + λIdd

ä−1 “Σ Ä“Σ + λIdd
ä−1]

=
σ2

n2
Tr
[
X>X

Ä“Σ + λIdd
ä−1 “Σ Ä“Σ + λIdd

ä−1]
=
σ2

n
Tr
[“Σ Ä“Σ + λIdd

ä−1 “Σ Ä“Σ + λIdd
ä−1]

,

from which the claimed result follows. ut

Now that Proposition 2.3 provides an explicit expression for the average excess risk, we can
optimize the value of λ in order to obtain the tightest upper bound to the average excess risk.

Proposition 2.4 (Upper bound on the excess risk for ridge regression). Suppose that (2.11)
holds, and consider

λ? =
σ
√

Tr
Ä“Σä

‖θ?‖2
√
n
.

Then,

0 6 EY
î
R
Ä
θ̂λ?
äó
−R? 6

σ
√

Tr
Ä“Σä‖θ?‖2
2
√
n

. (2.20)

Let us make a few comments on this result before providing its proof:
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• the upper bound (2.20) is dimension free as d does not explicitly appear (in contrast to Propo-
sition 2.2), but only implicitly. The favorable situation is when ‖θ?‖2 and

Tr
Ä“Σä =

1

n

n∑
i=1

‖ϕ(xi)‖22

both remain bounded as the dimension increases. A sufficient condition for the latter term to
be bounded is that ‖ϕ(x)‖2 6 Φ < +∞ uniformly in x ∈ X for some Φ ∈ R+ as the dimension
increases;

• the convergence rate O(1/
√
n) which is obtained is slower than the rate O(1/n) of Proposi-

tion 2.2 for ordinary least square regression, but it has on the other side a milder dependence
on the noise (σ instead of σ2) and on the dimension d. The estimate may therefore be useful
in the nonasymptotic regime where n is not too large, as it corresponds to a slower rate of
convergence but potentially a better prefactor in the estimate;

• the expression of the optimal value λ? cannot be used to determine the regularization strength
in practice for two reasons: (i) the values of σ and θ? are usually unknown; (ii) the value
of λ? is obtained by optimizing an upper bound, and the so-obtained value may therefore be
suboptimal for the actual average (test) risk. The regularization strength should be determined
in practice by (cross)validation, as discussed in Section 2.3.1. Nonetheless, the expression for λ?
still leads to useful theoretical insights, in particular ideas on how the optimal regularization
strength behaves as the number of training data points is increased.

Proof. Since, for any λ > 0 and µ > 0,

(µ+ λ)2 = µ2 + λ2 + 2λµ > 4λµ,

and hence
µλ

(µ+ λ)2
6

1

4
,

the eigenvalues of λ“Σ Ä“Σ + λIdd
ä−2

are smaller than 1/4, and therefore the square bias in the

equality of Proposition 2.3 can be bounded as

λ2θ>?
Ä“Σ + λIdd

ä−2 “Σθ? 6 λ

4
‖θ?‖22.

Similarly, in view of the matrix inequality (in the sense of symmetric matrices)“Σ2
Ä“Σ + λIdd

ä−2
=

1

λ
“Σ1/2

[
λ“Σ Ä“Σ + λIdd

ä−2] “Σ1/2 6
1

λ
“Σ1/2

ï
1

4
Idd

ò “Σ1/2 =
1

4λ
“Σ,

the variance term can be bounded as

σ2

n
Tr
(“Σ2

Ä“Σ + λIdd
ä−2)

6
σ2

4nλ
Tr
Ä“Σä .

By gathering the two upper bounds, we obtain

0 6 EY
î
R
Ä
θ̂λ
äó
−R? 6 λ

4
‖θ?‖22 +

σ2

4nλ
Tr
Ä“Σä := u(λ).

We can now minimize the right hand side of the previous inequality with respect to λ. Clearly,
the function u is smooth on (0,+∞) goes to +∞ as λ→ 0 or λ→ +∞. There exists therefore a
global minimizer. Global minimizers are characterized by the Euler–Lagrange equation

u′(λ?) = 0 =
1

4
‖θ?‖22 −

σ2

4nλ2?
Tr
Ä“Σä .

This leads to the expression of λ?. The upper bound for the average excess risk is easily seen to
be equal to λ?‖θ?‖22/2, which is (2.20). ut
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Exercise 2.11. The aim of this exercise is to characterize how Tr
Ä“Σä scales with respect to the

dimension d for the particular example of polynomial regression on X = [−1, 1], in the limit n→
+∞. Recall that in this case ϕ(x) = (1, x, x2, . . . , xd−1) when θ ∈ Rd.

(1) Compute the entries of the limiting matrix Σ = lim
n→+∞

“Σ when the inputs xi are independently

and identically distributed according to the uniform distribution on X .
(2) Determine the asymptotic behavior of Tr(Σ) as d→ +∞, and interpret the result.

Correction.

(1) For 1 6 k, k′ 6 d, the Law of Large Numbers implies that

Σk,k′ = lim
n→+∞

1

n

n∑
i=1

ϕk(xi)ϕk′(xi) =

ˆ 1

−1
ϕk(x)ϕk′(x)

dx

2
=

1

2

ˆ 1

−1
xk+k

′−2 dx

=
1

2(k + k′ − 1)

î
1− (−1)k+k

′−1
ó
.

(2) With the result of the previous question,

Tr(Σ) =

d∑
k=1

Σk,k =

d∑
k=1

1

2k − 1
∼ 1

2
log d,

since

1

2
log(2d− 1) =

1

2

ˆ d

1

1

y − 1/2
dy 6

d∑
k=1

1

2k − 1

= 1 +

d−1∑
k=1

1

2k + 1
6 1 +

1

2

ˆ d−2

0

1

y + 1/2
dy = 1 +

1

2
log(2d− 3).

If ‖θ?‖2 is bounded as d → +∞, the upper bound obtained on the average excess risk
therefore scales as

√
log(d)/n for ridge regression, instead of the bound scaling as d/n for

ordinary least squares. The bound is therefore much better when

log(d)

d2
� 1

n
.

Moreover, the bound can be used for d > n.

Exercise 2.12 (Ridge regression in the random design setting). We consider the same
setting as in Exercise 2.6 in the context of ridge regression. Prove that

E
î
R(θ̂λ)

ó
−R? = λ2E

[
θ>?
Ä“Σ + λIdd

ä−1
Σ
Ä“Σ + λIdd

ä−1
θ?

]
+
σ2

n
E
[
Tr
(Ä“Σ + λIdd

ä−2 “ΣΣ)] ,
where the expectation is over the realizations of the data set.

Correction. We follow the computations of Exercise 2.12 to write (the expectation being both
over the realizations of x1, . . . , xn and ε1, . . . , εn)

E
î
R(θ̂λ)

ó
−R? = E

î
(θ̂λ − θ?)>Σ(θ̂λ − θ?)

ó
,

with
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θ̂λ =
1

n

Ä“Σ + λIdd
ä−1

X>(Xθ? + ε) =
Ä“Σ + λIdd

ä−1 “Σθ? +
1

n

Ä“Σ + λIdd
ä−1

X>ε,

so that

θ̂λ − θ? = −λ
Ä“Σ + λIdd

ä−1
θ? +

1

n

Ä“Σ + λIdd
ä−1

X>ε.

Therefore,

E
î
R(θ̂λ)

ó
−R? = λ2E

[
θ>?
Ä“Σ + λIdd

ä−1
Σ
Ä“Σ + λIdd

ä−1
θ?

]
+

1

n2
E
ï(Ä“Σ + λIdd

ä−1
X>ε

)>
Σ
Ä“Σ + λIdd

ä−1
X>ε

ò
.

The second term on the right hand side of the above equality can be rewritten as

1

n2
E
ï(Ä“Σ + λIdd

ä−1
X>ε

)>
Σ
Ä“Σ + λIdd

ä−1
X>ε

ò
=

1

n2
E
[
ε>X

Ä“Σ + λIdd
ä−1

Σ
Ä“Σ + λIdd

ä−1
X>ε

]
=

1

n2
E
[
Tr
(
X>εε>X

Ä“Σ + λIdd
ä−1

Σ
Ä“Σ + λIdd

ä−1)]
=
σ2

n
E
[
Tr
(“Σ Ä“Σ + λIdd

ä−1
Σ
Ä“Σ + λIdd

ä−1)]
,

from which the claimed result follows.

2.4 LASSO regression

LASSO was introduced by Tibshirani in 1996 (see [53]). The acronym stands for “Least Absolute
Shrinkage and Selection Operator”. As the name indicates, an essential aim of Lasso regularization
is to perform feature selection, and build sparse predictors that depend only a small number of
the components of the feature vector ϕ(x). This is useful for two reasons:

(i) it makes models more interpretable (as it allows to decide which features are important for
predictions), and/or also allows to add extra features, whose relevance is unclear, as irrelevant
features will automatically be discarded;

(ii) as for ridge regression, it also allows to reduce the dimension dependence in the guarantee
bounds on the excess risk (recall for instance the bounds O(n−1/d) for K-nearest neigh-
bors obtained in (1.23), and the bound σ2d/n of Proposition 2.2 for ordinary least square
regression).

There are however two difficulties with this approach:

(i) the identity of the relevant variables is not known beforehand. They need therefore to be
identified;

(ii) Lasso works only if the Bayes predictor itself involves only a small number of features (at
least approximatively).

The presentation in this section follows [40, Section 11.4] and [4, Chapter 8].

2.4.1 Sparsity inducing regularization terms

As in the remainder of this chapter, we focus here on linear methods, and therefore aim at solving

min
θ∈Rd

E
[
`
(
y, ϕ(x)>θ

)]
.
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In fact, we will often specify our analysis to the regression setting for which `(y, z) = ‖y − z‖22 is
the squared Euclidean norm, but the framework discussed here is general enough to cover other
situations.

As motivated in Section 2.3, a regularization term Ω(θ) should be added to the training loss
in order to prevent overfitting. We discuss two options here, which both lead to sparse solutions:

• a first option to consider Ω(θ) = ‖θ‖0, which is the number of non zero entries of θ. This
naturally favors sparse solutions where many entries of the optimal parameter θ are 0. However,
the associated optimization problem

min
θ∈Rd

¶“Rn(θ) + λ‖θ‖0
©

is difficult to solve as it essentially requires some form of combinatorial approach in order to
identify the set of relevant k = ‖θ‖0 variables, or rely on dedicated algorithms such as greedy
methods where features are introduced one by one and chosen to minimize the loss (“orthogonal
matching pursuit”; see for instance [49, Section 25.1.2]).

• another option is to rely on a `1 penalty term

Ω(θ) = ‖θ‖1 =

d∑
k=1

|θk|. (2.21)

The main interest of this approach is that the function appearing in the minimization problem

min
θ∈Rd

¶“Rn(θ) + λ‖θ‖1
©

(2.22)

is convex when “Rn is convex (see Exercise 2.13 below). Gradient methods (as described in
Chapter 4) can then be used to approximate the minimizer. It is however not clear at first sight
why the `1 penalty (2.21) leads to a sparse minimizer. We next motivate this. The combination
of the sparsification property, and the fact that the regularized loss to be minimized has good
properties (convexity) makes the method particularly attractive.

Exercise 2.13. Prove that the function θ 7→ “Rn(θ) +λ‖θ‖1 is convex on Rd for the empirical risk

function “Rn defined in (2.3) and any λ > 0.

Correction. The function “Rn is convex, as can be seen for instance from the fact that its
Hessian is positive semidefinite (recall (2.6); here X is not necessarily of full rank). The func-
tion θ 7→ ‖θ‖1 is also convex (coming back to the definition of convex functions and relying on
the triangle inequality satisfied by any norm). The result then follows from the fact that the
sum of two convex functions is convex.

Motivating the sparsity inducing effect of `1 regularization. Balls for the `1 norm have
extremal points which “stick out more”. These extremal points correspond to sparse elements θ ∈Draw pic-

ture Rd where one component at least is 0. The tangency or contact between isolines of “Rn and the unit
ball in the `1 norm tends to happen at the corners or vertices of the unit ball. For ridge regression
on the other hand, the relevant unit ball to consider in the one in the `2 norm, whose boundary
is a hypersphere, which is fully symmetric and does not have sparse extremal points.

In order to make contact between the above considerations and the minimization prob-
lem (2.22), we recall that (2.22) can be seen as some dual formulation of the constrained mini-
mization problem (2.16). The latter setting is exactly the one considered above. This motivates
why sparse solutions are expected for `1 regularization, but not for `2 regularization.
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2.4.2 Explicit expressions for one dimensional problems

In order to gain some intuition on the behavior of solutions to the Lasso minimization prob-
lem (2.22), we consider the simplest possible setting, namely the situation when θ ∈ R and there is
a single one dimensional data point x = 1 with associated output y ∈ R. In this case, the function
to minimize is

Fλ(θ) =
1

2
(y − θ)2 + λ|θ|, (2.23)

where we introduced a factor 1/2 in front of the first term for convenience. The next exercise shows
how to analytically obtain the unique global minimizer of Fλ.

Exercise 2.14. Consider the function Fλ defined in (2.23).

(1) Prove that Fλ admits a unique minimizer.
(2) Compute the left and right derivatives of Fλ at any θ ∈ R.
(3) Prove that the minimizer θ?λ of Fλ is

θ?λ =

∣∣∣∣∣∣
y + λ for y 6 −λ,

0 for − λ 6 y 6 λ,
y − λ for y > λ,

(2.24)

Correction.

(1) The function Fλ is the sum of the convex function θ 7→ λ|θ| and the strongly convex
function θ 7→ (y− θ)2/2 (as can be seen for instance by computing the second derivative of
this function, which is equal to 1); so that Fλ is strongly convex on R and therefore admits
a unique minimizer.
Alternatively, one could have noted that Fλ is smooth and coercive, and hence admits a
minimizer. The uniqueness comes from the fact that θ 7→ (y − θ)2/2 is strictly convex
and θ 7→ λ|θ| is convex, so overall Fλ is stricly convex.

(2) For θ < 0, the function θ 7→ Fλ(θ) = 1
2 (y− θ)2− λθ is smooth, with derivative F ′λ(θ) = θ−

y−λ. For θ > 0, the function θ 7→ Fλ(θ) = 1
2 (y−θ)2+λθ is smooth, with derivative F ′λ(θ) =

θ− y+λ. The only point where Fλ is not continuously differentiable is θ = 0, for which the
left and right derivatives are respectively

F ′λ(0−) = lim
η→0
η>0

Fλ(−η) = −y − λ, F ′λ(0+) = lim
η→0
η>0

Fλ(η) = −y + λ.

(3) We distinguish three situations, depending on the values of y:
• when y > λ, then F ′λ(y − λ) = 0 for the value y − λ > 0, and F ′λ(θ) 6= 0 for θ 6= y − λ.

This shows that the unique minimizer θ?λ is equal to y − λ > 0;
• when y < −λ, then F ′λ(y+ λ) = 0 for the value y+ λ < 0, and F ′λ(θ) 6= 0 for θ 6= y+ λ.

This shows that the unique minimizer θ?λ is equal to y + λ < 0;
• when |y| 6 λ, then F ′λ < 0 on (−∞, 0) and F ′λ > 0 on (0,+∞). This shows that the

global minimizer is θ?λ = 0.
The collection of these three scenarios indeed leads to (2.24).

The expression (2.24) for θ?λ can be written in a more condensed way as

θ?λ = sign(y) max (|y| − λ, 0) .

This corresponds to a soft thresholding function, where the value of y is shifted by an amount λ > 0
towards 0 (i.e. one add λ if y < 0 and subtracts λ if y > 0) unless y is too small, in which case it
is set to 0.
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2.4.3 Expressions for the Lasso least square regression problem

We consider in this section the general Lasso least square regression problem, where one seeks to
minimize “Rn,λ(θ) =

1

2n
‖Y −Xθ‖22 + λ‖θ‖1 =

1

2n

n∑
i=1

(
yi − θ>ϕ(xi)

)2
+ λ

d∑
k=1

|θk| .

As in (2.23), we introduce a factor 1/2 in front of the empirical risk in order to simplify the algebra.
This is not a restriction of generality as it amounts to rescaling the values of λ by a factor 2. The
function “Rn,λ is convex as the sum of two convex functions, and strongly convex when X has full
rank.

The optimality condition satisfied by a global minimizer reads

0d ∈ ∂“Rn,λ(θ?λ),

where ∂“Rn,λ is the subgradient (see Chapter 4 for background material on subgradients).more pre-
cise ref-
erence
needed

Since “Rn,λ is smooth on (R \ {0})d, the components of the subgradient are simply the partial
derivatives for the components of θ which are non zero.

In order to derive necessary conditions of optimality, let us next consider variations with respect
to the component θk when θk = 0. We fix to this end the components θ1, . . . , θk−1, θk+1, . . . , θd,
and introduce the function

Rk(θk) = “Rn,λ (θ1, . . . , θk−1, θk, θk+1, . . . , θd)

=
1

2n

n∑
i=1

(aik − θkϕk(xi))
2

+ λ |θk|+ Lk(θ1, . . . , θk−1, θk+1, . . . , θd),

where Lk does not depend on θk, and

aik = yi −
∑
` 6=k

θ`ϕ`(xi). (2.25)

We next rewrite Rk(θk) in a manner similar to (2.23) as follows:

Rk(θk) =

(
1

2n

n∑
i=1

ϕk(xi)
2

)
θ2k −

1

n

(
n∑
i=1

aikϕk(xi)

)
θk + λ |θk|+ L̃k(θ1, . . . , θk−1, θk+1, . . . , θd)

=

(
1

n

n∑
i=1

ϕk(xi)
2

)
1

2

à
θk −

n∑
i=1

aikϕk(xi)

n∑
i=1

ϕk(xi)
2

í2

+
nλ

n∑
i=1

ϕk(xi)
2

|θk|

+ L̂k(θ1, . . . , θk−1, θk+1, . . . , θd).

In view of (2.24), we therefore find that the optimal parameter θ?λ necessarily satisfies

θ?k,λ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

a?ikϕk(xi) + nλ

n∑
i=1

ϕk(xi)
2

for
1

n

n∑
i=1

a?ikϕk(xi) 6 −λ,

0 for − λ 6
1

n

n∑
i=1

a?ikϕk(xi) 6 λ,

n∑
i=1

a?ikϕk(xi)− nλ

n∑
i=1

ϕk(xi)
2

for
1

n

n∑
i=1

a?ikϕk(xi) > λ.

(2.26)
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where a?ik is (2.25) evaluated at θ = θ?λ.
The latter expression motivates the term “shrinkage” in the expression “least absolute shrink-

age” for Lasso, as large coefficients (in absolute value) are shrunk towards 0. This also suggests
that the Lasso estimator is biased. This may not be an issue for two reasons:

(1) we want a good prediction, and do not care so much about estimating the true parameter θ?
or recovering the true model (which is the aim of high dimensional statistics);

(2) introducing some bias may be helpful in view of the bias/variance tradeoff, especially if the
magnitude of the bias is determined using cross validation.

2.4.4 Numerical methods to find the minimizers

The optimality conditions (2.26) are cumbersome since the components θ?k′,λ for k′ 6= k are hidden
in the coefficients a?ik. The numerical methods to find solutions to (2.22) are therefore based
on other ideas than solving the nonlinear equation (2.26) (see [40, Section 11.4.9] for further
precisions):

• a popular approach, implemented for instance in the default method for Lasso regression in
scikit-learn, is coordinate descent : at each iteration, a coordinate to update is selected (for
instance by cycling over all components or by choosing it at random), and a one dimensional
minimization, with other coordinates fixed, is performed. The interest of this approach is that
the one dimensional minimization can be performed analytically, following the computations
in Section 2.4.3. This leads to expressions close to (2.26) with coefficients aik evaluated at the
current value of the parameter θ;

• another approach is based on a projected gradient method, for which the parameter θ ∈ Rd

is decomposed as θ = θ+ − θ−, where θ+, θ− ∈ Rd+ have only nonnegative components. The
optimization problem (2.22) can then be reformulated as the minimization of a smooth function
under positivity constraints:

min
θ+,θ−∈Rd+

{“Rn (θ+ − θ−)+ λ

d∑
k=1

(
θ+k + θ−k

)}
.

This amounts to doubling the size of the optimization problem and adding 2d positivity con-
straints θ+k , θ

−
k > 0 for 1 6 k 6 d. These constraints are satisfied by projecting the updates of

gradient methods onto the set of admissible values for θ+, θ−;
• iterative soft thresholding is based on proximal gradient strategies, which builds upon a frame-

work to regularize non differentiable terms in a function to optimize;
• one can also rely on continuation/homotopy methods, based on the remark that θ?λ is piecewise

affine in λ. The idea is then to start from large values of λ, and build the path of solutions by
computing break points one after the other.

2.4.5 Theoretical guarantees

In order to provide theoretical upper bounds on the excess risk for Lasso regression, we consider
once again the fixed design setting, as in Sections 2.2.4 and 2.3.3. A key point of the analysis
performed in this section (as for ridge regression in Section 2.3.3) is to carefully keep track of the
dimensionality dependence, possibly upon going from “fast rates” O(1/n) to “slow rates” O(1/

√
n).

We still assume for the analysis that (2.11) holds, for some θ? which is sparse – so that ‖θ?‖1
remains bounded as the dimension d increases. We start by considering a general norm Ω(θ) for
the regularization term (recall that Ω(θ) = ‖θ‖2 for ridge regression, and Ω(θ) = ‖θ‖1 for Lasso;
see Section 2.3.1). The dual norm is denoted by Ω∗ and defined as

Ω∗(z) = sup
{
z>θ

∣∣∣ Ω(θ) 6 1
}
.
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Exercise 2.15. Fix 1 6 p 6 +∞ and consider

Ω(θ) = ‖θ‖p =

(
d∑
k=1

|θk|p
)1/p

for 1 6 p < +∞ and, for p = +∞,

‖θ‖∞ = max
16k6d

|θk|.

Show that Ω∗(z) = ‖z‖p′ where 1 6 p′ 6 +∞ is the exponent conjugate to p:

1

p
+

1

p′
= 1.

Correction. Fix z ∈ Rd. Hölder’s inequality implies that z>θ 6 ‖z‖p′‖θ‖p, so that 0 6
Ω∗(z) 6 ‖z‖p′ . It therefore suffices to find θz ∈ Rd such that z>θz = ‖z‖p′ and Ω(θz) =
‖θz‖p = 1. We distinguish three situations:

• for p = +∞ (so that p′ = 1), one can choose θz,k = sign(zk), in which case ‖θz‖∞ = 1 and

z>θz =

d∑
k=1

|zk| = ‖z‖1;

• for p = 1 (so that p′ = +∞), one can choose θz,k = sign(zk∗z )1k=k∗z where the integer k∗z ∈
{1, . . . , d} is such that ‖z‖∞ = |zk∗z |. In this case, ‖θz‖1 = 1 and

z>θz =
∣∣zk∗z ∣∣ = ‖z‖∞;

• for p ∈ (1,+∞), one can choose

θz,k =
|zk|p

′−1sign(zk)

‖z‖p
′/p
p′

.

Note that, since p = p′/(p′ − 1) so that p(p′ − 1) = p′,

‖θz‖pp =

d∑
k=1

|zk|p(p
′−1)

‖z‖p′p′
= 1,

and

z>θz =
1

‖z‖p
′/p
p′

d∑
k=1

|zk|p
′−1sign(zk)zk = ‖z‖p

′(1−1/p)
p′ = ‖z‖p′ .

This finally gives the desired result.

Exercise 2.16. Prove that, for any u, v ∈ Rd, it holds |u>v| 6 Ω(u)Ω∗(v).

Correction. It suffices to prove the result for v 6= 0 (the result being trivial for v = 0). Note
that Ω(v) > 0 as Ω is a norm, so that, upon introducing

θv =
v

Ω(v)
,

one has Ω(θv) 6 1, and hence, by definition of Ω∗,
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|u>v| = Ω(v)
∣∣∣u>θv∣∣∣ 6 Ω(v)Ω∗(u),

which is the desired inequality.

We need some preliminary results on the excess risk

R
Ä
θ̂λ
ä
−R? =

1

n

∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2

=
Ä
θ̂λ − θ?

ä> “Σ Äθ̂λ − θ?ä
for Lasso regression (recall Exercise 2.4), where θ̂λ is a minimizer5 of θ 7→ 1

2n
‖Y −Xθ‖22 +λΩ(θ).

Lemma 2.1. Suppose that (2.11) holds.

(a) If Ω∗(X>ε) 6 nλ/2, then

Ω
Ä
θ̂λ
ä
6 3Ω(θ?),

1

n

∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
6 3λΩ(θ?).

(b) In all cases,
1

n

∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
6

4

n
‖ε‖22 + 4λΩ(θ?).

Proof. By definition of θ̂λ,∥∥∥Y −Xθ̂λ∥∥∥2
2
6 ‖Y −Xθ?‖22 + 2nλΩ (θ?)− 2nλΩ

Ä
θ̂λ
ä
.

In view of (2.11), the latter inequality can be rewritten as∥∥∥X Äθ? − θ̂λä+ ε
∥∥∥2
2
6 ‖ε‖22 + 2nλΩ (θ?)− 2nλΩ

Ä
θ̂λ
ä
.

By expanding the square on the left hand side,∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
6 2ε>X

Ä
θ̂λ − θ?

ä
+ 2nλΩ (θ?)− 2nλΩ

Ä
θ̂λ
ä
.

We distinguish two cases at this stage:

• When Ω∗(X>ε) 6 nλ/2, the latter right hand side can be bounded in view of Exercise 2.16 by

2Ω∗
(
X>ε

)
Ω
Ä
θ̂λ − θ?

ä
+ 2nλΩ (θ?)− 2nλΩ

Ä
θ̂λ
ä
6 nλ

î
Ω
Ä
θ̂λ − θ?

ä
+ 2Ω (θ?)− 2Ω

Ä
θ̂λ
äó

6 nλ
î
Ω
Ä
θ̂λ
ä

+Ω (θ?) + 2Ω (θ?)− 2Ω
Ä
θ̂λ
äó

= nλ
î
3Ω (θ?)−Ω

Ä
θ̂λ
äó
,

from which the first claimed inequalities follows.
• In the general case, we use first a discrete Cauchy–Schwarz inequality then a discrete Young

inequality to write∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
6 2 ‖ε‖2

∥∥∥X Äθ̂λ − θ?ä∥∥∥
2
+2nλΩ (θ?) 6 2 ‖ε‖22+

1

2

∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
+2nλΩ (θ?) ,

from which the second claimed inequality follow.

This allows to conclude the proof. ut
5 Mind the factor 1/2 here. In contrast, the excess risk relies on the standard quadratic error. Overall

this amounts to a rescaling of λ.



50 2 Least square regression

We can now apply the previous result to Lasso regression by choosing Ω(θ) = ‖θ‖1. Then,
Ω∗
(
X>ε

)
=
∥∥X>ε∥∥∞ is a maximum over the absolute values of 2d (possibly dependent) random

variables Z±k = ±
(
X>ε

)
k

for 1 6 k 6 d. Classical results in probability theory (see for instance [4,

Section 1.2.4]) show that this quantity scales as
√

log(2d) multiplied by the magnitude of the
random variables at hand. Since Z±k is the sum of n independent random variables, the Central
Limit Theorem suggests that each random variable Z±k has values of order

√
n. Overall, this

suggests that Ω∗
(
X>ε

)
is of order

√
n log(2d) so that, in order to apply Lemma 2.1(a), one

should choose

λ ∼

 
log(d)

n
.

In order to state a precise result, we denote by ‖“Σ‖∞ the largest element of “Σ in absolute value.

Proposition 2.5. Suppose that (2.11) holds true, with ε a Gaussian vector with covariance σ2Idn.
Then, for

λ =
2σ√
n

»
2‖“Σ‖∞ log(d) + log

Å
1

δ

ã
, (2.27)

and

θ̂λ ∈ argmin
θ∈Rd

ß
1

2n
‖Y −Xθ‖22 + λΩ(θ)

™
,

it holds, with probability larger or equal than 1− δ,

R
Ä
θ̂λ
ä
−R? =

1

n

∥∥∥X Äθ̂λ − θ?ä∥∥∥2
2
6 6‖θ?‖1

σ√
n

»
2‖“Σ‖∞ log(d) + log

Å
1

δ

ã
.

This result deserves various comments. The first point is that the bound provided by Propo-
sition 2.5 is a so-called PAC bound (where PAC stands for “probably approximately correct”; see
Section 10.3), i.e. it is a bound which holds with a high probability for the realizations under
consideration. It can be considered as more useful than bounds in average as provided by Propo-
sitions 2.2 and 2.4 for ordinary least square regression and ridge regression, respectively, and [4,
Exercise 8.8] for Lasso regression.

The dimension explicitly appears only through the a factor
√

log(d), which is a quite mild
dependence, in particular if n � log(d). Note also that θ? needs to be sparse for the estimate to
be useful (i.e. in order for ‖θ?‖1 not to change as the dimension d of ϕ(x) is increased).

Various extensions are possible, in particular obtaining bounds with “fast rates” O(1/n) for
the average excess risk (see [4, Sections 8.3.3-8.3.4]), and extending the analysis to the random
design setting (see [4, Section 8.3.5]).

Proof. For any 1 6 k 6 d, the random variable (X>ε)k is a Gaussian random variable with mean 0

and variance nσ2“Σkk. Recall that, for Z ∼ N (0, 1) and t > 0, it holds P(|Z| > t) 6 e−t
2/2 (see

Exercise 2.17 below). Using the latter inequality, and the union bound to control
∥∥X>ε∥∥∞,

P
Å
Ω∗
(
X>ε

)
>
nλ

2

ã
= P
Å∥∥X>ε∥∥∞ >

nλ

2

ã
6

d∑
k=1

P
Å∣∣∣(X>ε)k∣∣∣ > nλ

2

ã
=

d∑
k=1

P

Ñ ∣∣(X>ε)
k

∣∣»
nσ2“Σkk > λ

√
n

2σ
»“Σkké

6
d∑
k=1

exp

Ç
− nλ2

8σ2“Σkkå 6 d exp

Ç
− nλ2

8σ2‖“Σ‖∞å .
The right hand side of the last inequality is equal to δ for

nλ2

8σ2‖“Σ‖∞ = log

Å
d

δ

ã
,
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which leads to (2.27). Now, when Ω∗
(
X>ε

)
6 nλ/2 (which happens with a probability larger or

equal than 1− δ), we can apply item (a) of Lemma 2.1 to obtain the claimed bound on the excess
risk. ut

Exercise 2.17. Prove that, for Z ∼ N (0, 1) and t > 0, it holds P(|Z| > t) 6 e−t
2/2.

Correction. Note first that P(|Z| > t) 6 2P(Z > t). Now, using that e−st 6 1 for s, t > 0,

P(Z > t) =
1√
2π

ˆ +∞

t

e−s
2/2 ds =

1√
2π

ˆ +∞

0

e−(s+t)
2/2 ds = e−t

2/2

ˆ +∞

0

e−ste−s
2/2 ds√

2π

6 e−t
2/2

ˆ +∞

0

e−s
2/2 ds√

2π
=

1

2
e−t

2/2,

from which the desired upper bound follows.
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We discuss in this chapter show how to perform classification with a method called logistic
regression. The presentation mainly focuses on binary classification, but we also mention how to
perform muticlass classification. We start by providing in Section 3.1 a mathematical framework
which allows to conviently minimize loss functions to perform classification; and then describe in
Section 3.2 a method based on a linear model to actually perform classification.

3.1 Convexification of the loss

For simplicity of exposition, we restrict ourselves to binary classification on Y = {−1, 1} in this
section. The loss function which naturally apppears in classification problems (see Section 1.2.1.1)
is the 0-1 loss. Minimizing the associated training loss is however a difficult problem as it is combi-
natorial in nature (one needs to consider the 2n possibilities for the labels for binary classification
for instance). We show in this section how the 0-1 loss for classification problems can be replaced
by a surrogate convex loss function which upper bounds the 0-1 loss, and admits the same Bayes
predictor as for the 0-1 loss. The interest of convex losses is that their optimization is easier to
perform (see Chapter 4). Our presentation is based on [4, Section 4.1] and [39, Section 4.7].

Two main questions can be asked at this stage:

• which convex surrogate functions are admissible? This is discussed in Section 3.1.1;
• how does the risk associated with the convex surrogate inform us on the original risk? This is

made precise in Section 3.1.2.

3.1.1 Convex surrogates and Φ-risk

We discuss in this section how to perform classification with real valued functions (see Sec-
tion 3.1.1.1), in order to replace the 0-1 loss by a convex upper bound Φ (see Section 3.1.1.2).
Admissible convex upper bounds should have the same Bayes predictor as the original problem,
which motivates the concept of “classification calibrated” convex surrogates Φ (see Section 3.1.1.3).
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3.1.1.1 Classification with real valued functions

Consider a real valued function g : X → R. Denoting by Y = {−1, 1}, binary classification can be
performed using a function f : X → Y defined from g as f = sign(g), i.e.

f(x) =

∣∣∣∣∣∣∣
1 if g(x) > 0,

−1 if g(x) < 0,

0 if g(x) = 0.

Note that there is some arbitrariness in the choice of values for f(0). We consider here f(0) = 0
so that the prediction is always wrong for g(x) = 0 (note that, strictly speaking, one would need
to extend the output space to {−1, 0, 1} instead of {−1, 1}). Another option would be to choose
at random whether f(x) = 1 or −1 when g(x) = 0.

With some abuse of notation, we denote by R(g) the risk associated with g:

R(g) = E
[
1f(X)6=Y

]
, f = sign(g). (3.1)

In order to make contact with generalizations of the latter risk, we rewrite it as

R(g) = P [sign(g(X)) 6= Y ] = E
[
1Y g(X) 6 0

]
= E [Φ0−1(Y g(X))] , (3.2)

where
Φ0−1(u) = 1u60.

There are infinitely many Bayes predictors associated with the original risk (3.1). To derive
one, we introduce, as in Section 1.2.2.1,

η(x′) = P (Y = 1 |X = x′) . (3.3)

Then,
R(g) = E

[
η(X)1g(X)60 + (1− η(X))1g(X)>0

]
.

A Bayes predictor g? is therefore characterized by the conditions g?(x) 6 0 if η(x) 6 1/2
and g?(x) > 0 if η(x) > 1/2. One possible Bayes predictor is

g?(x) = η(x)− 1

2
.

Remark 3.1. Note that the Bayes predictor f? for the 0-1 loss is sign(g?), in accordance with the
result of Exercise 1.6.

3.1.1.2 Convex surrogates

The key idea behind considering convex surrogates is to replace the function Φ0−1 appearing in
the reformulation (3.2) of the original loss by a convex function Φ : R → R+ and to minimize
the Φ-risk

RΦ(g) = E [Φ(Y g(X))] . (3.4)

The function Φ should be an upper bound of the 0-1 loss:

0 6 Φ0−1 6 Φ. (3.5)

Let us give three important examples:

• the quadratic loss Φ(u) = (u − 1)2: in this case Φ(yg(x)) = (y − g(x))2 since y2 = 1. This
situation corresponds to the standard regression paradigm, where the prediction is based on
the sign of the function g : X → Y appearing in the regression problem. One possible issue of
this approach is the overpenalization of large values of |yg(x)|;
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• the logistic loss Φ(u) = log(1 + e−u)/ log(2) (see Exercise 3.1 below): in this case,

Φ(yg(x)) = − 1

log(2)
log

Å
1

1 + e−yg(x)

ã
= − 1

log(2)
log σ(yg(x)), (3.6)

where σ is the sigmoid function

σ(v) =
1

1 + e−v
. (3.7)

This is the convex surrogate used in Section 3.2 for logistic regression, without the normaliza-
tion factor log(2);

• the hinge loss Φ(u) = max(1 − u, 0) used in Chapter 6 for classification with support vector
machines. The squared hinge loss Φ(u) = max(1−u, 0)2 is sometimes used to have a smoother
model.

Exercise 3.1. Make precise the asymptotic behavior of the function Ψ(u) = log(1 + e−u).

Correction. Straightforward computations give

Ψ(u) ∼
u→−∞

−u, Ψ(u) ∼
u→+∞

e−u.

3.1.1.3 Φ-risk

The Φ-risk (3.4) can be rewritten as (by taking conditional expectations on Y )

RΦ(g) = E [Φ(Y g(X))] = E [η(X)Φ(g(X)) + (1− η(X))Φ(−g(X))] .

Therefore,
RΦ(g) = E

[
Cη(X)(g(X))

]
, (3.8)

where we recall the definition (3.3) of η, and

Cζ(α) = ζΦ(α) + (1− ζ)Φ(−α).

A first requirement on the convex surrogate Φ is that the Bayes predictor for the Φ-risk is the
same as for the original risk R. The Bayes predictor for the Φ-risk is characterized as follows:

∀x ∈ X , g?Φ(x) ∈ argmin
α∈R

{
η(x)Φ(α) + (1− η(x))Φ(−α)

}
. (3.9)

The fact that this Bayes predictor coincides with the Bayes predictor for the original risk translates
into the following requirements:

ζ >
1

2
⇐⇒ argmin

α∈R
Cζ(α) ⊂ (0,+∞),

ζ <
1

2
⇐⇒ argmin

α∈R
Cζ(α) ⊂ (−∞, 0),

(3.10)

so that the prediction, which is given by the sign of the argmin, is 1 when ζ > 1/2 and −1
when ζ < 1/2. A function Φ which satisfies these requirements is said to be classification-calibrated.
The next proposition gives simple sufficient conditions to this end when Φ is convex. Note that
the convexity of Φ implies that Cζ is convex for any 0 6 ζ 6 1.

Proposition 3.1. Consider a convex function Φ : R → R. The function Φ is classification-
calibrated ( i.e. (3.10) is satisfied) if and only if Φ is differentiable at 0 and Φ′(0) < 0.
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Proof. Since Cζ is a convex function from R to R, it is continuous and admits left/right derivatives
at any point (see Exercise 3.2). Therefore, the minimum of Cζ is attained on (0,+∞) if and only
if C ′ζ(0

+) < 0; and attained on (−∞, 0) if and only if C ′ζ(0
−) > 0. This shows that (3.10) is

equivalent to

ζ >
1

2
⇐⇒ C ′ζ(0

+) = ζΦ′(0+)− (1− ζ)Φ′(0−) < 0,

ζ <
1

2
⇐⇒ C ′ζ(0

−) = ζΦ′(0−)− (1− ζ)Φ′(0+) > 0.

(3.11)

When Φ is differentiable at 0 and Φ′(0) < 0, then Cζ is also differentiable at 0, with C ′ζ(0) =
(2ζ − 1)Φ′(0). The equivalences in (3.11) are then easily seen to hold.

Conversely, assume that Φ is classification-calibrated, and hence that (3.11) holds. By consid-
ering a sequence (ζn)n>0 ⊂ (1/2, 1] converging to 1/2, it follows, by passing to the limit in the first
line of (3.11) that Φ′(0+)−Φ′(0−) 6 0. Now, since Φ is convex, it also holds that Φ′(0+) > Φ′(0−),
so that one can conclude that Φ′(0+) = Φ′(0−). This prove that Φ is differentiable at 0, and also
that C ′ζ(0) = (2ζ − 1)Φ′(0). Moreover, Φ′(0) < 0 in order to meet the conditions in (3.11). This
allows to conclude the proof of the claimed equivalence. ut

Exercise 3.2. Consider a convex function Φ : R → R. We prove in this exercise that the right
derivative is well defined. The fact that the left derivative is well defined can be obtained by similar
estimates.

(i) Fix x0, x1, x2 ∈ R with x0 < x1 < x2. By considering x1 as a convex combination of x0, x2,
prove that

Φ(x1)− Φ(x0)

x1 − x0
6
Φ(x2)− Φ(x0)

x2 − x0
.

(ii) Prove that the left hand side of the previous inequality is bounded from below uniformly
in x1 ∈ (0, x2].

(iii) Deduce that the right derivative of Φ at x0 is well defined.

Correction. (i) Note that

x1 = (1− α)x0 + αx2, α =
x1 − x0
x2 − x0

, 1− α =
x2 − x1
x2 − x0

.

Now, the inequality to be proved is equivalent to

(x2 − x0)Φ(x1) 6 (x1 − x0) [Φ(x2)− Φ(x0)] + Φ(x0)(x2 − x0),

which corresponds to the inequality Φ(x1) 6 (1−α)Φ(x0)+αΦ(x2) by dividing both sides
by x2 − x0.

(ii) Fix x? < x0. Then, using the result of the previous question,

Φ(x1)− Φ(x0)

x1 − x0
>
Φ(x0)− Φ(x?)

x0 − x?
> −∞,

which provides the desired uniform bound.
(iii) The function x1 7→ (Φ(x1)−Φ(x0))/(x1 − x0) is nondecreasing and bounded from below.

It therefore admits a limit when x1 → x0 with x1 > x0. This limit is, by definition, the
right derivative of Φ at x0.

3.1.2 Relationship between original risk and Φ-risk

We have seen in Section 3.1.1.3 that the Bayes predictors for the Φ-risk and the original risk are the
same. In practice, one minimizes the Φ-risk associated with the (classification calibrated) convex
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surrogate Φ, but is ultimately interested in performance guarantees on the original risk, based on
the 0-1 loss. This motivates exploring the relationship between these two risks. Ideally, one would
want an inequality of the form

0 6 R(g)−R? 6 H (RΦ(g)−R?Φ) ,

where R?Φ is the risk associated with any Bayes predictor for RΦ, and H is some increasing
function such that H(0) = 0, called calibration function. In order to establish such as a result, we
reformulate the excess risk using the Bayes predictor, and then upper bound this quantity with
the Φ-risk.

Lemma 3.1. For any Bayes predictor g? : X → R and any function g : X → R such that P(g(X) =
0) = 0, it holds

0 6 R(g)−R? 6 E
[
|2η(X)− 1|1g(X)g?(X)60

]
. (3.12)

The condition P(g(X) = 0) = 0 is a technical condition related to our choice for sign(0).
Other conventions can be considered, in which case the result can be slightly different (see for
instance [39, Lemma 4.5]).

Proof. We rewrite the excess risk using conditional expectations as

R(g)−R? = E
[
E
(
1Y 6=sign(g(X)) − 1Y 6=sign(g?(X))

∣∣X)] ,
and then consider the situations where the predictions are different, namely η(X) > 1/2 (i.e.
g?(X) > 0) and g(X) 6 0, or η(X) < 1/2 (i.e. g?(X) < 0) and g(X) > 0. We discard the case
when η(X) = 1/2 since g?(X) = 0 in this case and therefore 1Y 6=sign(g(X)) − 1Y 6=sign(g?(X)) =
1Y 6=sign(g(X)) − 1 6 0.

Since P(g(X) = 0) = 0, it suffices to treat the case when g(X) 6= 0. In the first case (η(X) > 1/2
and g(X) < 0), the conditional expectation is

E
(
1Y 6=sign(g(X)) − 1Y 6=sign(g?(X))

∣∣X) = P(Y 6= −1 |X)− P(Y 6= 1 |X) = 2η(X)− 1.

Similarly, in the second case (η(X) < 1/2 and g(X) > 0), the conditional expectation is equal
to 1− 2η(X). Overall, this can be summarized as

E
(
1Y 6=sign(g(X)) − 1Y 6=sign(g?(X))

∣∣X)1g(X)6=01g?(X)6=0 = |2η(X)−1|1g(X)g?(X)<01g(X)6=01g?(X)6=0,

which leads to the claimed estimate by taking the expectation over X. ut

Exercise 3.3. Under the same conditions as in Lemma 3.1, prove that 0 6 R(g) − R? 6
E [|2η(X)− 1− g(X)|].

Correction. We rely on (3.12). It suffices to consider the case when g and g? do not have the
same signs, i.e. η(X) > 1/2 and g(X) < 0, or η(X) < 1/2 and g(X) > 0. In the former case,

|2η(X)− 1| = 2η(X)− 1 6 2η(X)− 1− g(X) = |2η(X)− 1− g(X)|;

while, in the latter case,

|2η(X)− 1| = 1− 2η(X) 6 1− 2η(X) + g(X) = |2η(X)− 1− g(X)|.

The upper bound of Lemma 3.1 can now be leveraged to obtain bounds on the excess risk in
terms of the excess Φ-risk, by adapting [39, Theorem 4.7].
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Theorem 3.1. Consider a convex function Φ : R→ R, which is nonincreasing on R−, and assume
that there exist s > 1 and c ∈ R+ such that

∀x ∈ X ,
∣∣∣∣η(x)− 1

2

∣∣∣∣s 6 cs
[
Φ(0)− Cη(x) (g?Φ(x))

]
, (3.13)

for some Bayes predictor g?Φ associated with RΦ (recall (3.9)). Then, for any g : X → R such
that P(g(X) = 0) = 0,

0 6 R(g)−R? 6 2c (RΦ(g)−R?Φ)
1/s

.

We refer to Exercise 3.5 below for examples of functions Φ satisfying the assumptions of this
theorem. See also Exercise 3.4 for checking that the right hand side of (3.13) is indeed nonnegative.

Proof. We start from (3.12) and then use Jensen’s inequality to write

0 6 R(g)−R? 6 E
[
|2η(X)− 1|1g(X)g?(X)60

]
6
(
E
[
|2η(X)− 1|s1g(X)g?(X)60

])1/s
.

We next upper bound the latter right hand side using (3.13) to obtain

0 6 R(g)−R? 6 2c
(
E
[(
Φ(0)− Cη(x) (g?Φ(x))

)
1g(X)g?(X)60

])1/s
.

We claim that
Φ(0)1g(X)g?(X)60 6 Cη(x)(g(x))1g(X)g?(X)60. (3.14)

If this is indeed the case, then, since Cη(x)(g(x))− Cη(x) (g?Φ(x)) > 0 by definition of g?Φ,

0 6 R(g)−R? 6 2c
(
E
[(
Cη(x)(g(x))− Cη(x) (g?Φ(x))

)
1g(X)g?(X)60

])1/s
6 2c

(
E
[
Cη(x)(g(x))− Cη(x) (g?Φ(x))

])1/s
= 2c (RΦ(g)−R?Φ)

1/s
,

where the last equality follows from (3.8).
In order to conclude the proof, it remains to show (3.14). Choosing the Bayes predictor g?(x) =

η(x)−1/2, and since Φ is nonincreasing on R−, we obtain, for any x ∈ X such that g(x)g?(x) 6 0,

Φ(0) 6 Φ (2g(x)g?(x)) = Φ ([2η(x)− 1]g(x)) = Φ
(
η(x)g(x) + (1− η(x))(−g(x))

)
6 η(x)Φ(g(x)) + (1− η(x))Φ(−g(x)) = Cη(x)(g(x)),

where we used the convexity of Φ to pass to the second line. This gives the claimed bound (3.14)
and allows to conclude the proof. ut

Exercise 3.4. Prove that Φ(0)− Cη(x) (g?Φ(x)) > 0 for any x ∈ X .

Correction. In view of the definition of g?Φ(x) as the minimizer of α 7→ Cη(x)(α), it holds

Cη(x) (g?Φ(x)) 6 Cη(x)(0) = Φ(0),

from which the result directly follows.

Exercise 3.5. Prove that the following functions are classification-calibrated and satisfy the as-
sumptions of Theorem 3.1:

(1) Φ(u) = (1− u)2;
(2) Φ(u) = max(1− u, 0);
(3) Φ(u) = log(1 + e−u) (note that we are not normalizing Φ here in order for (3.5) to hold).
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For the latter case, introduce the function ψ : [0, 1]→ R defined as

ψ(t) = log(2) + t log(t) + (1− t) log(1− t)− 1

2
(2t− 1)2,

and note that ψ(t) > 0 for all t ∈ [0, 1].

Correction. The three functions Φ which are considered are obviously nonincreasing on R−.
The first and last ones are clearly convex (for instance because they are smooth and their
respective derivatives u 7→ 2(u− 1) and u 7→ −1 + 1/(1 + e−u) are increasing). The second one
is convex as the maximum of the convex functions u 7→ 1−u and u 7→ 0. Indeed, consider Φ(u) =
max(Φ1(u), Φ2(u)) with Φ1, Φ2 : R→ R convex. Fix u, v ∈ R and t ∈ [0, 1]. Then, by convexity
of Φ1,

Φ1((1− t)u+ tv) 6 (1− t)Φ1(u) + tΦ1(v) 6 (1− t)Φ(u) + tΦ(v).

A similar inequality holds for Φ2, so that

Φ((1− t)u+ tv) = max {Φ1((1− t)u+ tv), Φ2((1− t)u+ tv)}
6 (1− t)Φ1(u) + tΦ1(v) 6 (1− t)Φ(u) + tΦ(v),

which allows to conclude that Φ is convex.
The three functions are also easily seen to be classification-calibrated in application of

Proposition 3.1 as they are all smooth around 0 with Φ′(0) < 0. It therefore suffice to check
that (3.13) is satisfied. This requires to first determine some Bayes predictor, based on the
characterization (3.9).

(1) For Φ(u) = (1− u)2, a Bayes predictor is

g?Φ(x) ∈ argmin
α∈R

{
η(x)(1− α)2 + (1− η(x))(1 + α)2

}
= argmin

α∈R

{
α2 − 2α(2η(x)− 1)

}
,

so that g?Φ(x) = 2η(x)− 1. Therefore,

Φ(0)− Cη(x) (g?Φ(x)) = 1− 4η(x)(1− η(x))2 − 4(1− η(x))η(x)2

= 1− 4η(x)(1− η(x))[1− η(x) + η(x)] = (2η(x)− 1)2,

which shows that (3.13) holds with s = 2 and c = 1/2. This implies that

0 6 R(g)−R? 6
»
RΦ(g)−R?Φ.

(2) For Φ(u) = max(1− u, 0), a Bayes predictor is

g?Φ(x) ∈ argmin
α∈R

{
η(x) max(1− α, 0) + (1− η(x)) max(1 + α, 0)

}
.

The argument of the minimum is a continuous piecewise affine function, equal to η(x)(1−α)
for α 6 −1 and (1 − η(x))(1 + α) for α > 1. The minimum of this function is therefore
attained either at α = −1 or α = 1. In fact,

g?Φ(x) =

∣∣∣∣∣−1 if η(x) < 1/2,

1 if η(x) > 1/2,

while g?Φ(x) can be any number in [−1, 1] if η(x) = 1/2. Therefore,

Φ(0)− Cη(x) (g?Φ(x)) = 1− η(x) max (1− g?Φ(x), 0)− (1− η(x)) max (1 + g?Φ(x), 0)

=

∣∣∣∣∣∣∣
1− 2η(x) if g?Φ(x) = −1 i.e. η(x) < 1/2,

2η(x)− 1 if g?Φ(x) = 1 i.e. η(x) > 1/2,

0 if η(x) = 1/2.
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This means that Φ(0)−Cη(x) (g?Φ(x)) = |2η(x)−1|, which shows that (3.13) holds with s = 1
and c = 1/2. This implies that

0 6 R(g)−R? 6 RΦ(g)−R?Φ.

(3) For Φ(u) = log(1 + e−u), a Bayes predictor is

g?Φ(x) ∈ argmin
α∈R

{
η(x) log

(
1 + e−α

)
+ (1− η(x)) log (1 + eα)

}
.

We consider η(x = 6∈ {0, 1}. The function α 7→ Cη(x)(α) to be minimized is smooth and
coercive (as it behaves as −η(x)α for α→ −∞ and (1− η(x))α for α→ +∞). There exists
therefore a global minimizer. The optimality condition for a minimizer reads

0 = C ′η(x)(α) = −η(x)
e−α

1 + e−α
+ (1− η(x))

eα

1 + eα
=
−η(x)e−α + 1− η(x)

1 + e−α
,

so that

e−α =
1− η(x)

η(x)
,

and finally

g?Φ(x) = log

Å
η(x)

1− η(x)

ã
.

Therefore, using that the function ψ has nonnegative values,

Φ(0)− Cη(x) (g?Φ(x)) = log(2)− η(x) log

Å
1 +

1− η(x)

η(x)

ã
− (1− η(x)) log

Å
1 +

η(x)

1− η(x)

ã
= log(2) + η(x) log η(x) + (1− η(x)) log(1− η(x))

>
1

2
(2η(x)− 1)2 = 2

Å
η(x)− 1

2

ã2
,

which shows that (3.13) holds with s = 2 and c = 1/
√

2. This implies that

0 6 R(g)−R? 6
»

2 (RΦ(g)−R?Φ).

To prove that ψ(t) > 0 for t ∈ [0, 1], we note that ψ(1/2) = 0, and next that

ψ′(t) = log(t)− log(1− t)− 4t+ 2,

so ψ′(1/2) = 0. Moreover,

ψ′′(t) =
1

t
+

1

1− t
− 4 =

1

t(1− t)
− 4 > 0.

This shows that ψ is convex, hence it is above its tangent at t = 1/2, the latter tangent
being the horizontal line. This allows to obtained the claimed nonnegativity of the function.

Impact on approximation and estimation errors. Let us conclude this section by discussing
two points and issues raised by the estimate of Theorem 3.1:

• For the same classification problem, several convex surrogates can be used... The predictor g?Φ
and the associated classification function f?Φ = sign (g?Φ) will however be different. This may
have an impact on the approximation error via the class of functions which are considered (see
Section 10.1).
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• Note that s = 2 for smooth losses (a rather generic fact, see [4, Section 4.1.4]); while s = 1 for
a non smooth surrogate such as the hinge loss. This means that the possibly nice convergence
rate for RΦ(g)−R?Φ will be degraded by the application of the square-root when considering
the prediction function f = sign(g). On the other hand, smooth losses are easier to optimize,
so that there is a trade-off to be found here.

3.2 Logistic regression

The presentation of logistic regression is based mostly on [40, Chapter 10] and [8, Section 4.3].
There are two ways to introduce the method for binary classification, by motivating it first as a
discriminative probabilistic model (see Section 3.2.1), and then connecting this heuristic approach
to the framework of Section 3.1 (see Section 3.2.2). In both case, predictions are based on a
nonlinear function combined with an affine one, whose parameter need to be estimated, as we
discuss in Section 3.2.3. We conclude the presentation in Section 3.2.4 by showing how to perform
multiclass classification.

Remark 3.2. Various extensions of the basic logistic regression can be found in the literature.
See for instance [40, Chapter 10] for discussions on robust logistic regression (when outliers are
present in the data set), Bayesian logistic regression (where the a posteriori distribution of θ is
computed in order to quantify the uncertainty in the predictions), hierarchical classification, ...

3.2.1 Binary logistic regression as a discriminative probabilistic model

The aim of discriminative probabilistic models1 is to learn the conditional distributions of the
data P(Y = c |X = x) for c ∈ Y. We consider here binary classification with Y = {0, 1}.

The idea behind logistic regression is to approximate the conditional distribution as

pθ(y = 1 |x) = σ
(
w>x+ b

)
, θ = (w, b) ∈ Rd × R, (3.15)

where we recall that σ is the sigmoid function (3.7). Note that pθ(y = 1 |x) ∈ [0, 1] thanks to
the properties of the sigmoid function. A linear classifier is then obtained by predicting the label
associated with the largest estimated conditional probability:

fθ(x) =

∣∣∣∣∣1 if pθ(y = 1 |x) > pθ(y = 0 |x),

0 if pθ(y = 1 |x) < pθ(y = 0 |x),

with some rule to break ties when pθ(y = 1 |x) = pθ(y = 0 |x). This can be summarized as

fθ(x) = 1{
log
(
pθ(y=1 | x)
pθ(y=0 | x)

)
>0
} = 1{w>x+b>0},

which corresponds to a historic model of classification known as the perceptron. The hyper-
plane w>x+b = 0 is called the decision boundary. The vector w ∈ Rd is normal to this hyperplane,
while b is the offset from the origin.

Remark 3.3. Note that we present here a model with a symmetric rule for classification, i.e. the
threshold value of pθ(y = 1 |x) for prediction is 1/2. In some applications, asymmetric thresh-
olds pθ(y = 1 |x) > δ should be considered; e.g. for spam classification it makes sense to con-
sider δ > 1/2 if y = 1 corresponds to spam emails, as one would prefer to not classify an
email as spam rather than classifying as spam a genuine email. In this case the decision boundary
is w>x+ b = σ−1(δ).

1 There are two classes of probabilistic models: discriminative and generative (see [40, Section 9.4] for a
discussion on advantages and disadvantages of both approaches). We will see generative models later
on. In essence, they model probability distributions pdata(x, y) as pdata(y)pdata(x|y), with pdata(x|y)
the generative part (obtaining new inputs from labels y). In contrast, discrimative models rely on the
conditional probability pdata(y|x) of the label y given the input x.
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It should be clear from the presentation that logistic regression allows to classify data which
is linearly separable. For more general datasets, one needs to resort to some featurization func-
tion ϕ(x) with values in RD, and consider the model

pθ(y = 1 |x) = σ
(
w>ϕ(x) + b

)
, θ = (w, b) ∈ RD × R.

A simple example would be two-dimensional data points, the ones with labels 1 being enclosed
in the unit disk, while the ones with labels 0 lie outside the disk. In this case, the featurization
function ϕ(x) = (x21, x

2
2) would allow to linearly separate the dataset. In fact, in the general case,

one should learn the optimal feature function on top of the parameters θ; for instance by using
a neural network (see Chapter 8). The idea is that, if the (nonlinear) featurization function is
sufficiently good, then a simple classification method based on a linear model, such as logistic
regression, can be sufficient to obtain good prediction performances.

The steepness of the sigmoid is controlled by the magnitude of w (but does not depend on b).
The larger ‖w‖2 is, the sharper the transition, which increases the risk of overfitting. The relative
values of pθ(y = 1 |x) and pθ(y = 0 |x) can be used to give some indication on the confidence of
the prediction.

The parameter θ to use for predictions is determined by maximizing the log-likelihood of the
data for the Bernoulli model under consideration; see Section 3.2.3.

3.2.2 Binary logistic regression through a classification-calibrated convex surrogate

We reinterpret in this section the method as introduced in Section 3.2.1 in the light of the math-
ematical framework of Section 3.2.2. We consider here the situation when Y = {−1, 1} (which is
not the setting considered in Section 3.2.1).

Let us first reformulate the model of Section 3.2.1 for Y = {−1, 1}. Equation 3.2.1 remains
unchanged, while (see Exercise 3.6 below)

pθ(y = −1 |x) = 1− σ
(
w>ϕ(x) + b

)
= σ

(
−
[
w>ϕ(x) + b

])
.

This can be summarized as

pθ(y |x) = σ (ygθ(x)) , gθ(x) = θ>φ(x), (3.16)

where
θ = (w, b) ∈ Rd, φ(x) = (ϕ(x), 1) ∈ Rd.

Let us next introduce the convex surrogate

Φ(u) = log
(
1 + e−u

)
, (3.17)

which is a classification-calibrated convex surrogate in view of Exercise 3.5. Moreover, recall-
ing (3.6) (up to an unimportant multiplicative factor log 2), we obtain, for some decision function g
(not necessarily affine at this stage)

Φ(yg(x)) = − log σ(yg(x)).

The associated risk is
RΦ(g) = E [− log σ(yg(x))] ,

so that the corresponding empirical risk for the affine decision function gθ is“RΦ,n(θ) = − 1

n

n∑
i=1

log σ (yigθ(xi)) .

Minimizing the empirical Φ-risk can, in view of (3.16), be understood as maximizing the log-
likelihood of the data in the framework of the discriminative model; see also (3.18) below.
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3.2.3 Estimating θ for prediction

We come back to the setting of Section 3.2.1. In practice, one finds an estimation θ̂ = (ŵ, b̂) of θ

and performs predictions on unseen data points x′ ∈ X based on 1{θ̂>φ(x′)>0}. The value of θ̂ is

found by minimizing some empirical risk, possibly with the addition of some regularization term.
Logistic regression, as described in Section 3.2.1, relies on a Bernoulli model. Recall that for a

Bernoulli random variable Z ∼ B(p), the likelihood of observing the realization z for Z is pz(1−
p)1−z. The negative log-likelihood of the training data set for the discriminative probabilistic
model of Section 3.2.1 is therefore“Rn(θ) = − 1

n

n∑
i=1

log
Ä
σ (gθ(xi))

yi [1− σ (gθ(xi))]
1−yi
ä

=
1

n

n∑
i=1

H
(
yi, σ (gθ(xi))

)
, (3.18)

with H the cross-entropy

H (y, ŷ) = −y log ŷ − (1− y) log (1− ŷ) . (3.19)

The quantity “Rn(θ) should be minimized in order to find θ̂. Let us however emphasize that, as
discussed in Section 3.2.2, this can be equivalently seen as minimizing some empirical Φ-risk, which
allows to understand logistic regression in the usual setting of supervised learning.

Exercise 3.6. Prove the following statements:

• σ(−t) = 1− σ(t) for any t ∈ R;
• σ′ = σ(1− σ);
• for z ∈ {0, 1} fixed, the function ψz : t 7→ H(z, σ(t)) is convex on R.

Deduce that the function hi : θ 7→ H
(
yi, σ (gθ(xi))

)
is convex.

Correction. The first equality follows from

σ(−t) =
1

1 + et
=

e−t

1 + e−t
= 1− 1

1 + e−t
= 1− σ(t).

For the second one, we use the above equality to write

σ′(t) =
e−t

(1 + e−t)
2 = σ(t)

e−t

1 + e−t
= (1− σ(t))σ(t).

Finally,

σ(t)z(1− σ(t))1−z =

Å
et

1 + et

ãz Å
1

1 + et

ã1−z
=

ezt

1 + et
,

so that, recalling the definition (3.17),

ψz(t) = − log
[
σ(t)z(1− σ(t))1−z

]
= −zt+ Φ(−t). (3.20)

This shows that ψz is the sum of a linear function and a convex function, which implies that ψz
is convex. Finally, the function hi is convex as the composition of the affine function θ 7→ gθ(xi)
and the convex function ψyi .

In view of Exercise 3.6, the empirical risk (3.18) is convex. This implies that this function should
be rather easy to minimize, and that gradient methods such as those presented in Chapter 4 should
work fine. Newton or quasi-Newton methods could also be used. These two options are considered
in the method implemented in scikit-learn.2 The computation of the gradient and of the Hessian
is made precise in the following exercise.

2 See Section 1.1.11.3 of https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
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Exercise 3.7. Compute the gradient and the Hessian of the function hi : θ 7→ H
(
yi, σ (gθ(xi))

)
.

Deduce the expression of the gradient and Hessian of “Rn.

Correction. Recall that hi(θ) = ψyi(gθ(xi)), with the notation of Exercise 3.6. First, us-
ing (3.20),

ψ′yi(t) = −yi − Φ′(−t) =
et

1 + et
− yi = σ(t)− yi.

Since ∇θgθ(xi) = φ(xi), we then obtain

∇θhi(θ) = ψ′yi(gθ(xi))∇θgθ(xi) = [σ(gθ(xi))− yi]φ(xi).

Finally,

∇θ“Rn(θ) =
1

n

n∑
i=1

[σ(gθ(xi))− yi]φ(xi) ∈ Rd.

Similarly, since ∇θσ(gθ(xi)) = σ(gθ(xi))[1− σ(gθ(xi))]φ(xi), one finds

∇2
θ
“Rn(θ) =

1

n

n∑
i=1

σ(gθ(xi))[1− σ(gθ(xi))]φ(xi)φ(xi)
> ∈ Rd×d.

The latter matrix is the sum of positive semidefinite matrices, so that the Hessian is positive
semidefinite (as expected, since the function under consideration is convex).

In practice, it is usually beneficial to normalize the data in some way, for instance by stan-
dardizing it, or by using a min-max scaler, as explained in Section 1.1.4. For the same reasons as
for linear least square regression (recall Sections 2.3 and 2.4), one should consider adding regu-
larization terms whose magnitude is determined by cross validation. These regularization terms
are typically ‖θ‖22, or ‖θ‖1 if the solution is expected to be sparse. When θ = (w, b) and the last
component of the feature function φ is 1, in which case b is simply an offset that allows to recenter
the data, it is customary to consider a regularization only on the part w, which determines the
steepness of the decision function.

3.2.4 Multiclass logistic regression

We finally discuss how to use logistic regression to predict labels in situations where there are 3
labels or more, building upon the discussion in Section 1.2.1.1. More precisely, we assume that
there are K > 3 classes, with Y = {1, . . . ,K}, and recall the expression of the softmax function,
defined for (a1, . . . , aK) ∈ RK as

SK(a1, . . . , aK) =

Ç
ea1∑K
k=1 eak

,
ea2∑K
k=1 eak

, . . . ,
eaK∑K
k=1 eak

å
∈ RK .

Predictions are based on the values of the decision function

Gθ(x) = Wφ(x) + b ∈ RK , W ∈ RK×d, b ∈ RK ,

by computing the k-th component of the vector SK , namely

pθ(y = k |x) = SK,k(Gθ(x)).

The label y′ predicted for a new input x′ is

y′ ∈ argmax
16k6K

pθ (y = k |x′) .
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Remark 3.4. The discussion in Remark 1.1 on the case K = 2 justifies a posteriori the choice
of the sigmoid function in (3.15) for logistic regression in the binary case. In essence, the choice
of this function can be traced back to the choice of the exponential function in the softmax to
transform real numbers into positive ones.

The loss function to consider for the training of the model is still the negative log-likelihood
of the data, which generalizes (3.18). More precisely, the likelihood of the outputs (y1, . . . , yn)
conditionally on the inputs (x1, . . . , xn) is

n∏
i=1

K∏
k=1

SK,k(Gθ(x))
y
i,k ,

where y
i
∈ {0, 1}K is the one-hot encoding of yi, i.e. the vector whose components are all equal

to 0 except the yi-th component which is equal to 1 (see the discussion in Section 1.1.4). Therefore,
the empirical risk to consider reads“Rn(θ) =

1

n

n∑
i=1

HK

(
y
i
, SK (Gθ(xi))

)
,

with HK the cross-entropy

HK

(
y, ŷ
)

= −
K∑
k=1

y
k

log ŷ
k
. (3.21)

Discussions similar to the ones written for binary logistic regression apply here concerning the
training of the model (see [40, Section 10.3.2] for expressions of the gradient and the Hessian, the
model being still convex) and its regularization.
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We discuss in this chapter how to minimize (regularized) training losses to find the parameters θ̂
allowing to perform predictions. This is done by using gradient methods, often stochastic gradient
dynamics, and their extensions – including momentum methods. The reason why gradient methods
are preferred is that the optimization problems under consideration are often set in very high
dimensional spaces, which makes (quasi-)Newton methods impractical. Our presentation is based
on [40, Chapter 8], [4, Chapter 5] and [49, Chapter 14].

We start by presenting the general framework of minimization problems in machine learning
in Section 4.1, listing in particular properties of optimization problems encountered when training
models, and discussing stochastic approaches where gradients are estimated with minibatches of
the data points. We next analyze gradient descent in Section 4.2, in a manner amenable to adap-
tations to stochastic versions; and discuss extensions in Section 4.3, in particular based on the
introduction of momentum variables. We finally present the main results of this chapter in Sec-
tion 4.4, namely stochastic gradient dynamics and its momentum extensions such as the celebrated
Adam method [30].

4.1 Minimization problems to solve and general strategy

We generically formulate the minimization problem to solve as

θ̂ ∈ argmin
θ∈Θ

F (θ), (4.1)

for some function F : Θ → R, which depends on the training set. Typically, Θ = Rd, so we are
in the context of continuous optimization, even for classification problems (thanks to the use of
surrogate functions as discussed in Section 3.1).
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The form of this optimization problem is motivated in Section 4.1.1. We next discuss the
various types of minimization problems considered in machine learning in Section 4.1.2. We finally
distinguish in Section 4.1.3 between deterministic gradient methods, where the full training set is
used, and stochastic methods, where the gradient is approximated over a randomly chosen fraction
of the data set.

4.1.1 Formulation of the problem

We consider in this chapter the minimization of (regularized) training losses to find parameters
used for predictions. More precisely,

θ̂λ ∈ argmin
θ∈Θ

¶“Rn(θ) + λΩ(θ)
©
, “Rn(θ) =

1

n

n∑
i=1

` (yi, fθ(xi)) , (4.2)

where Ω : X → R+ determines the regularization and λ > 0 is the strength of the regularization
term. Predictions are then performed based on fθ̂λ , for a value of λ chosen by (cross) validation, as

discussed in Section 2.3.1. The problem (4.2) can be written as (4.1) upon setting F = “Rn + λΩ.

Remark 4.1. As discussed in Section 2.3.1 as well, an alternative formulation of the minimization
problem is

θ̂D ∈ argmin
θ∈Θ

¶“Rn(θ)
∣∣∣Ω(θ) 6 D

©
, (4.3)

but we will restrict ourselves in this chapter to unconstrained problems of the form (4.2).

A very important remark at this stage is that the aim is not to obtain the best minimizer
to (4.1) (i.e. the best training error) but the smallest test error, in order to avoid overfitting. To
elaborate on this statement, denote by

R(f) = E [`(y, f(x))]

the risk associated with a predictor f , and assume that the minimization of the risk over predic-
tors fθ admits a global minimizer, namely

R (fθ?) = inf
θ∈Θ
R(fθ).

Consider λ = 0 for simplicity. Then, the risk associated with a minimizer θ̂ of the optimization
problem (4.2) can be decomposed as

R
(
fθ̂
)
− inf
θ∈Θ
R(fθ) = R

(
fθ̂
)
−R (fθ?)

= R
(
fθ̂
)
− “Rn (fθ̂)︸ ︷︷ ︸

estimation error

+ “Rn (fθ̂)− “Rn (fθ?)︸ ︷︷ ︸
optimization error

+ “Rn (fθ?)−R (fθ?)︸ ︷︷ ︸
estimation error

. (4.4)

This equality deserves several comments:

• first, the characterization of the quality of the optimization relies on function values (and not
on the distance between approximate minimizers, magnitude of gradients, etc);

• it suffices to aim for an accuracy in the optimization procedure of the order of the estimation
error, which is typically of order 1/

√
n (from an argument based on the Central Limit Theorem);

• concerning the optimization procedure, the key point is to ensure that the minimizer θ̂ found by
the numerical method is close enough to the best predictor θ? in the class, measured in terms
of function values. This motivates looking at the validation loss during the minimization, as a
proxy for the (test) loss. In practice, one should stop the optimization based on values of the
validation loss, which corresponds to the procedure known as early stopping ; see below.
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Early stopping. We describe here the procedure known as early stopping, referring to [40, Sec-
tion 13.5.1] for further references. The first step is to split the data into an actual training set and
a validation set. Optimization is performed on the training set only. Typically, the training loss
decreases over the iterations of the algorithm; while the validation loss initially decreases but then
increases at some point, or at least stops decreasing. This is a sign that the minimization algorithm
enters a regime where the training parameters are adjusted to fit the noise in the training data
rather than the structure of the data points.

Early stopping consists in ending the optimization procedure when the validation loss no longer
decreases, in order to avoid overfitting. More precisely, one defines a certain number of epochs,
called patience, after which the optimization is stopped if the validation loss has not further
decreased (see Section 4.1.3 for the definition of the notion of an epoch). The final value of θ
which is retained is the one for which the validation loss is minimal. This means that, in practical
implementations of the method, one keeps track of the minimal value of the validation loss and
the associated parameter, as well as the number of epochs for which the validation loss has not
decreased.

4.1.2 Types of problems to solve

Let us list here various characteristics of the optimization problems encountered in machine learn-
ing:

• convex vs. non-convex functionals: the loss functions for some problems are convex, hence easier
to minimize – for instance linear regression with Lasso (see Section 2.4) or logistic regression
(see Section 3.2.3). Other problems are inherently non convex. A prominent example is the
training of neural networks (see Chapter 8). For non convex problems, optimization methods
typically converge to local minima.
The theoretical analysis of optimization methods is often performed for (strongly) convex
functionals, in order to write proofs and obtain clean statements. The associated numerical
algorithms can be used for non convex problems, although there are no convergence guarantees
in this case.

• constrained vs. unconstrained problems: most of the time we will consider unconstrained prob-
lems, where the functional to minimize includes some regularization term, as in (4.2). We will
only briefly mention constrained problems such as (4.3) in very specific situations.

• smooth vs. non-smooth optimization: in certain situations, the function F to minimize in (4.1)
is not continously differentiable, so that the gradient is not well defined everywhere. This
is the case for instance for (4.2) with a regularization given by Ω(θ) = ‖θ‖1, or if the loss
function ` relies on the hinge loss (see Section 3.1.1.2). The function to minimize is however
often the sum of a regular part and a non smooth one. One option to fall back on a smooth
optimization problem is to rely on proximal methods (see for instance [40, Section 8.6]). Another
option, which we consider here, is to replace gradients in the numerical methods at hand by
subgradients (see below).

Sub-gradients. We recall here the notion of subgradients, and compute the subgradients of some
functions appearing in machine learning problems. For a function F : Rd → R, an element G ∈ Rd

is a subgradient of F at θ ∈ Rd if

∀z ∈ Rd, F (z) > F (θ) +G>(z − θ).

The set of subgradients at θ ∈ Rd is called the subdifferential at θ, and is denoted by ∂F (θ).
The subgradient is non-empty for convex functions F . If F is moreover differentiable at θ ∈ Rd,
then ∂F (θ) = {∇F (θ)}.

Exercise 4.1. Compute the subdifferential of F : R→ R+ defined by F (θ) = |θ|.



70 4 (Stochastic) Gradients methods

Correction. The function F is C1 on R\{0}, so that ∂F (θ) = {F ′(θ)} for θ 6= 0, with F ′(θ) =
1θ>0 − 1θ<0. For θ = 0, we consider F (z)− F (0)−Gz = |z| −Gz > 0 for all z ∈ R if and only
if G ∈ [−1, 1]. This shows that ∂F (0) = [−1, 1].

Exercise 4.2 (Hinge loss). Fix y ∈ R and x ∈ Rd. Compute the subdifferential with respect
to θ ∈ Rd of the function F (θ) = max

(
0, 1− yθ>x

)
based on the hinge loss.

Correction. The function is C1 for θ ∈ Rd such that 1−yθ>x 6= 0, so that ∂F (θ) = {∇F (θ)}.
When 1− yθ>x > 0,

∇F (θ) = −yx,

while ∇F (θ) = 0 for 1− yθ>x < 0.
Consider next θ ∈ Rd such that θ>x = y (so that 1 − yθ>x = 0). The subgradient of the

hinge loss f : t 7→ min(1− t, 0) at t = 1 is ∂f(0) = [−1, 0] since, for α ∈ [−1, 0], it holds

∀t < 1, f(t)− f(1)− α(t− 1) = (1− t)(1 + α) > 0,

while, for t > 1, one has f(t)−f(1)−α(t−1) = −α(t−1) > 0. On the other hand, one can check
that one of the two previous inequalities does not hold if α 6∈ [−1, 0]. Since F is the composition
of f with the smooth function θ 7→ yx>θ, one finally obtains ∂F (θ) = {αyx, −1 6 α 6 0}.
Indeed, for G = αyx ∈ ∂F (θ),

F (η)− F (θ)−G>(η − θ) = f
(
yx>η

)
− f

(
yx>θ

)
− αyx>(η − θ) = f(t)− f(1)− α(t− 1)

with t = yx>η.

4.1.3 Stochastic vs. deterministic methods

The computation of the full gradient ∇F (θ) for functions such as those appearing in (4.2) has
a computational cost proportional to n because one needs to sum over all data points. Since
approximate minimizers are sufficient (in view of the discussion after (4.4)), a precise gradient is
not needed, in particular at the early stages of the minimization procedure. An unbiased estimate
of the gradient may be sufficient.

Along some sequence of parameters (θt)t>0 obtained with the optimization method at hand,
we look for a stochastic approximation ĝt(θ) of the gradient satisfying

E [ĝt(θt−1) | θt−1] = ∇F (θt−1). (4.5)

Let us next describe three typical strategies to this end, for the specific case when F is the empirical
training loss “Rn appearing in (4.2):

(i) stochastic approximation is a historical strategy, dating back to Robbins–Monro, which cor-
responds to setting

ĝt(θ) = ∇θ` (yIt , fθ(xIt)) ,

where It are independent and identically distributed random variable with uniform distri-
bution in {1, . . . , n}. It is clear in this context that (4.5) holds. The main interest of this
approach is that the computation of the estimator of the gradient is unexpensive as a single
data point is needed. On the other hand, the estimator may suffer from a large variance and
therefore not be a good enough approximation of the gradient in order to drive the parameter
to local minima of the loss function.
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(ii) minibatching is an extension of stochastic averaging where several data points are chosen.
More precisely, the method relies on sampling a random set It of m indices sampled at
random from {1, . . . , n}, with or without replacement. The estimator of the gradient is

ĝt(θ) =
1

m

∑
i∈It

∇θ` (yi, fθ(xi)) .

The computational cost of this estimator is proportional to m. Note also that minibatch-
ing reduces to stochastic approximation when m = 1, and to a full gradient computation
when m = n and the sampling of the indices is performed without replacement. Further
stastistical properties of minibatching are studied in Exercise 4.3.

(iii) shuffling is often used in practice, although it does not allow to write (4.5). More precisely, the
set of n data points is first randomly permutated, then decomposed in n/m batches of sizes m
(assuming that the former number is an integer). One then computes the gradient over each
of the n/m batches, and updates the parameter θ using some gradient method. This leads
to the very important notion of epoch, which corresponds to the associated n/m elementary
gradient steps. This means that one passes per construction once (and only once) over all
data points in one epoch of this procedure; in contrast to estimators based on sampling with
or without replacement with a minibatch of size m, for which a data point can be seen several
times or none over n/m elementary steps.

Exercise 4.3 (Statistical properties of minibatching). Denote the full gradient by

g(θ) =
1

n

n∑
i=1

Gi(θ), Gi(θ) = ∇θ` (yi, fθ(xi)) ∈ Rd,

and consider the minibatched estimator the gradient for the random set Im = {i1, . . . , im} ⊂
{1, . . . , n}, namely

ĝm(θ) =
1

m

m∑
j=1

Gij (θ).

Introduce also the empirical covariance

Σ(θ) =
1

n− 1

n∑
i=1

(Gi(θ)− g(θ)) (Gi(θ)− g(θ))
> ∈ Rd×d.

(a) Show that E
î(
Gij (θ)− g(θ)

)
(Gik(θ)− g(θ))

>ó
= 0 when j 6= k and sampling is performed

uniformly in {1, . . . , n} with replacement.

(b) Deduce that Cov (ĝm(θ)) =
1

m

Å
1− 1

n

ã
Σ(θ) when sampling is performed with replacement.

(c) We next consider sampling without replacement for the end of this exercise. Show that

Var (1k∈Im) =
m

n

(
1− m

n

)
, Cov (1j∈Im ,1k∈Im) = −m(n−m)

n2(n− 1)
.

(d) Prove that

Cov (ĝm(θ)) =
1

m2

n∑
i=1

‹Gi(θ)‹Gi(θ)>Var (1i∈Im) +
1

m2

∑
i 6=j

‹Gi(θ)‹Gj(θ)>Cov (1i∈Im ,1j∈Im) ,

where ‹Gi(θ) = Gi(θ)− g(θ).

(e) Conclude that Cov (ĝm(θ)) =
1

m

(
1− m

n

)
Σ(θ) for sampling without replacement.
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Correction.

(a) The random variables ij and ik are independent when j 6= k, so that

E
î(
Gij (θ)− g(θ)

)
(Gik(θ)− g(θ))

>ó
= E

[
Gij (θ)− g(θ)

]
E [Gik(θ)− g(θ)]

>
= 0,

since E
[
Gij (θ)

]
= E

[
Gij (θ)

]
= g(θ).

(b) It holds, using first the result of the first question, then the fact that the random indices ij
are identically distributed, and finally that i1 is uniformly distributed on {1, . . . , n},

Cov (ĝm(θ)) =
1

m2

m∑
j,k=1

E
î(
Gij (θ)− g(θ)

)
(Gik(θ)− g(θ))

>ó
=

1

m2

m∑
j=1

E
î(
Gij (θ)− g(θ)

) (
Gij (θ)− g(θ)

)>ó
=

1

m
E
î
(Gi1(θ)− g(θ)) (Gi1(θ)− g(θ))

>ó
=

1

mn

n∑
i=1

(Gi(θ)− g(θ)) (Gi(θ)− g(θ))
>

=
1

m

n− 1

n
Σ(θ),

from which the claimed equality follows.
(c) The first equality is obtained by noting that the probability that a given index k belongs

to Im is the ratio of the number of sets of size m containing the index k under consideration
(choose m− 1 indices among n− 1 remaining indices) over the total number of subsets of
size m (choose m indices among n):

E (1k∈Im) =

Å
n− 1
m− 1

ãÅ
n
m

ã =
m

n
.

Therefore,

Var (1k∈Im) = E (1k∈Im)− E (1k∈Im)
2

=
m

n
−
(m
n

)2
=
m

n

(
1− m

n

)
.

For the second equality, we compute the probability that a given couple of indices (j, k)
belongs to Im. This is the ratio of the number of sets of size m containing the indices j, k
under consideration (choose m − 2 indices among n − 2 remaining indices) over the total
number of subsets of size m (choose m indices among n):

E
(
1(j,k)∈Im×Im

)
=

Å
n− 2
m− 2

ãÅ
n
m

ã =
m(m− 1)

n(n− 1)
.

Therefore,

Cov (1j∈Im ,1k∈Im) = E
(
1(j,k)∈Im×Im

)
−
(m
n

)2
=
m(m− 1)

n(n− 1)
−
(m
n

)2
=
n(m2 −m)− (n− 1)m2

(n− 1)n2
=
m2 − nm
(n− 1)n2

,

which leads to the desired result.
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(d) The formula is directly obtained by noting that

ĝm(θ)− g(θ) =
1

m

n∑
k=1

Gk(θ)1k∈Im − g(θ) =
1

m

n∑
k=1

‹Gk(θ)1k∈Im ,

and expanding the product appearning in the covariance.
(e) We plug the expressions found in the third question into the equality from the fourth

question. This gives

Cov (ĝm(θ)) =
1

m2

m

n

(
1− m

n

) n∑
i=1

‹Gi(θ)‹Gi(θ)> − 1

m2

m(n−m)

n2(n− 1)

∑
i 6=j

‹Gi(θ)‹Gj(θ)>
=

1

m

(
1− m

n

) 1

n

n∑
i=1

‹Gi(θ)‹Gi(θ)> − 1

n(n− 1)

∑
i6=j

‹Gi(θ)‹Gj(θ)> .
Now,

n∑
i=1

‹Gi(θ) = 0,

so that

0 =

(
n∑
i=1

‹Gi(θ))( n∑
i=1

‹Gi(θ))> =
∑
i6=j

‹Gi(θ)‹Gj(θ)> +

n∑
i=1

‹Gi(θ)‹Gi(θ)>.
Therefore,

Cov (ĝm(θ)) =
1

m

(
1− m

n

) ï 1

n
+

1

n(n− 1)

ò n∑
i=1

‹Gi(θ)‹Gi(θ)>,
which leads to the desired conclusion.

4.2 Simple gradient descent

We study in this section gradient descent, which consists in iterating

θt = θt−1 − γt∇F (θt−1), (4.6)

starting from some given value of θ0, and using a sequence of learning rates or stepsize se-
quences (γt)t>0. These learning rates can be either kept constant, decay according to a given
schedule, or found at each step by some line search procedure.

Remark 4.2. When the function F to optimize is not smooth, the descent direction should be
replaced by any element of the subgradient, namely

θt = θt−1 − γtvt−1, vt−1 ∈ ∂F (θt−1).

The motivation for gradient dynamics is that it can be considered as a time discretization of
the continuous dynamics θ̇(t) = −∇F (θ(t)), which is such that

d

dt

[
F (θ(t))

]
= −|∇F (θ(t))|2 6 0.
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The values of F are therefore nonincreasing along the gradient dynamics. There are of course many
generalizations of gradient descent, such as conjugate gradient, but our aim here is to understand
the algorithms used in machine learning such as stochastic gradient descent and its refinements
and extensions.

We therefore provide in this section various convergence results for function values, in scenarios
typical of machine learning applications; starting with the simplest case in Section 4.2.1, namely
convex Lipschitz losses; and then discuss other settings in Section 4.2.2.

4.2.1 Analysis for a simple case: convex Lipschitz losses

The presentation in this section is taken from [49, Section 14.1]. We consider a convex and ρ-
Lipschitz target F , and perform gradient descent with a fixed learning rate γ > 0. The aim is to
obtain bounds on F (θt)− F (η?), where η? is a minimizer1 of F , and

θt =
1

t

t−1∑
s=0

θs (4.7)

is obtained by iterate averaging (this makes sense for convex functions, but should not be employed
for non-convex ones; see also Section 4.2.2 for convergence results not relying on iterate averaging).
Note that, by convexity,

F (θt)− F (η?) 6
1

t

t−1∑
s=0

F (θs)− F (η?). (4.8)

Moreover, still by the convexity of F , it holds F (θ)− F (η?) 6 (θ − η?)>∇F (θ), so that

F (θt)− F (η?) 6
1

t

t−1∑
s=0

(θs − η?)>∇F (θs).

The next lemma allows to bound the right hand side of the previous equality. We state it in a
general manner, with descent directions vs that need not be ∇F (θs), as this result will also be
used later on in Section 4.4.3 for stochastic gradient descent.

Lemma 4.1. Consider an arbitrary sequence of vectors v0, . . . , vt−1 ∈ Rd, and a sequence of pa-
rameters iteratively defined from a given θ0 ∈ Rd as θt = θt−1 − γvt−1. Then,

t−1∑
s=0

(θs − η?)>vs 6
‖θ0 − η?‖2

2γ
+
γ

2

t−1∑
s=0

‖vs‖2.

In particular, if ‖vs‖ 6 ρ and γ =
‖θ0 − η?‖
ρ
√
t

, then

1

t

t−1∑
s=0

(θs − η?)>vs 6
ρ‖θ0 − η?‖√

t
.

Note that the above result is not an “anytime” result as the learning rate depend on the
horizon t and the bound is valid only for this time t.

Proof. We rewrite (θs − η?)
>vs as the difference of two terms at subsequent times in order to

introduce a telescopic sum. More precisely,

1 We do not denote the minimizer of F by θ? as this notation is kept for the argmin of the risk θ 7→ R(fθ),
and not the empirical risk.
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(θs − η?)>vs =
1

γ
(θs − η?)>γvs =

1

2γ

(
−‖θs − η? − γvs‖2 + ‖θs − η?‖2 + γ2‖vs‖2

)
=

1

2γ

(
−‖θs+1 − η?‖2 + ‖θs − η?‖2

)
+
γ

2
‖vs‖2.

Therefore,
t−1∑
s=0

(θs − η?)>vs =
1

2γ

(
‖θ0 − η?‖2 − ‖θt − η?‖2

)
+
γ

2

t−1∑
s=0

‖vs‖2,

which leads to the first inequality to prove. The second inequality is proved by first using the
upper bound on ‖vs‖ to write

1

t

t−1∑
s=0

(θs − η?)>vs 6
‖θ0 − η?‖2

2γt
+
γρ2

2
,

and then minimizing the right hand side with respect to γ. The optimal value is characterized by

ρ2

2
=
‖θ0 − η?‖2

2γ2t
,

which indeed leads to the claimed expression for γ and allows to conclude. ut

We can conclude this section by applying the result of Lemma 4.1 for vs = ∇F (θs). Note
that ‖∇F (θs)‖ 6 ρ when F is ρ-Lipschitz (this is easy to prove when F ∈ C1, and can be
extended to subgradients as discussed in [49, Lemma 14.7]).

Corollary 4.1. Consider a convex and ρ-Lipschitz function F , and a learning rate γ =
‖θ0 − η?‖
ρ
√
t

.

Then, for the simple gradient dynamics (4.6),

F (θt)− F (η?) 6
ρ‖θ0 − η?‖√

t
.

This means that, to achieve an error of at most ε > 0 in function values, it suffices to run
gradient descent for t > ρ2‖θ0 − η?‖2/ε2 steps.

4.2.2 Other situations

We review in this section some of the results presented in [4, Section 5.2], to which we refer for
a more complete presentation. The results we highligh are anytime results, which do not require
iterate averaging:

• Consider F ∈ C1 which is L-smooth and µ-strongly convex, namely

∀η ∈ Rd,
∣∣∣F (η)− F (θ) +∇F (θ)>(η − θ)

∣∣∣ 6 L

2
‖η − θ‖22. (LS),

and
∀η ∈ Rd, F (η) > F (θ) +∇F (θ)>(η − θ) +

µ

2
‖η − θ‖22. (SC).

One can prove that L is the largest eigenvalue of ∇2F (in modulus for non-convex functions)
when F ∈ C2, while µ is the smallest eigenvalues of ∇2F . In this context, gradient descent
with the learning rate γ = 1/L leads to an exponential convergence in function values:

F (θt)− F (η?) 6 e−t/κ (F (θ0)− F (η?)) ,

where κ = L/µ > 1 is a conditioning number. Typically, µ is small and of the order of the
regularization strength for ridge regression for instance.
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• When F is L-smooth, convex and γ = 1/L, then

F (θt)− F (η?) 6
L

2t
‖θ0 − η?‖2.

• The convergence rate is smaller for less smooth functions F . When F is convex and ρ-Lipschitz
continuous, and upon choosing

γt =
‖θ0 − η?‖
ρ
√
t

,

one can show that

min
06s6t−1

F (θs)− F (η?) 6
ρ‖θ0 − η?‖

2
√
t

(2 + log t).

This result is the counterpart of the estimates of Corollary 4.1 when no averaging of the
parameter is performed. Note that iterate averaging may be a better option for convex targets
if the function F itself is expensive to evaluate (so that one would not want to compute its
values at all timesteps; this is particularly true for stochastic methods where minibatching is
used in order to avoid going over all data points).

4.3 Deterministic methods beyond simple gradient descent

Gradient descent methods are often not used as such in practice, because their convergence can be
quite slow. There are two principal ways to accelerate them in applications of machine learning:

(i) rely on second order methods such as Newton and quasi-Newton methods, although this may
require to compute the Hessian (often computationally too expensive) or store the gradients
over several iterations (which can require a large storage capacity when the parameters are
of high dimension as for deep neural networks);

(ii) introduce some momentum in the optimization method.

The current practice in machine learning is more towards the second approach, and we will there-
fore present only methods related to this option. The key idea is to introduce a new variable ω,
thought of as a momentum (mass times velocity in physics), and to go from the non-inertial
dynamics θ̇(t) = −∇F (θ(t)) to the inertial dynamics®

θ̇(t) = ω(t),

ω̇(t) = −∇F (θ(t))− ξω(t),
(4.9)

where ξ > 0 is some friction coefficient. The inertia inherent in the dynamics motivates the
terminology “heavy ball method” which is sometimes used to refer to this class of evolution
equations. In fact, (4.9) corresponds to Polyak averaging (which dates back to 1964), and can
also be seen as some Hamiltonian dynamics with added dissipation through viscous friction. In
particular, denoting by H the Hamiltonian,

dH(θ(t), ω(t))

dt
= −ξω(t)2 6 0, H(θ, ω) = F (θ) +

1

2
ω2.

Let us first further elaborate on the notion of inertia, and motivate that (4.9) can be seen as
some gradient dynamics with memory. We integrate the second equation in (4.9) by noting that

d

dt

(
eξtω(t)

)
= −eξt∇F (θ(t)),

so that

ω(t) = e−ξtω(0)−
ˆ t

0

e−ξ(t−s)∇F (θ(s)) ds.
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Therefore, for ω(0) = 0 (or for t large, since the first term disappers in this limit),

θ̇(t) = −
ˆ t

0

e−ξ(t−s)∇F (θ(s)) ds.

This should be compared to gradient dynamics where ∇F (θ(t)) appears on the right hand side.
It is clear from the latter equation that (4.9) can be considered as some gradient dynamics where
the drift is averaged in time.

In order to relate the dissipative Hamiltonian dynamics (4.9) to the gradient dynamics, note
that one can rewrite the second equation as

θ̈(t) + ξθ̇(t) = −∇F (θ(t)),

and introduce the time-rescaled solution θξ(t) = θ(ξt) to obtain (see Exercise 4.4)

θξ(t) = θξ(0)−
ˆ t

0

∇F (θξ(s)) ds+ O

Å
1

ξ

ã
. (4.10)

This motivates that the limiting dynamics θ∞(t) is a solution to the non inertial dynamics.

Exercise 4.4. Prove the equality (4.10).

Correction. Note that the dynamics can be integrated as

ξ(θ(t)− θ(0)) = θ̇(0)− θ̇(t)−
ˆ t

0

∇F (θ(s)) ds,

so that

θ(ξt) = θ(0) +
ω(0)− ω(ξt)

ξ
− 1

ξ

ˆ ξt

0

∇F (θ(s)) ds = θ(0) +
ω(0)− ω(ξt)

ξ
−
ˆ t

0

∇F (θ(ξs)) ds,

from which the result easily follows.

Nesterov accelerated gradient. Appropriate discretizations of (4.9) lead to numerical methods
with decay rates 1/t2 for smooth (non strongly) convex functions, instead of the slower rate 1/t
obtained with gradient methods; see [4, Exercise 5.15]. This motivates the terminology “acceler-
ated”, in particular given that the rate 1/t2 is known to be optimal. Nesterov’s method is one such
instance of a discretization of (4.9). It is can be formulated as (see for instance [51, Appendix A.1])®

ωt+1 = βωt − γ∇F (θt + βωt),

θt+1 = θt + ωt+1.
(4.11)

This discrete time evolution can be rewritten in order to make the relationship with (4.9) more
apparent. One introduces to this end ωt =

√
γω̂t and writes β = e−ξ

√
γ , so thatω̂t+1 = ω̂t +

β − 1
√
γ

√
γω̂t −

√
γ∇F (θt + β

√
γω̂t) ,

θt+1 = θt +
√
γω̂t+1,

or equivalently 
ω̂t+1 − ω̂t√

γ
= −∇F (θt + β

√
γω̂t)−

1− β
√
γ
ω̂t,

θt+1 − θt√
γ

= ω̂t+1,

which corresponds to some discretization of (4.9) with a time step
√
γ since (1−β)/

√
γ = ξ+O(

√
γ).

In practice, γ and β have to be carefully chosen so that the dynamics has a stable behavior. The
above derivation, which suggests that β = e−ξ

√
γ for some friction coefficient ξ > 0, provides some

guidelines to this end.
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4.4 Stochastic gradient descent and its extensions

We turn in this section to stochastic gradient dynamics (SGD) and their variations. These methods
are currently the most commonly used to minimize empirical risk functions, and result from
replacing ∇F (θ) in gradient dynamics by some stochastic approximation, typically obtained via
minibatching, as described in Section 4.1.3. More precisely, we consider the dynamics

θt = θt−1 − γtĝt(θt−1), E [ĝt(θt−1) | θt−1] = ∇F (θt−1). (4.12)

One can rewrite the estimator of the gradient as

ĝt(θ) = ∇F (θ) +Σ(θ)1/2Zt, Σ(θ) = E
î
(ĝt(θ)−∇F (θ)) (ĝt(θ)−∇F (θ))

>ó ∈ Rd×d,

where Z ∈ Rd is a random vector with mean 0 and unit covariance. Typically, Σ(θ) is of order 1/m
when consider minibatching with batches of size m. When the stepsize is fixed to some value γ > 0,
one can show that the discrete dynamics (4.12) is similar in behavior to solutions of the following
stochastic differential equation observed at times multiples of γ (see for instance [48]):

dθs = −∇F (θs) ds+
√
γΣ(θs)

1/2dWs.

This corresponds to gradient dynamics perturbed by some noise, whose magnitude diminishes as
the stepsize is reduced or the minibatch size m is increased.

4.4.1 Choice of stepsizes/learning rates

The timestep/learning rate in (4.12) should be chosen as a compromise between not being too
small, otherwise the dynamics takes too much time to converge, but also not being too large,
otherwise there is too much gradient noise and the dynamics may be unstable (similarly to what
happens for standard gradient dynamics). A practical approach to setting the timestep consists
in starting with a small learning rate, performing the minimization for a (small) subset2 of the
data for a fixed (rather small) number of steps, and then increasing the timestep until the best
value achieved for each learning rate starts to increase. The timestep will then be chosen to be of
the order of magnitude of the timestep leading to the smallest value of the target function for the
chosen subset of data, possibly reduced a bit for cautiousness, in order to take into account that
the prediction for the optimal timestep may not be fully reliable as only a subset of the data was
used.

Some practitioners advocate using learning schedules. A first option is to resort to decreasing
timesteps, inspired by proofs of convergence in the context of stochastic approximation algorithms
à la Robbins–Monro [46]. Typical conditions on the learning rates are∑

t>1

γ2t < +∞,
∑
t>1

γt = +∞,

which can be achieved for instance with γt = t−α with 1/2 < α 6 1. Another option is to
consider optimization in various stages where the learning rate is kept constant, then decreased
after a certain number of iterations (either fixed or depending on the behavior of the values of the
function to optimize). For deep learning, a practical recommendation can be to start with initially
small learning rates as one may be far away from a local minimum, so that the gradient of the
loss function can be large; then to increase the learning rate when convergence starts (i.e. as the
gradient of the function to minimize starts to decrease in magnitude) in order to favor a better
exploration of the loss landscape; and finally reduce the learning rate at the end to fine tune the
convergence to a clearly defined local minimum.

2 More generally, cross-validation can be done with a fraction of the data only to coarsely identify inter-
esting regions of parameter space, before fine tuning with more (all) data points.
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4.4.2 Variance reduction

It can be beneficial to reduce the minibatching noise in order to accelerate the convergence (from
a theoretical perspective, go from convergence rates of order 1/t, typical of stochastic gradient
dynamics, to exponential convergence rates for gradient dynamics on strongly convex targets). An
idea to this end is to rely on control variate techniques where the estimator for the gradient is
replaced by

g̃t(θ) = ĝt(θ) +∇F (θ̃)− ĝt(θ̃),

with θ̃ fixed and ∇F (θ̃) computed exactly. Note that the same minibatch is used for the two
estimators on the right hand side of the previous equality. By construction, g̃t is an unbiased
estimator of ∇F . Moreover,

g̃t(θ) = ∇F (θ̃) +
1

m

∑
i∈It

[
∇θ` (yi, fθ(xi))−∇θ`

(
yi, fθ̃(xi)

)]
,

so that the random part of the estimator comes only from the second term, which is small when θ
is close to θ̃ (typically with a variance of order ‖θ− θ̃‖2). In practice, this is done by computing the
exact gradient for certain iterates θkt0 (with t0 some fixed period) and using the control variate
for the next gradient steps kt0 6 t 6 (k + 1)t0. This method is known as “stochastic variance
reduced gradient” (SVRG). A popular extension of this approach is provided by SAGA (“stochastic

averaged gradient accelerated”), where ∇F (θ̃) is not computed except for the initial condition,
and the control variate is obtained by combining this single exact gradient and an average over
the estimators of the gradient in subsequent steps.

4.4.3 Theoretical analysis

The convergence analysis of the SGD method (4.12) is similar to the derivation performed in
Section 4.2.1 for deterministic gradient dynamics, with expectations at well chosen places. These
expectations are with respect to realizations of the sampling noise in the estimator of the gradient,
typically through the choice of the minibatch (which is conditionally independent of θt−1). We
rely in particular on Lemma 4.1, where the vectors vt are replaced by the estimators ĝt+1(θt) of
the gradient.

Theorem 4.1. Assume that F is convex, and that, for all s > 1,

E
î
‖ĝs(θs−1)‖2

ó
6 ρ2, E [ĝs(θs−1) | θs−1] = ∇F (θs−1). (4.13)

Fix t > 1 and consider the learning rate

γ =
‖θ0 − η?‖
ρ
√
t

.

Then, the following convergence result holds for the averaged parameter θt defined in (4.7):

0 6 E
[
F (θt)

]
− F (η?) 6

ρ‖θ0 − η?‖√
t

.

Proof. By convexity, it still holds, by taking expectations in (4.8),

0 6 E
[
F (θt)

]
− F (η?) 6

1

t

t−1∑
s=0

E [F (θs)]− F (η?).

Now,
F (θs)− F (η?) 6 (θs − η?)>∇F (θs) = (θs − η?)>E [ĝs+1(θs) | θs] ,
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so that, by the law of total expectations,

E [F (θs)]− F (η?) 6 E
[
(θs − η?)>ĝs+1(θs)

]
.

Therefore, using Lemma 4.1 with vs = ĝs+1(θs),

E
[
F (θt)

]
− F (η?) 6

‖θ0 − η?‖2

2γt
+
γ

2t

t−1∑
s=0

E
î
‖ĝs+1(θs)‖2

ó
6
‖θ0 − η?‖2

2γt
+
γρ2

2
.

The conclusion then follows by same arguments as those leading to Corollary 4.1. ut

Let us conclude this section with some remarks. First, it is a good practice to perform parameter
averaging only after some burn-in period, when the current values of the parameters are rather
close from each other. This avoids having some bias related to initially irrelevant values of the
parameter. Let us next note that the convergence estimate which is obtained for SGD is similar
to the one obtained for gradient dynamics (with some adaptation in the assumptions, in the sense
that the inequality in (4.13) replaces the condition that F is ρ-Lipschitz), but for a numerical
method which is much cheaper as only (possibly crude) unbiased estimators of the full gradient
are needed. This motivates very strong gains in performance when using SGD.

Exercise 4.5. We provide in this exercise a sufficient condition for the first condition in (4.13)

to hold. More precisely, consider minibatching for the loss function “Rn in (4.2), and assume that

∀i ∈ {1, . . . , n}, ‖∇θ` (yi, fθ(xi))‖ 6 ρ.

Prove that the first condition in (4.13) holds and that F = “Rn is ρ-Lipschitz.

Correction. Note that, by a Cauchy–Schwarz inequality,

‖ĝt(θt−1)‖2 =

∥∥∥∥∥ 1

m

∑
k∈It

∇θ` (yj , fθ(xj))

∥∥∥∥∥
2

6
1

m

∑
k∈It

‖∇θ` (yj , fθ(xj))‖2 6 ρ2,

so that the same bound holds in expectation. The fact that “Rn is ρ-Lipschitz follows directy
from the fact that it is the average of the functions θ 7→ ` (yi, fθ(xi)), which are ρ-Lipschitz
since their gradients are uniformly bounded by ρ.

4.4.4 Momentum versions

Let us conclude this section by presenting momentum extensions of SGD, which also include
some form of preconditioning in order to tackle the anisotropy of the loss landscape. For gradient
dynamics, a preconditioning consists in considering the dynamics

θ̇(t) = −M−1∇F (θ(t)).

When F (θ) = θ>Sθ/2, a good preconditioner is M = S as the dynamics then reduces to θ̇(t) =
−θ(t), for which all components evolove on the same timescale. In general, a convenient choice
of preconditioning for θ close to a local minimum η? is M = ∇2F (η?) since the gradient of the
loss function can be locally approximated as ∇F (θ) ≈ ∇2F (η?)(θ− η?). In practice, inverting the
Hessian or an approximation of it can be quite expensive, so that diagonal preconditioners are
typically considered.

Adam [30], introduced in 2014, is currently the most common optimization algorithm in ma-
chine learning, in particular for large scale neural network models. The name is derived from
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“adaptive moment estimation”, as it is a momentum extension of SGD, with an adaptive pro-
cedure which provides some form of diagonal preconditioning. More precisely, the update of the
parameter is performed in a componentwise manner as

θt,k = θt−1,k − γ
vt−1,k

ε+
√
st−1,k

,

with
vt = β1vt−1 + (1− β1)ĝt(θt−1), st,k = β2st−1,k + (1− β2)ĝt,k(θt−1)2,

where ε > 0 is some (small) regularization parameter, and β1, β2 ∈ [0, 1]. The vector v represents
some averaged sum of the estimated gradients, which allows to introduce some inertia in the
dynamics. The vector st performs some time averaging of the second moment of the components
of the gradients, which allows to renormalize the magnitude of the gradient in order to have updates
in the parameters of order γ somewhat independently of whether the dynamics is in a region of
small or large gradients. In fact, as the variables v and s are initialized as v0 = 0 and s0 = 0, it is
customary to correct for the bias incurred by this initialization by considering

v̂t =
vt

1− βt1
, ŝt =

st
1− βt2

, (4.14)

and update the parameter as

θt,k = θt−1,k − γ
v̂t−1,k

ε+
√
st−1,k

.

See Exercise 4.6 for further motivation. Add also
the con-
tinuous
version
of the
dynamics:
Belloto da
Silva/Gazeau
2020

The default values for γ, ε, β1 and β2 in implementations of Adam are γ = 10−3, ε = 10−6,
β1 = 0.9 and β2 = 0.999. In fact, similarly to the discussion after (4.11), the latter two coefficients
should be thought of as βi = e−γ/αi , and should therefore be modified when changing the learning

rate to γ 6= γ as βi = β
γ/γ

i (see the discussion in [13, Section 5.2]).

Exercise 4.6. Give the expression of vt in terms of v0 and ĝs(θs−1) for 1 6 s 6 t, and motivate
the renormalization procedure (4.14).

Correction. A simple induction shows that

vt = (1− β1)
[
ĝt(θt−1) + β1ĝt−1(θt−2) + · · ·+ βt−21 ĝ2(θ1) + βt−11 ĝ1(θ0)

]
,

so that

v̂t =
ĝt(θt−1) + β1ĝt−1(θt−2) + · · ·+ βt−11 ĝ1(θ0)

1 + β1 + · · ·+ βt−11

can be understood as a weighted average of the previous gradient estimators, which actually
corresponds to some convex combination.
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We study in this chapter a first instance of unsupervised learning (i.e. “learning without a
teacher”). The aim is to infer properties of the distribution pdata(dx) from the (unlabelled) data
points x1, . . . , xn. For low dimensional situations, one could approximate pdata(dx) using kernel
density estimators. Such approaches are however not an option for high dimensional situations
typical of machine learning applications. In order to make progress, one therefore has to settle
for rather crude global models (e.g. represent pdata as a mixture of Gaussian distributions), or to
give up on identifying the distribution itself but rather find its important modes by some cluster
analysis (see Chapter 9). Another option, which we consider here, is to identify a low dimensional
manifold around which data points are concentrated. This is done mostly in a linear setting in
this chapter, although we hint at some nonlinear extensions.

More precisely, after motivating why it is interesting to reduce the dimension of the data points
in Section 5.1, we derive Principal Component Analysis (PCA) through a perspective based on
minimizing a reconstruction error in Section 5.2. We then make precise the usual formulation of
PCA in Section 5.3, and elaborate on its interpretation in Section 5.4. We finally discuss in Sec-
tion 5.5 various extensions and generalizations of this method, including kernel PCA, probabilistic
PCA and factor analysis, and nonlinear versions of PCA. The presentation here is based on [40,
Sections 20.1 and 20.2], [6, Chapters 15 and 21] and [8, Chapter 12].

5.1 Motivating the need for dimensionality reduction

One may want to reduce the dimensionality of the data points x ∈ X for various reasons:

• computational : the data can be compressed in a preprocessing step to perform faster subsequent
operations and/or apply other machine learning algorithms for regression or classification;

• featurization is related to the previous item: in certain applications, such as finding so-called
reaction coordinates or collective variables in molecular dynamics, it is of interest to find
(non)linear functions of the data points which provide relevant inputs for other methods.

• data exploration/visualization: high dimensional data cannot be easily represented in a way
amenable for humans to understand its organization. It is on the other hand much easier to
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plot 2 or 3 dimensional data points, and develop some intuition on how the data points are
organized. This makes sense only if the chosen dimensions are particularly representative.

Beyond these motivations, one actually expects that the data points lie around some low dimen-
sional manifold, and that the probability measure from which these data points are distributed is
concentrated around this manifold. Indeed, if this was not the case, learning algorithms would not
be able to make successful predictions – think for instance of image recognition, even binarized
images of low resolution, as the binarized version of the MNIST data set in which images are com-
posed of 28× 28 pixels. There are 228×28 ≈ 10236 possible images, which is an enormous number
in comparison to the size of the training data set (about 60, 000 instances). We however note that
many pixels are irrelevant (pixels around the boundary are mostly white), and also expect that
only some pixels have a crucial role in digit recognition (a very low resolution image can be enough
to distinguish between digits).

Given these elements of context, we think in this chapter of data points x ∈ X = R1×d as
obtained through some latent model (recall that x is considered as a line vector). More precisely,
we start by recentering the data by the empirical average of the sample at hand. The idea is next
to recover x from a lower dimensional variable z = xU> + ε ∈ R1×` with U ∈ R`×d and ε some
random variable with values in R1×` (if no centering was considered, one would have to add a bias
to the above linear model; see Lemma 5.1). The notation ` is chosen to emphasize that this number
is the dimension of the latent space. We consider ` 6 d − 1, and in fact we want ` to be much
smaller than d. The latent model corresponds to considering an encoding function R1×d → R1×`

acting as x 7→ xU>, and a decoding function R1×` → R1×d acting as z 7→ zU (it is not clear at
this stage why the decoder should use U and not a generic matrix R`×d; this is justified below
in Lemma 5.1). If no noise is present, one recovers PCA. Noise can however be injected into the
model in order to have a generative viewpoint, and construct a distribution of data points from a
distribution of latent variables z, see Section 5.5.3.

5.2 Deriving PCA from reconstruction error

We justify in this section the latent model described at the end of Section 5.1, and show how
PCA can be understood from the minimization of some reconstruction error. We consider to
this end a general linear dimensionality reduction scheme, where a data point x ∈ R1×d is first
embedded in R1×` as z = xE (encoding), then lifted back to R1×d as zD (decoding), and finally
shifted by b ∈ R1×d. The matrices E ∈ Rd×` and D ∈ R`×d, and the bias b ∈ R1×d are found by
minimizing the reconstruction loss, which corresponds to considering the following training loss:“Rn(E,D, b) =

1

n

n∑
i=1

‖xi − (xiED + b)‖22 . (5.1)

In fact, the following lemma shows that bias b is known and related to the empirical average of
the data

xn =
1

n

n∑
i=1

xi.

Moreover, the matrix E for optimal solutions is related to the matrix D of optimal solutions; and
furthermore D has specific orthogonality properties (see [49, Lemma 23.1]).

Lemma 5.1. The optimal reconstruction loss can be obtained as

inf
E∈Rd×`

D∈R`×d

b∈R1×d

“Rn (E,D, b) = min
V ∈R`×d

V V >=Id`

{
1

n

n∑
i=1

∥∥xi − xn − (xi − xn)V >V
∥∥2
2

}
.
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Proof. Fix (E,D) ∈ Rd×` × R`×d. Let us first perform the minimization over b ∈ Rd. It is easy

to see that the function b 7→ “Rn (E,D, b) is smooth and strongly convex, hence admits a unique
minimizer characterized by the Euler–Lagrange equation

0 = ∇b“Rn (E,D, b?) = − 2

n

n∑
i=1

[xi − (xiED + b?)] .

This shows that
b? = xn (Idd − ED) .

Therefore, upon introducing x̃i = xi − xn,

inf
E∈Rd×`

D∈R`×d

b∈R1×d

“Rn (E,D, b) = inf
E∈Rd×`

D∈R`×d

1

n

n∑
i=1

‖x̃i − x̃iED‖22 .

Denote next by V the range of the mapping Rd 3 x 7→ xED. Note that V is a vector subspace
of Rd of dimension LV 6 `. Denoting by ΠV the orthogonal projection onto V, it holds, upon
decomposing x̃i − x̃iED as the sum of x̃i − ΠV x̃i ∈ V⊥ and ΠV x̃i − x̃iED ∈ V and using
Pythagore’s theorem,

1

n

n∑
i=1

‖x̃i − x̃iED‖22 >
1

n

n∑
i=1

‖x̃i −ΠV x̃i‖22 .

This shows that

inf
E∈Rd×`

D∈R`×d

1

n

n∑
i=1

‖x̃i − x̃iED‖22 > inf
V`⊂R1×d

dim(V`)6`

1

n

n∑
i=1

‖x̃i −ΠV` x̃i‖
2
2 .

Since a vector subspace of dimension smaller than ` is always included in a subspace of dimension
exactly `, and since ‖x−ΠVx‖2 6 ‖x−ΠV′x‖2 when V ′ ⊂ V for two vector subspaces V,V ′ ⊂ R1×d,
we can in fact restrict the minimization on the right hand side of the previous inequality to vector
subspaces of dimension exactly equal to `:

inf
E∈Rd×`

D∈R`×d

1

n

n∑
i=1

‖x̃i − x̃iED‖22 > inf
V`⊂R1×d

dim(V`)=`

1

n

n∑
i=1

‖x̃i −ΠV` x̃i‖
2
2 .

Consider next a vector subspace V` of dimension `. Introduce an orthonormal basis (v1, . . . , v`)
of V`, and the matrix V ∈ R`×d whose lines are the vectors vk ∈ R1×d. Then,

ΠV`x =
∑̀
k=1

(
xv>k

)
vk = xV >V.

Since the matrix V is characterized by the condition V V > = Id` (which simply encodes the fact
that the family (v1, . . . , v`) is orthonormal), we find that

inf
E∈Rd×`

D∈R`×d

1

n

n∑
i=1

‖x̃i − x̃iED‖22 > inf
V ∈R`×d

V V >=Id`

1

n

n∑
i=1

∥∥x̃i − x̃iV >V ∥∥22 .
Note at this stage that the function to minimize on the right hand side of the previous inequality
is continuous, and that the minimization is performed over a compact set since

∀k ∈ {1, . . . , `},
d∑
j=1

Vk,j2 = 1,
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so that all coefficients of V are bounded by 1 in absolute value. There exists therefore a min-
imizer V ? to the right hand side. The left hand side then also admits a minimizer E? = V ?

and D? = (V ?)>. This finally shows that the initial minimization problem admits a mini-
mizer (E?, D?, b?), and allows to conclude. ut

In the remainder of this section, in order to alleviate the notation, we will assume that the
data has been recentered in a pre-processing step, so that xn = 0. Lemma 5.1 then shows that the
minimization of the reconstruction loss “Rn defined in (5.1) can be equivalently rewritten as

min

{
1

n

n∑
i=1

∥∥xi − xiV >V ∥∥22 , V ∈ R`×d, V V > = Id`

}
. (5.2)

Upon writing

V =

Ö
v1
...
v`

è
,

with viv
>
j = δij from the condition V V > = Id`, we note that

xiV
>V =

∑̀
k=1

(
xiv
>
k

)
vk

is the orthogonal projection of xi onto Span(v1, v2, . . . , v`). The properties of orthogonal projections
imply that ∥∥xi − xiV >V ∥∥22 = ‖xi‖22 −

∥∥xiV >V ∥∥22 , (5.3)

which can also be seen from a direct computation. This shows that (5.2) is equivalent to

max

{
1

n

n∑
i=1

∥∥xiV >V ∥∥22 , V ∈ R`×d, V V > = Id`

}
. (5.4)

The interpretation of the latter maximization problem is that one wants to maximize the variance
of the data points projected onto a vector subspace of dimension ` (this interpretation in terms of
variance being valid when the data has been recentered, see Section 5.3).

The formulations (5.4) or (5.2) allow us to solve the problem in an explicit manner. For ped-
agogical reasons, we start by presenting the solution for one dimensional latent spaces, and then
generalize the procedure to latent spaces of arbitrary dimension ` 6 d− 1.

One dimensional latent spaces. When the latent space is one dimensional, i.e. ` = 1, the
problem (5.4) can be reformulated as

max

{
1

n

n∑
i=1

‖(xi · v)v‖2
∣∣∣∣∣ v ∈ R1×d, ‖v‖2 = 1

}
.

The functional to maximize can be rewritten as

1

n

n∑
i=1

‖(xi · v)v‖2 =
1

n

n∑
i=1

(xi · v)2 = v“Σv>, “Σ =
1

n

n∑
i=1

x>i xi ∈ Rd×d. (5.5)

The Euler–Lagrange equation associated with the maximization problem therefore reads

u“Σ = λu,

where λ ∈ R is the Lagrange multiplier associated with the normalization constraint. This shows
that u is an eigenvector associated with the symmetric positive matrix “Σ. In order to maxi-
mize u“Σu> = λ‖u‖2 = λ, one therefore chooses a normalized eigenvector associated with the

largest eigenvalue of “Σ.
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Generalization to a latent space of arbitrary dimension. The derivation in the case ` = 1
suggests to consider the eigenvalues λ1 > λ2 > . . . > λd and associated normalized eigenvec-
tors (uj)16j6d of the symmetric positive matrix “Σ:

λjuj = uj“Σ, ‖uj‖22 = 1.

Theorem 5.1. The reconstruction error

min

{
1

n

n∑
i=1

∥∥xi − xiV >V ∥∥22 , V ∈ R`×d, V V > = Id`

}
(5.6)

is minimized for

U =

Ö
u1
...
u`

è
,

with (u1, . . . , u`) an orthonormal family of eigenvectors associated with the ` largest eigenvalues

of “Σ. Moreover, the minimal reconstruction error is

1

n

n∑
i=1

∥∥xi − xiU>U∥∥22 =

d∑
k=`+1

λk. (5.7)

Remark 5.1. There is of course no uniqueness result on the minimizer matrix U ∈ R`×d, since,
for example, U>U remains the same by changing U to RU for any orthogonal matrix R ∈ R`×`.

Proof. The equality (5.7) is obtained by evaluating the terms on the right hand side of (5.3)
for V = U . Indeed, from the orthonormality of the basis (u1, . . . , u`) and the equality

xiU
>U =

∑̀
k=1

(
ukx

>
i

)
uk,

it follows that

1

n

n∑
i=1

∥∥xiU>U∥∥2 =
1

n

n∑
i=1

∑̀
k=1

(
ukx

>
i

)2
=
∑̀
k=1

uk

(
1

n

n∑
i=1

x>i xi

)
u>k

=
∑̀
k=1

uk“Σu>k =
∑̀
k=1

λk‖uk‖22 =
∑̀
k=1

λk.

Similarly,

1

n

n∑
i=1

‖xi‖2 =

d∑
k=1

λk,

from which the claimed equality follows.
To prove that U is an optimal solution of (5.6), we consider an arbitrary matrix V ∈ R`×d such

that V V > = Id`. Denoting by v1, . . . , v` the lines of V ,

1

n

n∑
i=1

∥∥xi − xiV >V ∥∥22 =
1

n

n∑
i=1

‖xi‖22 −
1

n

n∑
i=1

∥∥xiV >V ∥∥22 =
1

n

n∑
i=1

‖xi‖22 −
1

n

n∑
i=1

∑̀
k=1

(
xiv
>
k

)2
.

Now, upon expanding vk on the orthonormal basis (u1, . . . , ud) of eigenvectors of “Σ associated
with the eigenvalues λ1 > . . . > λd sorted in decreasing order:

xiv
>
k =

d∑
k′=1

(
vku
>
k′
) (
xiu
>
k′
)
,
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we can rewrite (using that uk′“Σu>k′′ = λk′δk′,k′′)

1

n

n∑
i=1

∑̀
k=1

(
xiv
>
k

)2
=

1

n

n∑
i=1

∑̀
k=1

d∑
k′,k′′=1

(
vku
>
k′
) (
xiu
>
k′
) (
vku
>
k′′
) (
xiu
>
k′′
)

=
∑̀
k=1

d∑
k′,k′′=1

(
vku
>
k′
) (
vku
>
k′′
)
uk′“Σu>k′′

=

d∑
k′=1

λk′
∑̀
k=1

(
vku
>
k′
)2

=

d∑
k′=1

λk′
∥∥uk′V >V ∥∥22 .

We claim that the latter quantity is smaller than λ1 + · · ·+ λ`, which will allow us to conclude in
view of (5.7). Denote by

αk =
∥∥ukV >V ∥∥22 ,

which is the squared norm of the projection of uk onto Span(v1, . . . , v`). In particular, 0 6 αk 6 1
for any 1 6 k 6 d. Moreover,

d∑
k′=1

αk′ =

d∑
k′=1

∑̀
k=1

(
uk′v

>
k

)2
=
∑̀
k=1

d∑
k′=1

(
uk′v

>
k

)2
=
∑̀
k=1

‖vk‖22 = `.

Therefore,

max
V ∈R`×d

V V >=Id`

1

n

n∑
i=1

∥∥xiV >V ∥∥22 6 max
α∈[0,1]d

α1+···+αd=`

d∑
k=1

λkαk.

The maximum on the right hand side is clearly attained by choosing α1 = · · · = α` = 1 and α`+1 =
· · · = αd = 0, the value of the maximum being then λ1 + · · · + λ`. This allows to conclude the
proof. ut

5.3 PCA in practice

We summarize in this section how PCA is performed in practice, given a data set {x1, . . . , xn} ⊂ Rd

and a fixed dimension ` for the latent space.

(1) A first remark is that the data needs to be centered. When the features are heterogeneous in
scale (for instance because they correspond to measurements of quantities in different units), it
is also a good practice to standardize it; see for instance the discussion in [40, Section 20.1.3.1].
This amounts to replacing the covariance matrix by the correlation matrix, namely replacing
the attributes xji by

x̃ji =
xji − xjn
σn,j

, xn =
1

n

n∑
i=1

xi, σ2
n,j =

1

n

n∑
i=1

Ä
xji − x

j
n

ä2
.

The dataset {x̃1, . . . , x̃n} has by construction a vanishing empirical mean and unit empirical
variances for all attributes.

(2) The second step is to construct the empirical covariance matrix associated with the renormal-
ized data, namely “Σ =

1

n

n∑
i=1

x̃>i x̃i ∈ Rd×d,

and to diagonalize this symmetric positive matrix:

uk“Σ = λkuk, ‖uk‖2 = 1, λ1 > λ2 > . . . > λd > 0. (5.8)
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(3) We next compute the embeddings of the data points in the latent space: zi = xiU
>
` ∈ R1×`,

where U` ∈ R`×d is the matrix whoses lines are the first ` eigenvectors u1, . . . , u`.
(4) Approximate reconstructions of the data points are given by

x̂ji = xjn + σn,j (ziU`)j ∈ R1×d.

Predictions “x′ for test points x′ ∈ X are performed as“x′j = xjn + σn,j
[
(x′ − xn)U>` U`

]
j
∈ R1×d.

5.4 Interpretation of PCA

For notational simplicity, we denote by {x1, . . . , xn} ⊂ Rd the recentered data set instead, which
can be renormalized or not. The principal components are the vectors

ck =

Ö
ukx

>
1

...
ukx

>
n

è
associated with the eignvectors of “Σ and the normalized data set. The various components of ck
give the score of each data point on the kth loading uk. These loadings are linear combination of
features, and can therefore be thought of as “implicit features”.

Some properties of the score vector are given in the next proposition. In order to state it,
we introduce the empirical correlation for two sequences a = (ai)16i6n and b = (bi)16i6n with
vanishing empirical averages:

Corr(a, b) =

n∑
i=1

aibiÃ
n∑
i=1

a2i

Ã
n∑
i=1

b2i

.

Proposition 5.1. The principal components have a vanishing empirical correlation:

∀1 6 k 6= k′ 6 d, Corr (ck, ck′) = 0. (5.9)

Moreover, denoting by Xj the jth column of the data matrix X ( i.e. Xj is the vector of the j-th
features),

∀j ∈ {1, . . . , d},
d∑
k=1

Corr
(
ck, X

j
)2

= 1. (5.10)

The proof of this result is the content of Exercise 5.1. The second property corresponds to the
so-called correlation sphere. In particular, the vector (Corr

(
ck, X

j
)
)16k6` of features which are re-

tained by PCA is necessarily inside the unit ball. For ` = 2, the vector (Corr
(
c1, X

j
)
,Corr

(
c2, X

j
)
)

lies in a disk in the so-called first factorial plane. Depending on the position of this vector in the
unit ball, various situations can be distinguished:

• if Corr
(
c1, X

j
)

is close to 1 in absolute value and Corr
(
c2, X

j
)

is small in absolute value, then
the j-th feature correlates well with the score on the first loading;

• if Corr
(
c2, X

j
)

is close to 1 in absolute value and Corr
(
c1, X

j
)

is small in absolute value, then
the j-th feature correlates well with the score on the second loading;

• if both Corr
(
c1, X

j
)

and Corr
(
c2, X

j
)

are small in absolute value, then the j-th feature is not
correlated with the scores on the first two loadings.
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In essence, this representation allows to check whether a feature correlates more to c1 or c2, or
maybe none of them. Once the features are interpreted this way, one can also look at the projection
of data points themselves, i.e. consider the scatter plot of the vectors (c1,i, c2,i) for 1 6 i 6 n.
This allows to group data points depending on whether they are better explained by c1 (in which
case they would be close to (±1, 0)), by c2 (in which case they would be close to (0,±1)), or
by none of these quantities. This allows to interpret the data in terms of the relevant features
identified by the correlation sphere. It is good to focus on an example to gain some intuition here;
for instance the decathlon data, or MNIST digits (see the discussions around [24, Figure 14.23]
and [40, Figure 20.2] for instance).

Exercise 5.1. The aim of this exercise is to prove Proposition 5.1.

(a) Prove (5.9) by computing ck · ck′ .

(b) Show that Corr
(
ck, X

j
)

=

√
λku

j
k

σn,j
.

(c) Prove (5.10).

Correction.

(a) Note that

1

n
ck · ck′ =

1

n

n∑
i=1

(uk · xi)(xk′ · xi) = uk

(
1

n

n∑
i=1

x>i xi

)
u>k′ = uk“Σu>k′ = λkδk,k′ .

(b) We compute

1

n
ck ·Xj =

1

n

n∑
i=1

(
ukx

>
i

)
xji =

d∑
k′=1

(
1

n

n∑
i=1

xk
′

i x
j
i

)
uk
′

k =

d∑
k′=1

uk
′

k
“Σk′,j =

î
uk“Σó

j
= λku

j
k.

The conclusion follows by noting that

1

n
‖ck‖22 = λk

by the first question, and
1

n

∥∥Xj
∥∥2 = σ2

n,j

by definition of the empirical variance (recall that the data has been recentered here).
(c) The result of the previous question implies that

d∑
k=1

Corr
(
ck, X

j
)2

=

d∑
k=1

λk
Ä
ujk

ä2
σ2
n,j

=
1

σ2
n,j

d∑
k=1

î
uk“Σó

j
ujk =

1

σ2
n,j

d∑
k,j′=1

î“Σó
j′,j

uj
′

k u
j
k.

Now, since (uk)16k6d is an orthonormal basis, it holds that

d∑
k=1

u>k uk = Idd,

as can be checked by applying a line vector x to the left of the previous equality and noting
that the left hand side becomes the decomposition of x onto the basis (uk)16k6d. It follows
that

d∑
k=1

uj
′

k u
j
k =

[
d∑
k=1

u>k uk

]
j′,j

= [Idd]j′,j = δj′,j .

Therefore,
d∑
k=1

Corr
(
ck, X

j
)2

=
1

σ2
n,j

î“Σó
j,j

= 1.
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Choosing the number ` of latent dimensions. The reconstruction error is always better when
more latent dimensions are considered, even for the test data. There is no issue of overfitting. The
common practice is to identify a sufficiently small value of ` by looking at the scree plot, where
eigenvalues λk are plotted as a function of k. One identifies a knee or elbow in this curve, where
the decrease of the eigenvalues slows down so that the marginal increase in the sum λ1 + · · ·+ λk
becomes smaller with k. Alternatively, this corresponds to looking at the fraction of explained
variance

fk =

k∑
k′=1

λk′

d∑
k′=1

λk′

as a function of k, and identifying the index ` after which the gains become smaller.

5.5 Extensions of PCA

We present in this section various extensions of PCA. We start by discussing in Section 5.5.1
how to adapt the method to high dimensional data (i.e. situations in which the dimension d of
the features is much larger than the number n of data points). We next show how to include
some nonlinearity by using kernel functions, as made precise in Section 5.5.2. This method can
be thought of nonlinearly pre-processing the data and then performing some linear dimensionality
reduction. A genuinely nonlinear extension of PCA, based on autoencoder neural networks, is
discussed later on in Section 8.3. Finally, we present in Section 5.5.3 a generative method based
on PCA, known as probabilitic PCA.

5.5.1 High dimensional data

PCA requires diagonalizing the matrix “Σ ∈ Rd×d defined in (5.5), which has a computational
cost O(d3). When there are many features d, even more than the number of data points n, the
diagonalization of the matrix can become too expensive, and it would be better to reformulate
PCA with a digonalization of a n × n matrix, similarly to what is done for linear least square
regression in Exercise 2.10. The key point here is to note that the eigenvalue problem (5.8) can
be rewritten as follows, upon introducing the design matrix X ∈ Rn×d whose ith row is xi and
multiplying (5.8) by X> on the right:

uX>Γ = λuX>, Γ =
1

n
XX> ∈ Rn×n.

More explicitly, Γij = xix
>
j . This suggests to solve eigenvalue problems for Γ , namely find v ∈

R1×n \ {0} and λ > 0 such that vΓ = λv. Then,

vX“Σ = vΓX = λvX,

so that vX is an eigenvector of “Σ. Note that vX 6= 0 otherwise vΓ = 0 = λv, so v = 0, which is not
possible. This shows that normalized eigenvectors u of “Σ ∈ Rd×d are obtained from eigenvectors v
of Γ ∈ Rn×n by multiplying them by X on the right, and renormalizing the so-obtained vector
as vX/‖vX‖2 ∈ R1×d.

5.5.2 Kernel PCA

Kernel methods allow to go beyond linear methods by introducing some nonlinearity through an
implicit featurization procedure. We here only briefly discuss how this works, as a more complete
presentation is provided in Section 6.4.2.
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Before presenting the implicit featurization, let us start by considering an explicit featurization
based on some feature function φ : X → R1×D. In this context, the design matrix “Σ in (5.5) is
replaced by “Σ =

1

n

n∑
i=1

φ(xi)
>φ(xi) ∈ RD×D.

In fact, some recentering has to be performed in order for this matrix to be interpreted as some
covariance matrix, see the discussion in [40, Section 20.4.6].

The value of D can be large, in fact infinite, but, as in Section 5.5.1, this will not pose an issue
as one can formule PCA based on the diagonalization of a n× n matrix. The eigenvalue equation
to be solved in this context is

λv = v“Σ =
1

n

n∑
i=1

(
vφ(xi)

>)φ(xi) ∈ R1×D.

This shows that v is a linear combination of φ(x1), . . . , φ(xn), and can therefore be written as

v =

n∑
i=1

aiφ(xi).

By plugging this equality in the eigenproblem to solve, one finds

1

n

n∑
i,j=1

aj
(
φ(xj)φ(xi)

>)φ(xi) = λ

n∑
j=1

ajφ(xj).

We multiply this equality by φ(xk)> on the right, and introduce the symmetric matrix K ∈ Rn×n

with entries Kij = K(xi, xj), where

K(x, x′) = φ(x)φ(x′)> ∈ R.

This leads to
1

n

n∑
i,j=1

ajKjiKik = λ

n∑
j=1

ajKjk.

Since 1 6 k 6 n is arbitrary, the eigenvalue problem can finally be reformulated as

aK2 = nλaK, a ∈ R1×n, K = K> ∈ Rn×n,

which can be solved by diagonalizing the matrix K. Once the matrix is diagonalized and the `
leading eigenvectors a1, . . . , a` are found, reconstruction can be performed with the orthonormal
basis of vectors

uk =

n∑
i=1

ak,iφ(xi)∥∥∥∥∥
n∑
i=1

ak,iφ(xi)

∥∥∥∥∥
2

.

More precisely, the reconstruction is based on the scores

ukφ (x′)
>

=

n∑
i=1

ak,iφ(xi)φ (x′)
>

∥∥∥∥∥
n∑
i=1

ak,iφ(xi)

∥∥∥∥∥
2

.

Since
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n∑
i=1

ak,iφ(xi)

∥∥∥∥∥
2

2

=

n∑
i,j=1

ak,iak,jφ(xi)φ(xj)
> = akKa

>
k ,

we finally obtain

ukφ (x′)
>

=

n∑
i=1

ak,iK (x′, xi)»
akKa>k

.

Note that, crucially, the explicit featurization φ is not needed, as the only quantity which appears is
the kernel function K(x, x′). It therefore suffices to make precise this kernel function. As mentioned
above, we elaborate on this in Section 6.4.2.

In the context of kernel PCA, the test data point x′ is replaced by the knowledge of the `
scores ukφ (x′)

>
for 1 6 k 6 `. The reconstruction of the test point x′ itself is not straightforward

as it is based on some form of regression problem, see for instance the discussion in [6, Section 15.7].
Applications of kernel PCA are given in the work [47] which introduced the method. One major
aim is to featurize the data in a nonlinear way as postprocessing step, for example for denoising
images.

5.5.3 Probabilistic PCA

PCA allows to embed training points xi into a lower dimensional space, but does not allow to
generate new points. Probabilistic PCA (PPCA) is a generative method which provides a simple
model for pdata(x), known as “predictive distribution”. More precisely, considering in this section
realizations under the predictive distribution as column vectors, the model is obtained as

X = WZ + ε+ b ∈ Rd, Z ∼ N (0, Id`), ε ∼ N
(
0, σ2Idd

)
,

for σ > 0 and some matrix W ∈ Rd×`, and with ε independent of Z. Note that X is a Gaussian
random vector, with mean b and covariance matrix WW> + σ2Idd since

E[X] = E [WZ + ε+ b] = WE[Z] + b = b,

and

Var(X) = E
î
(WZ + ε) (WZ + ε)

>ó
= E

[
WZZ>W>

]
+ E

[
εε>

]
= WE

[
ZZ>

]
W> + σ2Idd.

Probabilistic PCA is therefore fully determined by the parameters W, b and σ2. These parameters
can be found by a maximum likelihood approach (either by reducing the question to an eigenvalue
problem, or by using an expectation/maximization approach for high dimensional problems; see [8,
Section 12.2]).

Factor analysis is a generative extension of PCA, which goes beyond probabilistic PCA by
working with a diagonal covariance matrix V instead of an isotropic covariance σ2Idd. The gen-
erative model under consideration is obtained by decoding a latent variable distributed according
to an isotropic Gaussian random variable, then adding a bias to recenter the data, as well as some
Gaussian noise whose intensity depends on the coordinate at hand; see Exercise 5.2 below.

Exercise 5.2 (Factor analysis). We consider the generative model

X = WZ + ε+ b, Z ∼ N (0, Id`), ε ∼ N (0,V), (5.11)

with Z, ε independent random variables, X, b ∈ Rd, W ∈ Rd×`, V ∈ Rd×d, Z ∈ R`, with ` 6 d− 1
the dimension of the latent space. The covariance matrix for the noise variable ε is assumed to be
diagonal:
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V =

á
v1 0 . . .
0 v2 0 . . .

. . .

0 . . . 0 vd

ë
,

with entries vi > 0. The idea is to determine W, b,V from the dataset {xi}16i6n ⊂ Rd by some
maximum likelihood procedure (as for PCA, we work here in an unsupervised setting, so the data
set does not come with labels).

(a) Prove that X is a Gaussian random variable with mean b and covariance WW> + V. How
many free parameters enter the definition of the covariance matrix? How does this number
compare to the number of parameters used to model the covariance of X without any structural
assumption?

(b) Show that the generative model is unchanged if W is replaced by WR, with R ∈ R`×` an
orthogonal matrix ( i.e. a matrix R such that R>R = RR> = Id`).

The previous question suggests that it is not relevant to look for W alone. In view of the previous
question, a better quantity to consider is the part WW> of the covariance ΣW = WW> + V. We
assume in the remainder of this exercise that vk > 0 for any 1 6 k 6 d.

(c) Prove that ΣW is invertible.
(d) Write the negative log-likelihood L(W,V, b) corresponding to the dataset {xi}16i6n for the

model (5.11) (assuming that the data points are independent).
(e) Find the expression of b by minimizing L(W,V, b) for W,V fixed.
(f) Show that finding W,V amounts to minimizing

L (W,V) = Tr
Ä
Σ−1W
“Cä+ ln (detΣW ) ,

where “C ∈ Rd×d is the empirical covariance of the data set {xi}16i6n.

The algorithm to find WW> and V proceeds in an iterative manner, by alternately minimizing
first over V for W fixed, then over W for V fixed, until convergence is reached. We make precise
how to perform these two steps in the next questions.

The following three questions are more difficult and can be skipped. The last questions should
however be treated.

(g) We start by minimizing L (W,V) for W fixed, assuming that this minimization problem is
well posed. Using the following identities for symmetric matrices X,M (see for instance [40,
Section 7.8.7.3])�

∇X
[
Tr
(
X−1M

)]
= −X−1MX−1, ∇X [ln(detX)] = X−1, (5.12)

show that the minimizer V satisfies

diag
Ä
Σ−1W
“CΣ−1W ä = diag

(
Σ−1W

)
, (5.13)

where diag(M) for M ∈ Rd×d is the diagonal matrix with entries Mkk on the diagonal.
(h) We fix V, and consider the change of unknown matrix W = UV−1/2W ∈ Rd×`, where U

is an orthogonal matrix obtained from the diagonalization of the symmetric positive ma-
trix V−1/2“CV−1/2, i.e.

V−1/2“CV−1/2 = U>ΛU, (5.14)

where U ∈ Rd×d is an orthogonal matrix, and Λ ∈ Rd×d is a diagonal matrix with entries λi > 0,
ranked in order of decreasing magnitudes. Show that the minimization of L (W,V) over W ∈
Rd×` is equivalent to the minimization over W ∈ Rd×` of�

LV(W ) = Tr
[(

W W > + Idd
)−1

Λ
]

+ ln
[
det
(
W W > + Idd

)]
.
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(i) Using (5.12), it can be shown that minimizers of LV(W ) satisfy(
W W > + Idd

)−1
Λ
(
W W > + Idd

)−1
W =

(
W W > + Idd

)−1
W . (5.15)

This equality can be reformulated in terms of the variable W as W = “CΣ−1W W . Use the

latter identity and (5.13) to establish that diag
Ä
Σ−1W
“C − Idd

ä
= 0. By multiplying the previous

equation by V and using the identity VΣ−1W = Idd −WW>Σ−1W , prove finally that �

V = diag
Ä“C −WW>

ä
. (5.16)

Upon multiplying (5.15) by W W > + Idd on the left, and by W > (W W > + Idd
)

on the right, it
follows that

ΛW W > =
(
W W > + Idd

)
W W >. (5.17)

The symmetric positive matrix W W > ∈ Rd×d can be diagonalized as W W > = V >DV , for some
diagonal matrix D with nonnegative entries dk (ranked in decreasing order), and an orthogonal
matrix V .

(j) Consider an eigenvector ξk of W W > associated with the eigenvalue dk. Write the equation
on ξk, dk obtained from (5.17).

(k) How should the eigenvalues dk be chosen in order to minimize LV(W )?

In order to find W for V fixed, one can choose

W = V1/2U>

Ñ
· · ·

ξ1 ξ2 · · · ξ`
· · ·

é
diag

Ä√
λ1 − 1, . . . ,

√
λ` − 1

ä
, (5.18)

with {ξk}16k6` the eigenvectors of Λ associated with the largest eigenvalues. All the quantities in

the previous equation depend only on V and “C. The equation (5.18), together with (5.16), forms
the basis for the iterative method discussed in [58, Section 2.2] to find the parameters in factor
analysis. One then alternates between (5.16) (which says how to update V for W given) and (5.18)
(which says how to update W for V given).

Correction.

(a) The random variable X is a linear combination of independent Gaussian random variables,
so it is also a Gaussian random variable. To fully characterize its law, it suffices to compute
its mean and covariance. Note first that E(X) = b since E(εj) = 0 for any 1 6 j 6 d
and E(Zk) = 0 for any 1 6 k 6 `. Moreover, since the random variables Z, ε are independent
and of mean 0,

Cov(X) = E
[
(X − b)(X − b)>

]
= E

[
(WZ + ε)(WZ + ε)>

]
= WE

(
ZZ>

)
W> + E

(
εε>

)
= WW> + V.

The free parameters correspond to the d diagonal entries of V, and the d× ` entries of W .
There are therefore d(` + 1) free parameters. When ` � d, this is much smaller than
the d(d+ 1)/2 parameters that would be used to model a full covariance matrix for X.

(b) When W is replaced by WR, the random variable X is still Gaussian with mean 0. Its
covariance is, in view of the previous question, WRR>W> + V = WW> + V because R
is orthogonal. This shows that the law of X is unchanged, i.e. the generative model is
unchanged.

(c) Consider ξ ∈ Rd such that ΣW ξ = 0. Then,

0 = ξ>ΣW ξ =
∥∥W>ξ∥∥2 + ξ>Vξ >

d∑
k=1

vkξ
2
k.

Since vk > 0 for all 1 6 k 6 d, this shows that ξk = 0 for all 1 6 k 6 d. In conclusion,
ξ = 0, so that the matrix ΣW has null kernel and is hence invertible.
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(d) The likelihood for a given data point x ∈ Rd for the distribution N (b,ΣW ) is

pb,ΣW (x) = (2π)−d/2(detΣW )−1/2 exp

Å
−1

2
(x− b)>Σ−1W (x− b)

ã
.

The negative log-likelihood for the data set is therefore

L(W,V, b) = −
n∑
i=1

log pb,ΣW (xi) =

n∑
i=1

1

2
(xi−b)>Σ−1W (xi−b)+

n

2
log(detΣW )+

nd

2
log(2π).

(e) The function b 7→ L(W,V, b) is a quadratic function, with positive definite Hessian nΣ−1W
(in view of Question (c)). It is therefore strongly convex, hence the minimization of b 7→
L(W,V, b) is well posed (alternatively, one could see that the function is stricly convex,
continuous, and coercive). The minimizer b? for W,V fixed is characterized by the condition

0 = ∇bL(W,V, b?) =

n∑
i=1

Σ−1W (xi − b?).

Since ΣW is invertible, this shows that

b? =
1

n

n∑
i=1

xi

is the empirical mean of the data points. Note that b? does not depend on W,V.
(f) By plugging the expression of b? in L(W,V, b), we see that W,V are found by minimizing

the following function (where we removed a constant term and multiplied by a factor 2/n):

1

n

n∑
i=1

(xi − b?)>Σ−1W (xi − b?) + log(detΣW ) = Tr
Ä
Σ−1W
“Cä+ log(detΣW ),

where “C =
1

n

n∑
i=1

(xi − b?)(xi − b?)> ∈ Rd×d

is the empirical covariance of the data set.
(g) The derivatives (5.13) imply that, for any diagonal matrix D ∈ Rd×d,

〈∇VL (W,V),D〉 = Tr
(
∇VL (W,V)>D

)
= −Tr

Ä
Σ−1W
“CΣ−1W D

ä
+ Tr

(
Σ−1W D

)
.

This immediately gives the desired equality since the gradient vanishes at critical points.
(h) The expression of LV(W ) is obtained by noting that W = V1/2U>W and recalling U−1 =

U>, so that

Σ−1W
“C =

Ä
V1/2U>W W >UV1/2 + V

ä−1 “C = V−1/2
(
U>W W >U + Idd

)−1 V−1/2“C
= V−1/2U>

(
W W > + Idd

)−1
UV−1/2“C = V−1/2U>

(
W W > + Idd

)−1
ΛUV1/2,

where we used that UV−1/2“C = ΛUV1/2 in the last line, an equality obtained from (5.14).
Therefore, by the cyclicity of the trace,

Tr
Ä
Σ−1W
“Cä = Tr

[(
W W > + Idd

)−1
Λ
]
.

Similar computations show that

ΣW = V1/2
(
U>W W >U + Idd

)
V1/2 = V1/2

(
U>W W >U + U>U

)
V1/2

= V1/2U>
(
W W > + Idd

)
UV1/2,
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so that

detΣW = det(V) det
[
U>

(
W W > + Idd

)
U
]

= det(V) det
(
W W > + Idd

)
.

Since the term detV is an unimportant multiplicative factor (which becomes a constant
additive term when taking the logarithm), we obtain the desired conclusion.

(i) We multiply (5.13) by the diagonal matrix V (noting that diag(M)V = diag(MV)) and
then use the identity Σ−1W V = Idd −Σ−1W WW> to write

0 = diag
Ä
Σ−1W
“CΣ−1W V −Σ−1W Vä = diag

Ä
Σ−1W
“C −Σ−1W “CΣ−1W WW> − Idd +Σ−1W WW>

ä
.

The second and fourth terms on the right hand side of the previous equality cancel
since W = “CΣ−1W W . Therefore,

diag
Ä
Σ−1W
“C − Idd

ä
= 0.

Remultiplying this equation by V on the left and using the identity VΣ−1W = Idd −
WW>Σ−1W , we obtain

V = diag
Ä
VΣ−1W “Cä = diag

î(
Idd −WW>Σ−1W

) “Có = diag
Ä“C −WW>

ä
,

where the last equality relies again on W = “CΣ−1W W .
(j) By applying both sides of the equality (5.17) to an eigenvector ξk 6= 0, it follows that

dkΛξk = (dk + 1)dkξk.

This shows that either dk = 0, or ξk is an eigenvector of the diagonal matrix Λ and dk =
λk − 1 > 0.

(k) By computing the trace using an orthonormal eigenbasis of W W >,

LV(W ) =

d∑
k=1

λk
1 + dk

+ log(1 + dk).

Now,

λk
1 + dk

+ log(1 + dk) =

®
1 + log(λk) if dk = λk − 1,

λk if dk = 0.

Since log λ < λ for any λ > 0, it follows that, in order to minimize LV(W ), one should
set dk = λk − 1 for 1 6 k 6 `, and dk = 0 for `+ 1 6 k 6 d.
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We present in this chapter a method to perform classification by linearly separating data sets,
using the method called support vector machines. The name of this method comes from the fact
that a small or sparse subset of the training points is retained to construct decision functions
whose signs allow to make predictions for the labels of new data points.

We start in Section 6.1 by describing the method for data sets which can be linearly separated
in an exact manner; and then make precise in Section 6.2 how to extend the approach to situa-
tions where there are some outliers in the data set which prevent an exact linear separation. We
also discuss options to perform multiclass classification in Section 6.3. Our presentation for these
sections is based on [40, Section 17.3], [39, Chapter 5] and [8, Section 7.1].

In fact, most data sets are not linearly separable as such, even in an approximate manner. Some
form of featurization is needed to transform the data. We discuss in Section 6.4 how to perform
SVM with implicit features based on kernel methods (see [40, Section 17.1], [39, Chapter 6], [49,
Chapter 16] and [4, Chapter 7] for further references on kernel methods).

6.1 Linear classification for separable data sets

We work here in the context of supervised learning, and aim at performing classification for binary
data, with label space Y = {−1, 1} (see Section 6.3 for an extension to multiclass classification).
We consider a training data set Dtrain = {(xi, yi), 1 6 i 6 n} ⊂ X × Y, with X ⊂ Rd. As for
various other learning methods, it is useful to normalize/standardize the inputs before using the
methods described in this chapter.

The aim is to find a prediction function minimizing the risk R(f) = E[1y 6=f(x)]. The method

described here is based on linear classifiers, i.e. functions x 7→ sign(w>x+b) with w ∈ Rd and b ∈ R.
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We first make precise the geometric interpretation of the problem in Section 6.1.1, and then
formulate the associated minimization of the loss in primal and dual forms, respectively in Sec-
tions 6.1.2 and 6.1.3. We then discuss how to train the model in Section 6.1.4, and conclude by
providing theoretical guarantees on the learning problem in Section 6.1.5.

6.1.1 Hard margin SVM

We assume in all this section that the data set Dtrain can be linearly separated, i.e. that there
exists θ = (w, b) ∈ Rd × R such that

∀1 6 i 6 n, yi
(
w>xi + b

)
> 0. (6.1)

Data points with labels−1 are therefore separated from data points with labels 1 by the hyperplane
of equation w>x+ b = 0 (also called “decision boundary”). However, there may be infinitely many
such separating hyperplanes. The idea is to choose the one with the largest margin, i.e. the distance
of the closest point of the data set to the separating plane should be as large as possible in order
to obtain the solution to the classification problem which is the most robust to perturbations in
the inputs (xi)16i6n of the data set.

Definition 6.1 (Geometric margin). Consider w ∈ Rd \ {0} and b ∈ R. The geometric mar-
gin ρg of a linear classifier g(x) = w>x + b at a point x ∈ Rd is its Euclidean distance to the
hyperplane g−1{0} =

{
x̃ ∈ Rd

∣∣w>x̃+ b = 0
}

:

ρg(x) =

∣∣w>x+ b
∣∣

‖w‖2
. (6.2)

The geometric margin for a data set Dtrain is

ρg(Dtrain) = min
16i6n

ρg(xi).

The equality (6.2) is not immediately clear. The reader is asked to prove it in the next exercise.

Exercise 6.1. Prove (6.2).

Correction. Decompose x as x⊥+ rw/‖w‖2, with x⊥ the orthogonal projection of x onto the
affine subspace g−1{0}. A simple computation shows that g(x) = g(x⊥) + r‖w‖2 = r‖w‖2,
and ρg(x) = ‖x− x⊥‖2 = |r|. Therefore,

ρg(x) =
|g(x)|
‖w‖2

,

which is the claimed result.

6.1.2 Primal optimization problem

SVM is based on finding the maximum margin hyperplane. Since |w>xi + b| = yi(w
>xi + b) in

view of (6.1), the maximization of the margin for the training data set can be formulated as

max
(w,b)∈Rd×R

min
16i6n

®
yi(w

>xi + b)

‖w‖2

∣∣∣∣ ∀1 6 i 6 n, yi(w
>xi + b) > 0

´
.

This optimization problem can be seen as a maximization over (w, b) with n inequality constraints.
Since yi(w

>xi + b)/‖w‖2 is invariant by rescaling of w, b (i.e. the function value is the same if w, b
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are replaced by αw,αb with α > 0), it is possible to normalize the learning problem by requiring
that

min
16i6n

yi(w
>xi + b) = 1.

This leads to the reformulation

max
(w,b)∈Rd×R

ß
1

‖w‖2

∣∣∣∣ ∀1 6 i 6 n, yi(w
>xi + b) > 1

™
.

In fact, as maximizing 1/‖w‖2 is equivalent to minimizing ‖w‖22, the optimization problem can
finally be stated in primal form as

min
(w,b)∈Rd×R

ß
1

2
‖w‖22

∣∣∣∣ ∀1 6 i 6 n, yi
(
w>xi + b

)
> 1

™
. (6.3)

Well posedness. The optimization problem (6.3) is the minimization of the convex func-
tion (w, b) 7→ ‖w‖22 under affine constraints ci(w, b) = yi(w

>xi + b) − 1 > 0. The constraints
are therefore qualified. Showing the existence of a solution however requires some care as the func-
tional to minimize is not coercive in the b variable. We prove to this end that the minimization
can be restricted to a bounded set, in which case the existence of a minimizer is clear since the
function to minimize is continuous.

To prove that the minimization can be restricted to a bounded set, we consider an ele-
ment (w̃, b̃) ∈ Rd × R which satisfies the constraints ci(w̃, b̃) > 0 for all 1 6 i 6 n. It is then
sufficient to restrict the minimization over w ∈ Rd to the minimization over w ∈ B(0, R) with R =
‖w̃‖2 < +∞. Next, when yi = 1, the condition ci(w, b) > 0 is equivalent to −b 6 w>xi − 1; while,
when yi = −1, it is equivalent to b 6 −w>xi − 1. Finally,

|b| = max(b,−b) 6 max
16i6n

max
{
w>xi − 1,−w>xi − 1

}
6 max

16i6n
‖w‖2‖xi‖2 6

Å
max
16i6n

‖xi‖2
ã
‖w̃‖ := B < +∞.

This allows to conclude that the minimization problem (6.3) can be restricted to (w, b) ∈ B(0, R)×
[−B,B].

Uniqueness cannot be asserted at this stage, although one minimizes a continuous, convex
function over a closed, bounded, convex set in finite dimension. In fact, the global minimizer may
not be unique, although there cannot be local minima. Any global minimizer satisfies the following
necessary conditions of optimality:

w −
n∑
i=1

αi∇wci(w, b) = 0,

n∑
i=1

αi∂bci(w, b) = 0,

∀1 6 i 6 n, αi > 0, αi
[
yi
(
w>xi + b

)
− 1
]

= 0,

which can be written more explicitly as

w =

n∑
i=1

αiyixi,

n∑
i=1

αiyi = 0,

∀1 6 i 6 n, αi > 0, αi
[
yi
(
w>xi + b

)
− 1
]

= 0.

(6.4)
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Support vectors. The last condition in (6.4) asserts that αi = 0 when ci(w, b) > 0, i.e. the
constraint is not active. A value αi 6= 0 can be obtained only for points xi on the marginal
hyperplanes {x ∈ Rd |w>x + b ± 1}. Data points which do not lie on one of the two marginal
hyperplanes do not affect the definition of w; and in fact not the definition of b either, as shown
in the next exercise. It is useful for this to introduce the set of active constraints

S = {1 6 i 6 n : αi 6= 0}. (6.5)

Then,

w =
∑
i∈S

αiyixi.

Exercise 6.2. Show that b =
1

|S|
∑
i∈S

Ñ
yi −

∑
j∈S

αjyjx
>
j xi

é
.

Correction. We start from the equality yi
(
w>xi + b

)
= 1 for any i ∈ S, which we multiply

by yi, using that y2i = 1:

b = yi − w>xi = yi −
∑
j∈S

αjyjx
>
j xi,

from the first equality in (6.4) and the definition of S. The desired result is then obtained by
summing these equalities over indices i ∈ S and dividing by |S|.

6.1.3 Dual formulation

The motivation for turning to a dual formulation of the primal problem (6.3) is twofold:

• it is useful to formulate the problem an infinite dimensional setting based on kernel functions
(see Section 6.4);

• on the algorithmic side, some reference numerical methods solve the dual problem rather than
the primal one (see Section 6.1.4).

To write the dual problem, we introduce the Lagrangian

L(w, b, α) =
1

2
‖w‖22 −

n∑
i=1

αi
[
yi
(
w>xi + b

)
− 1
]
.

The primal minimization problem (6.1.4) corresponds to

min
(w,b)∈Rd×R

max
α∈Rn+

L(w, b, α).

It always holds that

max
α∈Rn+

min
(w,b)∈Rd×R

L(w, b, α) 6 min
(w,b)∈Rd×R

max
α∈Rn+

L(w, b, α), (6.6)

as can be seen from the inequality

L(w, b, α) 6 max
α′∈Rn+

L(w, b, α′),

then taking the minimum over (w, b) ∈ Rd × R first on the left hand side, next on the right hand
side, and finally considering the maximum over α ∈ Rn+ on the left hand side. In fact, there is no
duality gap in (6.6), i.e. the inequality in (6.6) is in fact an equality. This comes from the fact



6.1 Linear classification for separable data sets 103

that the constraints are qualified and convex, and the objective function is convex. The primal
optimization problem (6.3) can finally be reformulated in dual form as

max
α∈Rn+

Fα(w, b), Fα(w, b) = min
(w,b)∈Rd×R

{
1

2
‖w‖22 −

n∑
i=1

αi
[
yi
(
w>xi + b

)
− 1
]}

. (6.7)

In fact, the inner minimization can be performed explicitly, as shown in the following exercise.

Exercise 6.3. Prove that the dual problem rewrites

max
α∈Rn+


n∑
i=1

αi −
1

2

n∑
i,j=1

αiαj
(
x>i xj

)
yiyj

∣∣∣∣∣∣
n∑
i=1

αiyi = 0

 . (6.8)

In its formulation (6.8), the dual optimization problem is the maximization of a quadratic
concave function under affine constraints. The function is indeed concave since the Hessian, which
is the matrix with entries −(x>i xj)yiyj , is negative:

∀ξ ∈ Rn, −
n∑
i,j

(x>i xj)yiyjξiξj = −

∥∥∥∥∥
n∑
i=1

ξiyixi

∥∥∥∥∥
2

6 0.

Correction. Note that Fα(w, b) = F 1
α(w) + F 2

α(b) + F 3
α with

F 1
α(w) =

1

2
‖w‖22 −

n∑
i=1

αiyiw
>xi, F 2

α(b) = −
n∑
i=1

αiyib, F 3
α =

n∑
i=1

αi.

The minimization over b of Fα is equivalent to the minimization of F 2
α. Now, the infimum of

the latter function is −∞ unless
n∑
i=1

αiyi = 0.

The maximization over α ∈ Rn+ in (6.7) can thus be restricted to elements satisfying the above
constraint, in which case F 2

α(b) = 0. Therefore, (6.7) is equivalent to

max
α∈Rn+

{
min
w∈Rd

{
1

2
‖w‖22 −

n∑
i=1

αi
(
yiw
>xi − 1

)} ∣∣∣∣∣
n∑
i=1

αiyi = 0

}
.

The inner minimization over w ∈ Rd is the unconstrained minimization of a quadratic functional
in w, which admits a unique global minimizer

wα =

n∑
i=1

αiyixi.

Since
1

2
‖wα‖22 −

n∑
i=1

αi
(
yiw
>
α xi − 1

)
=

n∑
i=1

αi −
1

2
‖wα‖2,

we obtained the claimed expression.

6.1.4 Optimization algorithms

Both the primal and dual problems are quadratic programming problems (i.e. they correspond
to minimizing quadratic functions under affine constraints). There is a huge literature on solvers
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for these problems, but the challenge is to avoid relying on generic quadratic programming meth-
ods, whose computational cost scales as O(n3). The implementation in scikit-learn relies on the
C library libsvm (see [10]). It relies on a version of the algorithm known as Sequential Minimal
Optimization, where the dual problem (6.8) is analytically solved when the minimization is per-
formed only over two coefficients αk, α`, the other ones being fixed; going over all possible couples
sequentially or randomly.

6.1.5 Learning guarantees by leave-one-out analysis

We provide bounds on the expected risk in this section. The material here is more advanced and
can be skipped at first reading. We consider the framework of K-fold cross validation for K = n,
which corresponds to the so-called leave-one-out cross validation (recall Section 1.3.2.2). It consists
in taking out one point of the training data set, performing training on the remaining n−1 points,
computing the prediction error on a validation set composed of the point that was taken out; and
averaging this over the n possible choices for the single point validation set. More precisely,“RLOO(Dtrain) =

1

n

n∑
i=1

1fDtrain\{(xi,yi)}(xi)6=yi
, (6.9)

where fDtrain\{(xi,yi)} is the prediction function obtained from training on the data set Dtrain \
{(xi, yi)} (i.e. the predictor x 7→ sign(w>x+b) with w, b found by solving (6.3) or (6.8) with Dtrain

replaced by Dtrain \ {(xi, yi)}).
In order to characterize the validation error, we note that removing a data point which is not a

support vector does not change the solution. Bounds on the validation error are therefore related
to the fraction of support vectors. We write here bounds in expectation over realizations of the
training set Dtrain, distributed according to p⊗ndata. We start by providing a general result on the
average leave-one-out error (see [39, Lemma 5.3]).

Lemma 6.1. The average leave-one-out validation error for a data set Dntrain of size n > 2 is an
unbiased estimator of the average expected risk of a data set Dn−1train of size n− 1:

EDntrain∼p
⊗n
data

î“RLOO (Dntrain)
ó

= EDn−1
train∼p

⊗n−1
data

î
R
Ä
fDn−1

train

äó
,

where fDn−1
train

is the prediction function obtained by training over Dn−1train.

Proof. By using first the definition of the leave-one-out error, then the independence of the data
points,

EDntrain∼p
⊗n
data

î“RLOO (Dntrain)
ó

=
1

n

n∑
i=1

EDntrain∼p
⊗n
data

î
1fDn

train
\{(xi,yi)}(xi) 6=yi

ó
= EDntrain∼p

⊗n
data

î
1fDn

train
\{(x1,y1)}(x1)6=y1

ó
= EDn−1

train∼p
⊗n−1
data

Å
E(x1,y1)∼pdata

ï
1f
Dn−1

train
(x1) 6=y1

òã
.

This leads to the claimed result since the expectation between brackets on the right hand side of

the previous equality is R
Ä
fDn−1

train

ä
. ut

The interest of the leave-one-out estimator for SVM (which is very expensive to compute
in general unless there is some algebraic simplification which makes it unnecessary to solve n
optimization problems) is that it can be easily related to the fraction of support points in the
data.
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Theorem 6.1. Assume that the training sets Dntrain are linearly separable for any n > 2. Recall
the definition (6.5) of the set of active constraints, and denote by NSV(Dtrain) = |S| the number
of support vector defining the prediction function

fDtrain
(x) = sign

(∑
i∈S

αiyix
>
i x+ b

)
.

Then the expected risk can be bounded as

EDntrain∼p
⊗n
data

[
R
(
fDntrain

)]
6 EDn+1

train∼p
⊗n+1
data

ñ
NSV(Dn+1

train)

n+ 1

ô
.

Proof. By Lemma 6.1, the left hand side of the inequality to prove is equal to

EDn+1
train∼p

⊗n+1
data

î“RLOO

(
Dn+1

train

)ó
.

Now, in the leave-one-out estimator (6.9), the predictors which appear in the sum are unchanged
when the data point which is removed is not a support vector, and the prediction at this point is
therefore correct as the data sets are assumed to be linearly separable. To misclassify, the removed
data point needs to be a support vector, so that“RLOO

(
Dn+1

train

)
6
NSV(Dn+1

train)

n+ 1
,

from which the result follows by taking expectations over realizations of the data set on both
sides. ut

6.2 Linear classification for non separable data sets

Data sets are often not linearly separable. The constraints then need to be relaxed in order to
allow for some misclassification of the data. The deviation to the constraint yi(w

>xi + b) > 1 is
controlled using slack variables ξi > 0, namely

yi
(
w>xi + b

)
> 1− ξi.

Outliers correspond to ξi > 0. The decision function then equilibriates between large margins
(which may lead to a higher number of outliers) and the limitation of the slack. This approach is
known as soft margin SVM.

6.2.1 Soft margin SVM

The primal optimization problem generalizes (6.3) as

min
(w,b,ξ)∈Rd×R×Rn+

{
1

2
‖w‖22 + C

n∑
i=1

ξpi

∣∣∣∣∣ ∀1 6 i 6 n, yi
(
w>xi + b

)
> 1− ξi

}
, (6.10)

where p > 1 is some exponent and C > 0 allows to control the amount of slack. The parameter C,
which is akin to some regularization parameter, is typically determined by (cross) validation.
Hard SVM is recoverd in the limit C → +∞, where no slack is allowed. Large values of C allow
to focus attention on points close to the decision boundaries, as outliers with values of the slack
not sufficiently small are strongly penalized.

The most common choices for the exponent p are p = 1, which is the value we consider in the
sequel, and p = 2.
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Remark 6.1 (Interpretation as convex surrogate). The minimization problem (6.10) can be
rewritten as

min
(w,b)∈Rd×R

{
1

n

n∑
i=1

max
{

0, 1− yi
(
w>xi + b

)}p
+

1

2nC
‖w‖22

}
.

This formulation makes it apparent that this amounts to a classification problem using convex
surrogate functions

Φp(u) = max{0, 1− u}p,

and a ridge penalization with strength λ = 1/(2nC). The cases p = 1 and p = 2 respectively
correspond to the hinge loss and the squared hinge loss.

6.2.2 Characterization of minimizers

We write here the characterization of the minimizer of (6.10) for p = 1. The computations are
similar to those leading to (6.4). More precisely, the minimization problem under consideration
corresponds to minimizing the function

f(w, b, ξ) =
1

2
‖w‖2 + C

n∑
i=1

ξi,

under the constraints

ci(w, b, ξ) = yi
(
w>xi + b

)
− 1 + ξi > 0, c̃i(w, b, ξ) = ξi > 0.

The associated necessary conditions to be satisfied by a global minimizer read

∇wf(w, b, ξ)−
n∑
i=1

αi∇wci(w, b, ξ) = 0,

∂bf(w, b, ξ)−
n∑
i=1

αi∂bci(w, b, ξ) = 0,

∀1 6 i 6 n, ∂ξif(w, b, ξ)− αi∂ξici(w, b, ξ)− βi∂ξi c̃i(w, b, ξ) = 0,

αici(w, b, ξ) = βic̃i(w, b, ξ) = 0,

αi > 0, βi > 0,

so that

w =

n∑
i=1

αiyixi,

with
n∑
i=1

αiyi = 0,

and
∀1 6 i 6 n, αi + βi = C, αici(w, b, ξ) = βic̃i(w, b, ξ) = 0.

Recalling the definition (6.5) of the set of active constraints, we find that

w =
∑
i∈S

αiyixi.

An index 1 6 i 6 n belongs to S only if yi(w
>xi+ b)−1+ ξi = 0, i.e. the constraint ci(w, b, ξ) > 0

is active. There are therefore two types of support vectors:

• ξi = 0 and yi(w
>xi + b) = 1, so that xi belongs to one of the two marginal hyperplanes, as for

separable data sets;
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• ξi > 0, in which case xi is an outlier. One necessarily has βi = 0 in this case, so that αi = C.

An alternative interpretation of the result is obtained by looking at the values of αi ∈ [0, C]:

• if αi = 0, the data point is ignored for the prediction;
• if αi ∈ (0, C), then ξi = 0. The data point is used for the prediction, and lies on one of the two

marginal hyperplanes. As in Exercise 6.2, it can be shown that the value of b is obtained from
data points on the marginal hyperplanes.

• if αi = C, then the data point can lie (but need not to) inside the margin region, either
correctly classified if ξi < 1, or misclassified if ξi > 1.

6.2.3 Dual formulation

To obtain the dual formulation of the primal problem (6.10), we introduce the Lagrangian

L(w, b, ξ, α, β) =
1

2
‖w‖22 + C

n∑
i=1

ξi −
n∑
i=1

αi
[
yi
(
w>xi + b

)
− 1 + ξi

]
−

n∑
i=1

βiξi.

The dual problem reads

max
α,β∈Rn+

®
min

(w,b,ξ)∈Rd×R×Rn+}
L(w, b, ξ, α, β)

´
.

We can then follow the same derivation as in Section 6.1.3, and obtain the following result, similar
to the one of Exercise 6.3.

Exercise 6.4. Prove that the dual version of the primal problem (6.10) writes

max
α∈[0,C]n


n∑
i=1

αi −
1

2

n∑
i,j=1

αiαj
(
x>i xj

)
yiyj

∣∣∣∣∣∣
n∑
i=1

αiyi = 0

 . (6.11)

Note that (6.11) coincides with (6.8) except that the components of α are restricted to lie in
the interval [0, C] instead of R+.

Correction. Note that L(w, b, ξ, α, β) = F 1
α,β(w) + F 2

α,β(b) + F 3
α,β(ξ) + F 4

α,β with

F 1
α,β(w) =

1

2
‖w‖22−

n∑
i=1

αiyiw
>xi, F 2

α,β(b) = −
n∑
i=1

αiyib, F 3
α,β(ξ) =

n∑
i=1

(C−αi−βi)ξi,

and

F 4
α,β =

n∑
i=1

αi.

The minimization of L(w, b, ξ, α, β) over (w, b, ξ) ∈ Rd×R×Rn+ for α, β fixed therefore amounts
to minimizing the various functions F kα,β for k = 1, 2, 3 with respect to their argument. A simple

computation shows that the optimality condition for F 1
α,β reads

w?α,β =

n∑
i=1

αiyixi,

and

min
w∈Rd

F 1
α,β(w) = F 1

α,β

(
w?α,β

)
= −1

2

∥∥∥∥∥
n∑
i=1

αiyixi

∥∥∥∥∥
2

.

Moreover, the minimum of F 2
α,β is −∞ unless
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n∑
i=1

αiyi = 0.

The vectors α ∈ Rn+ which do not satisfy the latter condition can therefore be discarded
when maximizing over (α, β) ∈ Rn+ × Rn+. Finally, the minimum of F 3

α,β over ξ ∈ Rn+ is −∞
if αi+βi > C for some index 1 6 i 6 n. The maximization over (α, β) ∈ Rn+×Rn+ can therefore
be restricted to vectors for which 0 6 αi+βi 6 C. In this case, the minimum of F 3

α,β is obtained
for ξ = 0 and it is equal to 0. The dual problem therefore reads

max
α,β∈Rn+

−1

2

∥∥∥∥∥
n∑
i=1

αiyixi

∥∥∥∥∥
2

+ F 4
α,β

∣∣∣∣∣∣αi + βi 6 C

 .

Note that βi only appears through the constraint αi+βi 6 C. The maximization over α, β ∈ Rn+
satisfying αi + βi 6 C for all 1 6 i 6 n is therefore equivalent to the maximization over α ∈
[0, C]n, which allows to conclude.

6.3 Multiclass SVM

SVM is intrinsically a method for binary classification. It can however be transformed for multiclass
classification. There are two main strategies to this end: combine pairwise decision functions for all
possible couples of labels (“one-vs-one” strategy), or base predictions on decision functions where
one label is separated from all other ones (“one-vs-all” approach). We successively describe both
strategies, for a situation where the labels of the data set belong to Y = {1, . . . ,K}.

One-vs-one. For any 1 6 k, k′ 6 K with k 6= k′, we consider the prediction functions fk,k′

obtained by training SVM on the data set containing only points for which the label is either k
or k′. For a test input x′, the prediction y′ ∈ Y is the index which has obtained the largest number
of assignments for the K(K − 1)/2 classifiers under consideration. More precisely,

y′ ∈ argmax
y∈Y

 ∑
16k<k′6K

1fk,k′ (x′)=y

 .

This approach is however expensive when K is large as one needs to train K(K − 1)/2 models.

One-vs-all. We select an index k ∈ {1, . . . ,K}, and transform the initial training set into a
training set where there are only two classes, one corresponding to data points with labels k, and
the other one gathering all data points whose labels differ from k. This amounts to considering
the inputs xi for 1 6 i 6 n with new labels ỹi ∈ {−1, 1}, with

ỹi = 1yi=k − 1yi 6=k.

We then perform SVM as described in the binary case. The corresponding decision function is
denoted by gk. For a new test input x′, one then selects the label based on some form of maximal
separation, for instance

y′ ∈ argmax
16k6K

gk(x′),

i.e. the class label which lead to the largest margin; or

y′ ∈ argmax
16k6K

log
pk(y = 1 |x′)
pk(y = −1 |x′)

,
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where pk is some probabilistic model (whose hyperparameters should be calibrated with some
maximum likelihood procedure on a separate validation set in order to avoid overfitting; this is
known as Platt scaling, see [40, Sections 17.3.5 and 17.3.7]). There are however two difficulties in
this approach. The first one is class imbalance, as there will typically be many more points with
labels in {1, . . . ,K}\{k} than points with labels k. The second one is that the various the values of
the decision functions gk are difficult to compare as the corresponding classification problems may
have quite different scales; similarly, the probabilities pk(y = ±1 |x′) may be hard to compare.

6.4 Kernel SVM

There are two difficulties with classification using SVM, and in general with other linear methods,
either for classification (think of logistic regression), regression (think of least square regression)
or dimensionality reduction (think of PCA):

• the data may not be well represented with a linear model. In the context of classification,
this means that the data set may not be linearly separable. On the other hand, it could
become linearly separable once a nonlinear featurization has been performed with some feature
function φ. This function may have values in very high dimensional spaces, as it may be
necessary to go to quite high dimensions in order to linearly separate the data. In any case,
this approach allows to obtain non affine decision boundaries;

• the computational cost of the method can become important as the dimension of the number
of features is increased. The kernel trick, as described below (and already seen in a particular
case in Section 5.5.2), allows to alleviate this issue by ensuring that the cost of the numerical
methods depends on the number of data points n and not on the dimension of the feature
function.

We start by presenting the principle of Kernel SVM in Section 6.4.1, and then give a mathemati-
cally more precise introduction to kernel methods in Section 6.4.2. add plot

of decision
function
in this NL
context

6.4.1 Principle of the method

The principle of kernel methods is to rewrite all predictions using expressions such as

K(x, x′) = φ(x) · φ(x′), (6.12)

which should be understood as the scalar product between two elements of a (possibly infinite
dimensional) Hilbert space. For SVMs, predictions using kernel methods rely on w>φ(x) + b,
where the expressions of w, b are the ones obtained in Sections 6.1 and 6.2 but with xi replaced
by φ(xi):

w =
∑
i∈S

αiyiφ(xi), b =
1

|S|
∑
i∈S

Ñ
yi −

∑
j∈S

αjyjφ(xj)
>φ(xi)

é
.

Therefore,

w>φ(x) + b =
∑
i∈S

αiyiK(x, xi) +
1

|S|
∑
i∈S

Ñ
yi −

∑
j∈S

αjyjK(xj , xi)

é
can be computed with the knowledge of the kernel K only. Moreover, the values of the coeffi-
cients α ∈ Rn+ can be found by considering the dual problem derived similarly to (6.11):

max
α∈[0,C]n


n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

∣∣∣∣∣∣
n∑
i=1

αiyi = 0

 .
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This makes it possible to substantially enlarge the dimension of the features, and in fact consider
infinite dimensional features, as long as the associated kernel K is easy to evaluate. In fact, in
practice, one chooses the kernel function K, in which case the associated features are implicit.
Indeed, the feature function φ needs not be known explicitly as it suffices to rely on a result
saying that there exist a Hilbert space H and a feature function φ : X → H associated with a
kernel K : X 2 → R according to (6.12). This is discussed in the next section.

6.4.2 Kernel methods

We provide in this section the rigorous definition of kernel functions, and give conditions charac-
terizing admissible kernels.

Definition 6.2. A kernel K : X 2 → R is said to be positive definite symmetric (PDS) if, for
any (x1, . . . , xn) ∈ Xn, the matrix K ∈ Rn×n with entries Ki,j = K(xi, xj) is symmetric positive
semidefinite ( i.e. for any t ∈ Rn, it holds t>Kt > 0, or equivalently K is real symmetric with
nonnegative eigenvalues).

The following important result, due to Aronszajn in 1950, characterizes PDS kernels.

Theorem 6.2. The function K : X 2 → R is a PDS kernel if and only if there exist a Hilbert
space H and a function φ : X → H such that

K(x, x′) = 〈φ(x), φ(x′)〉H. (6.13)

Proof. Assume that there exist a Hilbert space H and a function φ : X → H such that K(x, x′) =
〈φ(x), φ(x′)〉H. Fix (x1, . . . , xn) ∈ Xn, and consider the matrix K ∈ Rn×n with entries Ki,j =
K(xi, xj). Note first that K is symmetric by the symmetry of the scalar product. Next, for t ∈ Rn,

t>Kt =

n∑
i,j=1

K(xi, xj)titj =

∞
n∑
i=1

tiφ(xi),

n∑
j=1

tjφ(xj)

∫
H

=

∥∥∥∥∥
n∑
i=1

tiφ(xi)

∥∥∥∥∥
2

H

> 0,

so that K is positive semidefinite. This allows to conclude that K is a PDS kernel.
Assume conversely that K is a PDS kernel. We first construct a Hilbert space H of functions

with argument in X by completion of finite linear combinations of elementary functions x 7→
K(x, xi):

H0 =

{∑
i∈I

tiK(·, xi), ti ∈ R, xi ∈ X , |I| < +∞

}
.

This vector space is endowed with the inner product

〈f, g〉H =

n∑
i=1

m∑
j=1

tit
′
jK(xi, x

′
j), f =

n∑
i=1

tiK(·, xi), g =

m∑
j=1

t′jK(·, x′j).

Note that 〈f, g〉H does not depend on the representative of f as

〈f, g〉H =

m∑
j=1

tjf(x′j);

similarly it depends only on g and not on its chosen representative. Moreover, 〈·, ·〉H is a symmetric
bilinear form since K(xi, x

′
j) = K(x′j , xi) (this can be seen by noting that K(x1, x2) = K12 = K21 =

K(x2, x1) since the 2 × 2 matrix build from K with only two points is symmetric; the equality
holds for any two points). In addition, 〈·, ·〉H is nonnegative (i.e. 〈f, f〉H > 0 for any f ∈ H0).
Also,

〈K(·, x), f〉H = f(x),



6.4 Kernel SVM 111

and
〈K(·, x),K(·, x′)〉H = K(x, x′),

so that one can choose φ(x) = K(·, x) in order to satisfy (6.13).
To show that the inner product is a scalar product, it remains to prove that it is definite. Fix

to this end f ∈ H0 such that 〈f, f〉H = 0. By a Cauchy–Schwarz inequality,1 for a given x ∈ X ,

〈f,K(·, x)〉2H 6 〈f, f〉H〈K(·, x),K(·, x)〉H = 〈f, f〉HK(x, x), (6.14)

so that f(x) = 〈f,K(·, x)〉H = 0. Since x was arbitrary, we obtain f = 0.
The proof is concluded by defining H as the completion of H0 for the norm induced by the

scalar product 〈·, ·〉H. ut

Note that (6.14) ensures that f 7→ 〈f,K(·, x)〉H is a Lipschitz mapping from H0 to R, and
hence can be extended to a Lipschitz mapping on H. In particular,

∀f ∈ H, f(x) = 〈K(·, x), f〉H. (6.15)

This property motivates the terminology Reproducing Kernel Hilbert Space (RKHS) for the Hilbert
space H. The latter Hilbert space is also called feature space, with associated feature map φ : X →
H given by φ(x) = K(·, x) ∈ H. Note that H contains only continuous functions as one needs to
make sense of pointwise values through (6.15). It is typically a space of rather smooth functions,
such as a Sobolev space of sufficiently high order.

We next give two examples of PDS kernels, and make precise the associated feature maps.

Example 6.1 (Polynomial kernels). For p ∈ N, define

K(x, x′) = (1 + x · x′)p . (6.16)

Let us construct, for pedagogical reasons, the feature map when d = 2 and p = 2. More precisely,
for x = (x1, x2) ∈ R2, introduce

φ(x) =
Ä
x21, x

2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
ä>
∈ R6.

Then, for x, x′ ∈ R2,

φ(x) · φ(x′) = x21(x′1)2 + x22(x′2)2 + 2x1x
′
1x2x

′
2 + 2x1x

′
1 + 2x2x

′
2 + 1 = (1 + x1x

′
1 + x2x

′
2)

2

= (1 + x · x′)2 ,

which is indeed (6.16) for p = 2.

Example 6.2 (Gaussian kernels). For σ > 0, define

K(x, x′) = e−‖x−x
′‖2/(2σ2).

This kernel can be obtained from

K̃(x, x′) = e−x·x
′/σ2

by a renormalization procedure:

K(x, x′) =
K̃(x, x′)»

K̃(x, x)
»
K̃(x′, x′)

.

1 Note indeed that this inequality holds for any nonnegative symmetric bilinear form (which may not
be a scalar product) on a vector space Z, as can be seen by considering 0 6 〈z1 + tz2, z1 + tz2〉Z =
〈z1, z1〉Z +2t〈z1, z2〉Z +t2〈z2, z2〉Z , so that the determinant of the polynomial in t has to be nonpositive,
which leads to the claimed inequality 〈z1, z2〉2Z 6 〈z1, z1〉Z〈z2, z2〉Z .
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To prove that K is PDS, it therefore suffices in view of [39, Lemma 6.9] to prove that K̃ is PDS.
The latter statement can be obtained either by relying on Fourier analysis using Bochner’s theorem
(see [39, Theorem 6.24] or [4, Theorem 7.3]), or by explicitly constructing φ by noting that

K̃(x, x′) =

+∞∑
p=0

(x · x′)p

p!σ2p
.

There are of course many other examples of PDS kernels. Given PDS kernels, one can also
construct new PDS kernels by various rules (sums and products of PDS kernels, composition of
PDS kernels with power series with nonnegative coefficients, etc).

Exercise 6.5. Consider a PDS kernel K. Prove that

∀x, x′ ∈ X , K(x, x′)2 6 K(x, x)K(x′, x′).

Correction. The 2× 2 matrix

K =

Å
K(x, x) K(x, x′)
K(x, x′) K(x′, x′)

ã
is symmetric positive since K is a PDS kernel. In particular, det(K) > 0. The result then follows
from the equality det(K) = K(x, x)K(x′, x′)−K(x, x′)2.

We conclude this section by a very important result, the representer theorem, which states that
predictors can be written as a linear combination of {K(·, xi)}16i6n. The following result allows
to generalize manipulations performed in Section 6.4.1 for SVM.

Theorem 6.3 (Representer theorem). Consider a Hilbert space H and a feature map φ : X →
H. Fix (x1, . . . , xn) ∈ Xn and consider Ψ : Rn+1 → R nondecreasing with respect to the last
variable. Then,

f? ∈ argmin
f∈H

Ψ
(
〈f, φ(x1)〉H , . . . , 〈f, φ(xn)〉H , ‖f‖

2
H
)

is of the form

f? =

n∑
i=1

tiφ(xi) ∈ H.

This result can be applied to PDS kernel K : X 2 → R by considering the associated RHKS H
and φ(xi) = K(·, xi). In this case, any minimizer

f? ∈ argmin
f∈H

Ψ
(
f(x1), . . . , f(xn), ‖f‖2H

)
can be written as

f? =

n∑
i=1

tiK(·, xi).

Proof. Introduce the following finite dimensional vector subspace of H:

Hx1,...,xn =

{
n∑
i=1

tiφ(xi), t ∈ Rn
}
⊂ H,

which is the linear span of the feature vectors associated with the training data set. Any f ∈ H
can be orthogonally decomposed as

f = fx1,...,xn + f⊥, fx1,...,xn ∈ Hx1,...,xn ,
〈
fx1,...,xn , f

⊥〉
H = 0.
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Then,
〈f, φ(xi)〉H = 〈fx1,...,xn , φ(xi)〉H ,

and
‖f‖2H = ‖fx1,...,xn‖

2
H +

∥∥f⊥∥∥2H > ‖fx1,...,xn‖
2
H .

Therefore, since Ψ is nondecreasing with respect to its last argument,

Ψ
(
〈f, φ(x1)〉H , . . . , 〈f, φ(xn)〉H , ‖f‖

2
H
)

> Ψ
Ä
〈fx1,...,xn , φ(x1)〉H , . . . , 〈fx1,...,xn , φ(xn)〉H , ‖fx1,...,xn‖

2
H

ä
.

This inequality shows that the minimization over f ∈ H can be restricted to a minimization over
the subspace Hx1,...,xn , which allows to conclude the proof. ut

Let us apply Theorem 6.3 to typical training problems in supervised learning, which read (with
some squared penalty term)

min
f∈H

{
1

n

n∑
i=1

` (yi, f(xi)) + λ‖f‖2H

}
.

The minimization can be restricted to functions of the form

f =

n∑
i=1

tiK(·, xi),

which therefore amounts to minimizing over t = (t1, . . . , tn) ∈ Rn. Note that the penalty term
then reads

‖f‖2H =

n∑
i,j=1

titjK(xi, xj) = t>Kt,

where K ∈ Rn×n is the matrix with entries Kij = K(xi, xj). The minimization problem can then
be seen as some generalized ridge penalization:

t? ∈ argmin
t∈Rn

{
1

n

n∑
i=1

` (yi, (Kt)i) + λt>Kt

}
,

where we used the equality

(Kt)i =

n∑
j=1

tjK(xi, xj).

Predictions are finally performed with the optimal set of coefficients t? as

f?(x′) =

n∑
i=1

t?iK (x′, xi) .
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We discuss in this chapter how to perform predictions (either classification or regression) with
trees. We start by presenting regression and classification trees in Section 7.1, and next discuss
how to improve the performance of possibly weak learners such as trees by combining prediction
functions, either by some form of averaging (see Section 7.2) or by some greedy reweighting
procedure known as boosting (see Section 7.3).

The presentation of trees is based on [40, Chapter 18], [24, Chapter 9] (in particular Section 9.2),
[8, Section 14.4] and [49, Chapter 18]; while the elements on ensemble methods and boosting are
taken from [40, Chapter 18], [4, Chapter 10], [24, Chapter 11], [8, Sections 14.2 and 14.3] and [39,
Chapter 7].

7.1 Regression and classifications trees

We show in this section how to perform predictions with decision trees. We start by making precise
the principle of the method in Section 7.1.1, and then specify the strategy to regression trees in
Section 7.1.2 and next to classification trees in Section 7.1.3. We conclude by discussing a few
practical points of the method in Section 7.1.4.

We think of inputs having ordered values (real variables, or, in the case of discrete inputs,
values which can be compared such as shoe sizes, ages, etc); see Section 7.1.4 for a discussion on
genuine categorical data.

7.1.1 Principle of the method

The idea behind decision trees is to recursively partition the input space X and define a local
model in each resulting region. Each region is associated with a leaf of the tree. The partitioning
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is done with a series of questions to hierarchically decompose the input space, and group samples
with the same labels (for classification) or with similar target values (for regression).

We consider recursive binary trees to simplify the presentation, and also to avoid data fragmen-
tation (if there are too many possible choices at each step, the end nodes/leaves can be associated
with too small a number of instances). The construction is performed using axis parallel splits,
i.e. separations are done based on values of certain features only, and not linear combinations of
features (which can make it difficult to learn certain separations: think of diagonally separated
data in a feature space of dimension 2...). Restricting to axis parallel splits is better for the com-
putational scalability of the method, allows for an easy randomization of the algorithm, and also
makes the interpretation easier.

The construction can be formalized by considering a set of nested decision rules. At each node j
of the decision tree, the feature xkj of an input x is compared to a treshold value tj , i.e. one checks
whether xkj 6 tj or xkj > tj . Outputs are specified at leaves. For the example of Figure 7.1, the
ouputs are specified in the regions

R1 = {x1 6 t1, x2 6 t2}, R2 = {x1 > t1, x2 6 t4}, . . .

The right part of Figure 7.1 illustrates a key advantage of the method, namely its interpretability.

x1 6 t1

x2 6 t2

R1

Yes

x1 6 t3

R4 R5

No

Yes

x2 6 t4

R2 R3

No

R4

R1

R5

R2

R3

t3 t1

t2

t4

Fig. 7.1: Left: Binary tree. Right: Associated regions.

7.1.2 Regression trees

We consider regression for inputs X = Rd and ouputs Y = R for simplicity. Regression trees
implement prediction functions of the form

fθ(x
′) =

J∑
j=1

wj1x′∈Rj ,
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when there are J regions R1, . . . , RJ (corresponding to J leaves in the decision tree). The param-
eter θ gathers the regions and the values wj ∈ R predicted in these regions:

θ = {Rj , wj}16j6J .

For (unregularized) least square regression, the values (wj)16j6J are in fact easy to obtain once
the regions R1, . . . , RJ are determined. This is made precise in the next exercise.

Exercise 7.1. For least square regression, prove that

wj =

n∑
i=1

yi1xi∈Rj

n∑
i=1

1xi∈Rj

is the empirical average of the outputs associated with inputs belonging to Rj.

Correction. The loss function to consider for regression problems is

1

n

n∑
i=1

(yi − fθ(xi))2 =
1

n

J∑
j=1

∑
i∈Ij

(yi − wj)2,

where Ij is the set of indices for which the data points are in the region Rj :

Ij = {i ∈ {1, . . . , n} : xi ∈ Rj} .

Note that the minimization over (w1, . . . , wJ) can in fact be rewritten as a minimization of wj
for each region Rj since

min
(w1,...,wJ )∈RJ

{
1

n

n∑
i=1

(yi − fθ(xi))2
}

=
1

n

J∑
j=1

min
wj∈R

∑
i∈Ij

(yi − wj)2
 .

Now, the minimization problem

min
wj∈R

∑
i∈Ij

(yi − wj)2


is well posed (the function to minimize is strongly convex in finite dimension, in particular
continuous and coercive) and the Euler–Lagrange condition characterizing the minimizer w?j
reads ∑

i∈Ij

(
yi − w?j

)
= 0.

This leads to the claimed result.

The previous exercise shows that the key point to construct regression trees is to find the
partition R1, . . . , RJ . In general, finding the optimal partition is infeasible. In practice, one resorts
to a greedy strategy where one node is grown at the time. Popular implementations of this idea
are CART, ID3 and C4.5 for instance. The tree is then pruned in order to avoid overfitting.

Growing the tree. Let us explain how to grow a tree when being at node j. We introduce to
this end the set Dj of data points (xi, yi) which are still considered at this node, and denote by Ij
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the associated indices. We then consider the following possible partitions of this set, where we
separate points based on the value of the k-th feature of the input:

D−j (k, t) = {(xi, yi) ∈ Dj : xi,k 6 t} , D+
j (k, t) = {(xi, yi) ∈ Dj : xi,k > t} .

We choose k and t so that the following loss function is maximally decreased when partitioning Dj :

(kj , tj) ∈ argmin
16k6d
t∈R

 min
w−∈R

∑
(xi,yi)∈D−j (k,t)

(yi − w−)2 + min
w+∈R

∑
(xi,yi)∈D+

j (k,t)

(yi − w+)2


= argmin

16k6d
t∈R


∑

(xi,yi)∈D−j (k,t)

Ä
yi − w−j,k,t

ä2
+

∑
(xi,yi)∈D+

j (k,t)

Ä
yi − w+

j,k,t

ä2 ,

where w±j,k,t are the empirical averages of the ouputs on the sets D±j (k, t):

w±j,k,t =
1

|D±j (k, t)|
∑

(xi,yi)∈D±j (k,t)

yi.

The optimal values for k and t can be determined with a computational cost O(dnj log nj)
when X = Rd and there are nj = |Ij | data points to consider (see [49, Section 18.2.3]). A naive
implementation can be performed with a cost O(dn2j ). The factor d comes from the fact that one
needs to consider all the possible values 1 6 k 6 d. For a given value of k, the optimal treshold
could be found by sorting the values x1,k, . . . , xn,k for the nj data points in Dj (cost O(nj log nj))
and then looping over the nj possibles values (xi,k)i∈Ij for t. Note indeed that it suffices to consider
values of t coinciding with the value of a component of a data point. For each value of t, the loss
function to evaluate can be evaluated with a computational cost O(nj).

Pruning the tree. Trees are grown until some minimal node size is reached (e.g. 5 data points)
or the maximal depth is attained. It is good practice then to prune the tree back in order to avoid
overfitting. Note indeed that large enough trees can always perfectly fit the data, but they are
then too tightly adjusted to the data at hand and suffer from poor generalization capabilities.

0

1

3 4

2

0

1 2

Fig. 7.2: Left: Reference tree T0. Right: Pruned tree where node 1 has been collapsed.

Complexity pruning is one way of proceeding (see [24, Section 9.2.2]). To present the method,
denote by T0 the tree to be pruned. A subtree T of T0 is any tree that can be obtained by collapsing
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a certain number of internal (i.e. non-terminal) nodes; see Figure 7.2 for an illustration. The metric
to find the right tree size is

Cα(T ) =

|T |∑
t=1

Nt(T )Qt(T ) + α|T |,

where α > 0 is some regularization parameter, |T | is the number of terminal nodes of the tree T ,
Nt(T ) is the number of data inputs at node t, and Qt(T ) is the empirical variance at this node:

Qt(T ) =
1

Nt(T )

∑
i:xi∈Rt

(yi − wt)2, wt =
1

Nt(T )

∑
i:xi∈Rt

yi.

For a given value of α > 0 one then looks for the subtree Tα of T0 which minimizes Cα(T ). Large
values of α favor smaller trees, while smaller values of α allow for larger trees. The initial tree is
recovered for α = 0. To find Tα in practice, one resorts to weakest-link pruning, which consists in
collapsing the node that produces the smallest per-node increase in C0(T ); and continues until the
single node (root) tree is produced. This produces a finite sequence of subtrees which contains Tα
(see [1, Section 1.10.9] for further details).

Let us finally conclude by saying that pruning is not always performed in practice. It makes
sense only if one wants a single nice decision tree. In practice, as discussed in Sections 7.2 and 7.3 in
particular, one often relies on ensembles of rather small trees, which are individually not providing
great predictions (and therefore need not be pruned).

7.1.3 Classification trees

We discuss here how to perform classification with trees, for a label set Y = {1, . . . ,K}. We rely
on the empirical probabilities of k ∈ {1, . . . ,K} in D:

p̂k(D) =
1

|D|
∑

(xi,yi)∈D

1yi=k.

Using the same notation as in Section 7.1.2, the prediction at the jth terminal node is argmax
16k6K

p̂k(Dj)

in the region Rj .
As for regression trees, splitting is based on the values of the features of data points; but one

needs another measure in the greedy approach to select the feature and treshold. The general form
of this selection procedure is the following, at node j:

(kj , tj) ∈ argmin
16k6d
t∈R

®
|D−j (k, t)|
|Dj |

C
Ä
D−j (k, t)

ä
+
|D+
j (k, t)|
|Dj |

C
Ä
D+
j (k, t)

ä´
,

where C (D) is some cost function relation to a set of data points D. Various choices can be
considered, which all measure the purity of the labels. More precisely, one can consider

• the misclassification error 1− max
16k6K

p̂k(D). This expression is motivated by the fact that, for

a terminal node, one would predict the argument of the max;

• the Gini index

K∑
k=1

p̂k(D) (1− p̂k(D)) = 1−
K∑
k=1

p̂k(D)2. The interpretation of this cost function

is that it gives the expected error rate. Indeed, the probability to make a mistake on the label k
is the product of oberving the label, namely p̂k(D), multiplied by the probability to misclassify
it, namely 1− p̂k(D); the total error rate is then the sum over k of the latter quantity;

• the cross entropy or deviance −
K∑
k=1

p̂k(D) log p̂k(D).
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Pruning is traditionally done with the misclassification error; while the splitting is done with the
Gini index or cross entropy. All these cost functions favor pure nodes with a single population.
This can be easily understood when K = 2, as the cost functions are respectively 1−max(p, 1−p),
2p(1− p) and −p log p− (1− p) log(1− p).

Exercise 7.2. Consider the set

P =

{
(p1, . . . , pK) ∈ [0, 1]K

∣∣∣∣∣
K∑
k=1

pk = 1

}
.

Show that the mappings

P 3 (p1, . . . , pK) 7→
K∑
k=1

pk(1− pk), P 3 (p1, . . . , pK) 7→ −
K∑
k=1

pk log pk,

have nonnegative values, and that p?,` = (1k=`)16k6K are the only minimizers of these functions.

Correction. The first mapping obviously has nonnegative values since z(1 − z) > 0 for z ∈
[0, 1]. Moreover,

K∑
k=1

pk(1− pk) = 0⇐⇒ ∀k ∈ {1, . . . ,K}, pk(1− pk) = 0⇐⇒ ∀k ∈ {1, . . . ,K}, pk ∈ {0, 1}.

Since p1 + · · · + pK = 1, there is one and only one index ` ∈ {1, . . . ,K} such that p` = 1,
while pk = 0 for k 6= `.

For the second mapping, we note that −z log z > 0 for z ∈ [0, 1] with −z log z = 0 if and
only if z ∈ {0, 1} (since the function vanishes for z ∈ {0, 1} and is stricly concave on (0, 1) as
can be seen from computing the second derivative, which is z 7→ −1/z; the nonnegativity itself
is already a consequence of log z 6 0 for z ∈ (0, 1]). The conclusion then follows from the same
reasoning as for the first mapping.

7.1.4 Some practical points

We discuss in this section various practical points.

Categorical values. In some cases, predictions (either regression or classification) are performed
with inputs which cannot be ordered or compared, for instance colors of flowers. There are 2K−1−1
possible partitions of the K labels in two groups (see Exercise 7.3), which is too large a number
to be tackled unless K is very small. For regression, an option is to order categories by increasing
mean of the output and split them as if they were an ordered predictor. This can also be done
for binary classification, but is more complicated for multiclass classification, see the discussion
in [24, Section 9.2.4].

Exercise 7.3. Show by induction that there are 2K−1−1 possible partitions of the K labels in two
groups.

Correction. Denote by SK the number of partitions of {1, . . . ,K} composed of two sets. Note
that S2 = 1. Moreover,

SK+1 = 2SK + 1,

since the new element K + 1 can be put in any of the subsets for {1, . . . ,K}, with two choices
per partition; or can be put in a subset by itself (i.e. which corresponds to partitioning the set
into {1, . . . ,K} and {K + 1}). Therefore,
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SK+1 + 1 = 2(SK + 1),

so that SK + 1 = 2K−2(S2 + 1), which leads to the claimed formula.

Regularization. As mentioned above, the training error of trees can be brought down to 0 by
considering trees deep enough, in the absence of label noise. A heuristic approach to prevent this
is to fix the maximal depth of the tree, and/or the minimal number of data points at the leaves.
Another option is to perform backpruning, as discussed in Section 7.1.2.

Variance of the predictors. Trees can have a very low bias as they are flexible enough to
accomodate any training set and loss function provided the tree is deep enough. This suggests
that the associated predictors will have a large variance, i.e. will be unstable with respect to
changes in the training data points. This is due in particular to their hierarchical structure, since
a modification at a node in the tree during the learning process impacts all the leaves attached
to this node (think for example of an error or a difference at the root node, which will lead to
two completely different trees a priori). The high variance of predictors based on decision trees
motivates considering ensemble methods; see Section 7.2.

Choice of loss function. As for other models, it is possible to consider asymmetric loss functions
or splitting criteria, in order to put more emphasis on the correct classification of certain labels,
or regression of certain values (think of cancer prediction or spam classification for instance).

Final discussion: advantages and disadvantages of decision trees. We conclude this sec-
tion by listing the main advantages and disadvantages of trees for classification and regression.
Advantages include

• the method is easily interpretable, as the data is broken up directly based on the features. This
is probably the main interest of the approach;

• it can handle data of mixed types, with discrete, continuous and categorical inputs;
• there is no need to standardize the data as the method is scale invariant by construction;
• it automatically performs feature selection;
• it is relatively robust to outliers, as the tresholds can be considered as some forms of medians

or quantiles (although the predicted values are still based on averages, for regression);
• the method is fast to fit and scales well to large data sets.

All these characteristics make trees an interesting option for data mining. Trees however has some
disadvantages, in particular:

• the predictions are usually not very accurate compared to other models, due to the greedy
approach used in the fit;

• the variance of the predictions is high due to some instability with respect to changes in the
data inputs;

• the predictions are not smooth for regression, as the predictors are piecewise constant over
regions of parameter space;

• there is some limitation in expressivity due to the axis splits (think of 2-dimensional data that
would need to be separated along the diagonal: this requires rather deep trees).

7.2 Bagging and averaging techniques

The idea behind ensemble methods is to combine the results of predictors trained on different
datasets, “as independent as possible”, in order to obtain a better predictor – or at least a predictor
of the same quality as with other techniques, but in reduced wall clock time (as computations on
many simple predictors can be parallelized). The prediction obtained from ensemble methods is
either an actual average for regression, or a majority vote for classification. Let us emphasize that,
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although we present this approach in this chapter devoted to trees, it is in fact a general philosophy
which can be used in many contexts.

Ensemble methods make sense for local averaging methods such as K nearest neighbors, and
for nonlinear models obtained from empirical risk minimization. They do not make sense on the
other hand for affine models obtained from empirical risk minimization as the average of affine
models is still an affine model. Our presentation is based on regression in a supervised context, but
can be extended to classification when considering the Φ-risk associated with convex surrogates.

7.2.1 Motivation: the ideal setting

If M independent and identically distributed data sets D1, . . . ,DM are available (which is of course

often too strong an assumption...), one can construct a predictor f̂ by averaging the predictors f̂θm
trained on each data set Dm:

f̂(x′) =
1

M

M∑
m=1

f̂θm(x′).

Note that the parameters θm are independent and identically distributed. Therefore, f̂ has the
same bias as the underlying base predictors, but a variance of order O(1/M) (more precisely, the
variance of the base predictors divided by M).

For example, for K nearest neighbors, the upper bound (1.21) obtained for a single predictor
should be modified as

0 6 ED
î
R(f̂)

ó
−R? 6 σ2

KM
+ 8B2 diam(X )2

Å
2K

n

ã2/d
,

i.e. the variance term has been divided byM . The optimal value ofK then scales asM−d/(d+2)n2/(d+2),
and the optimal excess risk as (Mn)−2/(d+2). This bound is similar to the one obtained for single
data set of size Mn. The main interest of averaging in this context is that the evaluation of the
averaged predictor can be less expensive, or can be parallelized.

7.2.2 Bagging

The situation considered in Section 7.2.1 is an idealized one as one usually does not have
independent data sets. This motivates artificially creating data sets with some randomness
by replicating them from a baseline data set. This is precisely the idea behing bootstraping,
which motivates the terminology “bagging” (bootstrap aggregating). More precisely, given a data
set D = {(xi, yi)16i6n}, one constructs M data sets by sampling with replacement from D. Of
course, there is a non zero probability that two data points are identical in the data set. The
average proportion of different data points can in fact be made precise, as the following exercise
shows.

Exercise 7.4. What is the number of different data points seen in average, in the limit n→ +∞?

Correction. The probability not to select a given data point among the n ones is (n− 1)/n =
1− 1/n. The probability not to select it over n draws is then

pns =

Å
1− 1

n

ãn
−−−−−→
n→+∞

e−1.

Therefore, the probability to select a given data point is

ps = 1− pns = 1−
Å

1− 1

n

ãn
−−−−−→
n→+∞

1− e−1.

The number of different data points seen in average is finally nps. The fraction of different data
points converges to 1 − e−1 ≈ 0.63. This means that about 37% of the data points are not
present in the data set.
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Note that “out-of-bag” instances (i.e. data points which do not show up in the random data
set which is sampled) can be used for validation. One interest of bagging is that it prevents
algorithms to focus too much on some data points. This gives more robustness to the learning
procedure and ensures a better generalization. The method works better for unstable estimators,
with high variance; see for instance the mathematical analysis for 1-nearest neighbors presented
in [4, Section 10.1.2].

7.2.3 Random forests

Random forests mix bagging, as an ensemble of decision trees is learned on bootstrapped samples
of data, and random projections, since at each node of the trees splits are based only on a random
subset of all features. The motivation for the latter extra source of randomness is to decorrelate the
predictors as much as possible in order to benefit from the decrease in variance offered by ensemble
methods. We refer to [7, 37] for a more detailed presentation and elements on the mathematical
analysis of the approach.

7.3 Boosting

We present the approach for real-valued outputs. This is natural for regression; for classification
it means that one works with convex surrogates to work out classification rules from real-valued
outputs (see Section 3.1). The bottom line of the method is to sequentially fit an additive model
as

fT (x) =

T∑
t=1

αtFt(x), (7.1)

with possibly some reweighting of the data in some cases. We first present the general philosophy
of the method in Section 7.3.1, in particular the celebrated AdaBoost method and some of its
variations; and then discuss gradient boosting in Section 7.3.2.

7.3.1 General philosophy

Boosting is a greedy procedure where the predictor (7.1) is updated by looking for an extra term
which maximally minimizes the empirical risk. More precisely, at iteration t > 1, one first solves
the minimization problem

(αt, θt) = argmin
α∈R
θ∈Θ

{
1

n

n∑
i=1

`
(
yi, ft−1(xi) + αF (xi; θ)

)}
, (7.2)

and then sets
ft = ft−1 + αtF (·, θt).

The procedure is initialized in some way, typically by setting f0 = 0. A regularization term could
be added to the empirical risk to minimize, but we do not introduce such a component here for
simplicity of exposition. The details on how the minimization in (7.2) is exactly done depends on
the choice of loss function, which is why we next consider two particular cases. Gradient boosting,
presented in Section 7.3.2, allows for a more general approach which does not rely on the form of
the loss function.

Least-square boosting. We consider the loss function `(y, z) = |y − z|2. Introduce the resid-
ual ri,t at step t for the prediction associated with xi, namely

ri,t = yi − ft−1(xi).

In this context, the minimization problem (7.2) can be reformulated as
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(αt, θt) = argmin
α∈R
θ∈Θ

{
1

n

n∑
i=1

|ri,t − αF (xi; θ)|2
}
,

which is the usual least-square fit of {(ri,t)16i6n} by F (xi, θ) (when integrating the constant α = 1
into the definition of F ). See for instance [40, Figure 18.6] for an illustration.

AdaBoost. This the historical example of boosting, used for binary classification on Y = {−1, 1}.
The base classifier functions F (·; θ) have values in Y. One works here with the convex surrogate
loss function Φ(u) = e−u, the associated elementary loss being `(y, z) = e−yz. Note in particular
that 1y 6=z = 1yz60 6 `(y, z), in accordance with the discussion in Section 3.1.1.2. In this context,
the minimization problem (7.2) can then be reformulated as

(αt, θt) = argmin
α∈R
θ∈Θ

{
1

n

n∑
i=1

ωi,te
−αyiF (xi;θ)

}
, ωi,t = e−yift−1(xi),

the associated classifier being

sign(fT ) = sign

(
T∑
t=1

αtF (·, θt)

)
.

In fact, the function to minimize can be rewritten as

1

n

n∑
i=1

ωi,te
−αyiF (xi;θ) =

Ñ ∑
i:F (xi;θ)=yi

ωi,t

é
e−α +

Ñ ∑
i:F (xi;θ)6=yi

ωi,t

é
eα

=
(
eα − e−α

) n∑
i=1

ωi,t1F (xi;θ)6=yi + e−α
n∑
i=1

ωi,t.

The latter formulation makes it clear that the optimization over θ can be performed independently
of α, and corresponds to minimizing some training error for the 0-1 loss and a data set with weights.
In fact, we will see below that αt is positive, so that, ideally, one would like to consider

θt ∈ argmin
θ∈Θ

{
n∑
i=1

ωi,t1F (xi;θ)6=yi

}
. (7.3)

As explained in Section 3.1, the latter optimization problem is difficult to solve. It is also not
necessary to solve it too precisely in the context of boosting, which relies on improving weak
classifiers such as trees of limited depth (assuming that such weak classifiers can indeed be obtained
for the problem at hand).

Once θt has been found, one can minimize over α, as the following exercise shows.

Exercise 7.5. Find the minimizer of

αt ∈ argmin
α∈R

{
1

n

n∑
i=1

ωi,te
−αyiF (xi;θt)

}
.

It is useful to introduce the classification error on the weighted data set:

Et =

n∑
i=1

ωi,t1F (xi;θt)6=yi

n∑
i=1

ωi,t

∈ [0, 1]. (7.4)

Check that αt > 0 when Et ∈ (0, 1/2) (which corresponds to a better prediction than guessing at
random).
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Correction. The minimization problem is equivalent to

min
α∈R

{(
eα − e−α

)
Et + e−α

}
.

The function to minimize is continuous and can be rewritten as Ete
α−(1−Et)e−α. It therefore

goes to +∞ as α → ±∞ when Et ∈ (0, 1). There exists in this case a global minimizer αt,
which necessarily satisfies the Euler–Lagrange condition

Ete
αt = (1− Et)e−αt ,

so that

αt =
1

2
log

Å
1− Et
Et

ã
. (7.5)

One can check that the latter expression remains valid in the limits Et → 0 or Et → 1. It is
also apparent that α ∈ (0,+∞) when Et ∈ (0, 1/2).

Overall, starting from ωi,1 = 1 and f0 = 0, the procedure therefore amounts to iterating the
following steps for 1 6 t 6 T :

• find an approximate solution θt to (7.3) (such that 0 6 Et < 1/2 with Et defined in (7.4));
• choose the value αt given in Exercise 7.5;
• update the classifier as ft = ft−1 + αtF (·; θt);
• update the weights as

ωi,t+1 =

∣∣∣∣∣ωi,t e2αt if yi 6= F (xi; θt),

ωi,t if yi = F (xi; θt).

Note that the latter update is equivalent (up to an unimportant multiplicative constant) to set-
ting ωi,t eαt if yi 6= F (xi; θt) and ωi,t e−αt if yi = F (xi; θt).

In this procedure, misclassified data points get larger weights, and will therefore count more
in the next iteration. However, (1 − Et)e

−αt = Ete
αt , so the mass of the well classified and

misclassified points are the same, but there are less and less misclassified points as their weight
increases.

Let us conclude this section by a result showing that the training error decreases exponentially
fast with the number of rounds of boosting.

Theorem 7.1. The training error is upper bounded as“R(fT ) =
1

n

n∑
i=1

1yifT (xi)60 6 exp

(
−2

T∑
t=1

ï
1

2
− Et

ò2)
.

In particular, if there exists γ ∈ [0, 1/2] such that

∀t ∈ {1, . . . , T}, Et 6
1

2
− γ, (7.6)

then “R(fT ) 6 e−2γ
2T .

The condition (7.6) means that the approximate solution to (7.3) is a weak classifier, slightly
better than guessing at random. The result supports the claim that the optimization over θ in (7.3)
need not be performed too precisely.

Proof. Since the method is unchanged when multiplying the weights by a constant factor, we can
consider the following weight update:
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ωi,t+1 = ωi,t
e−αtyiF (xi;θt)

Zt
, Zt =

n∑
j=1

ωj,t e−αtyjF (xj ;θt).

Moreover, we start from

ωi,1 =
1

n
.

These normalizations ensure that

∀t ∈ N,
n∑
i=1

ωi,t = 1. (7.7)

Note next that

1

n
e−yifT (xi) = e−αT yiF (xi;θT ) . . . e−α1yiF (xi;θ1)ωi,1

= e−αT yiF (xi;θT ) . . . e−α2yiF (xi;θ2)ωi,2Z1

= e−αT yiF (xi;θT ) . . . e−α3yiF (xi;θ3)ωi,3Z2Z1 = · · · = ZT . . . Z1 ωi,T+1.

Then, since 1u60 6 e−u for all u ∈ R,“R(fT ) 6
1

n

n∑
i=1

e−yifT (xi) =

n∑
i=1

Z1 . . . ZT ωi,T+1 = Z1 . . . ZT .

Now, using first (7.4) and (7.7), and then (7.5),

Zt =

n∑
i=1

ωi,t e−αtyiF (xi;θt) = e−αt(1− Et) + eαtEt = 2
»
Et(1− Et).

We next use that, for u ∈ [0, 1],

2
»
u(1− u) =

 
1− 4

Å
1

2
− u
ã2

6 exp

Ç
−2

Å
1

2
− u
ã2å

since 1 − v 6 e−v so that
√

1− v 6 e−v/2 for any v ∈ [0, 1]. The combination of the latter three
(in)equalities then gives the claimed result. ut

7.3.2 Gradient boosting

One limitation of AdaBoost and its variants is that the problem (7.2) has to be solved, with
a procedure depending on the elementary loss function ` at hand. Gradient boosting is a more
generic procedure. The main idea behind it is to consider the addition of a new term αF (·; θ) to
the sum α1F (·; θ1) + · · · + αt−1F (·; θt−1) as a perturbation. Therefore, the function to minimize
in (7.2) can be approximated by

1

n

n∑
i=1

`(yi, ft−1(xi)) +
α

n

n∑
i=1

∂z`(yi, ft−1(xi))F (xi; θ),

the first term not depending on θ. In order to have some maximal decrease of the above approxi-
mate functional, it suggests that the vector (F (x1; θ), . . . , F (xn; θ)) should be proportional to the
vector (∂z`(y1, ft−1(x1)), . . . , ∂z`(yn, ft−1(xn))). There are two ways to making this idea practical:

• minimizing over θ ∈ Θ the second part of the above approximate functional, for α fixed, namely

θt ∈ argmin
θ∈Θ

{
1

n

n∑
i=1

∂z`(yi, ft−1(xi))F (xi; θ)

}
.

Once θt is determined, there are various choices for the update of the predictor, including the
magnitude αt for the new term, and some convex combination with previous iterates using
some mixing parameter; see the discussion in [4, Section 10.2.2] for further precisions.
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• fitting F (·; θ) in order for (F (x1; θ), . . . , F (xn; θ)) to be the best possible approximation
of −(∂z`(y1, ft−1(x1)), . . . , ∂z`(yn, ft−1(xn))). This can be obtained through some least square
regression:

min
θ∈Θ

{
n∑
i=1

|F (xi; θ) + ∂z`(yi, ft−1(xi))|2
}
.

One can in addition find the magnitude αt by some line search, as in usual gradient methods.
The so-obtained method is close to least-square boosting when `(y, z) = (y − z)2.

When using trees, the new term which is added to the prediction function is taken of the form

F (x; θt) =

Jt∑
j=1

wj,t1x∈Rj,t ,

with regions Rj,t which can be learned as for usual decision trees for regression, based on fitting
the gradient as discussed above, but with values wj,t which are fit as

wj,t ∈ argmin
w∈R

 ∑
i:xi∈Rj,t

`(yi, ft−1(xi) + w)

 .

Indeed, for trees, the difficult part of the learning is to find the regions Rj,t, but once these
regions are given, it is possible to fit the values wj,t somewhat directly in the boosting objective
function, instead of its gradient approximation. For the squared error, the value wj,t is just the
empirical mean of the residuals (yi−ft−1(xi))16i6n in the region (see [40, Section 18.5.5.1] and [24,
Section 10.10.2]).

XGBoost. A very efficient and widely used implementation of gradient boosting trees is “extreme
gradient boosting” (XGBoost), proposed in [11]. It improves on the above described gradient
boosting method by

• adding a regularizer to the tree complexity;
• considering a second order approximation to the functional to minimize in (7.2) instead of a

first order one;
• using some random sampling of features as for random forests;
• implementing various computer science tricks to improve the scalability of the method.

See for instance [40, Section 18.5.5.2] for further precisions.
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We discuss in this chapter nonlinear models based on neural networks, which have nowadays
become increasingly important and useful for many machine learning applications. Our focus is on
feed-forward neural networks, whose structure is described in Section 8.1, and whose training is
made precise in Section 8.2. We will mostly considered supervised learning, both for classification
and regression; unsupervised learning based on autoencoders is however considered in Section 8.3.
We conclude the chapter with a brief presentation of other types of neural networks in Section 8.4.

The main bibliographical resources for this chapter are [40, Chapters 13 to 15], with an emphasis
on Chapter 13 which covers more basic material (see also Section 20.3 for autoencoders); as well
as the book by Goodfellow, Bengio and Courville [22] (see in particular Chapters 6, 7, 8 and 11).
Concerning the practical implementation, many useful contents can be found in the book [57].
Some (more adavanced) elements on the mathematical analysis of neural networks can be read
in [4, Chapter 9].

8.1 Feed-forward neural networks

The motivation for considering neural networks is to construct nonlinear mappings to go from the
inputs to the outputs, without making explicit feature functions, but by describing them using
a very expressive parametrized set of functions. Somehow, neural networks used in supervised
learning (either for classification or regression) can be seen as an efficient way of learning a feature
function φp(x) (parametrized by a vector p) to be used in standard, possibly linear models, with
a prediction function of the form fθ(x) = w>φp(x) + b, with θ = (w, b, p).

We consider in this section feed-forward neural networks, also known as multilayer perceptrons.
Other types of architectures are briefly discussed in Section 8.4.
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8.1.1 Structure of multilayer perceptrons

Layers and parameters. The prediction function for feed-forward neural networks is defined in
an iterative manner by composing elementary functions as

fθ(x) =
(
gθL ◦ gθL−1

◦ · · · ◦ gθ1
)

(x).

This formula corresponds to a network with L− 1 hidden layers and an output layer, with input
layer x ∈ Rd. Shallow networks have small values of L, while deep neural networks correspond
to larger values of L (say, about 20 for current implementations). The input is first (nonlinearly)
transformed into an element of Rd1 with gθ1 : Rd → Rd1 . Then, each function gθ` : Rd`−1 → Rd`

modifies the output of the previous layer, until the last function gθL : RdL−1 → RdL maps it to
some output vector. The dimension of the output is dL = 1 for simple regression problems, but it
can be a vector in many situations, for instance when performing regression on vector labels, or
when performing multiclass classification. In the latter case, dL is typically the number of classes
to be predicted, as the output is passed through a softmax function, following the same strategy
as in Section 3.2.4.

The transformation functions for each layer map an input a`−1 ∈ Rd`−1 obtained from the
previous layer to an input a` ∈ Rd` to be used by the next layer, of the form

a` = gθ`(a`−1) = ρ` (W`a`−1 + b`) , W` ∈ Rd`×d`−1 , b` ∈ Rd` ,

where ρ` : R→ R is a so-called activation function, which is applied componentwise. In the sequel,
we denote by z` = W`a`−1 + b` ∈ Rd` the argument of the activation. Historically, perceptrons
were constructed with Heaviside functions for activations, but the associated models are difficult
to train. Nowadays activation functions are continuous and often smooth (see below).

Remark 8.1. In practice, all operations are usually done in a vectorized manner. The input of
the neural network is then the design matrix X ∈ Rn×d whose i-th line is the line vector xi ∈ R1×d;
and the output is the vector y = (y1, . . . , yn)> ∈ Rn×dL . For simplicity of exposition, we however
consider that the input is a column vector of size d, and the output is a column vector of size dL.

The parameters of the model are θ1 = (W1, b1), θ2 = (W2, b2), . . . , θL = (WL, bL), so that θ =
(θ1, . . . , θL). The total number of parameters is therefore

L∑
`=1

d`(1 + d`−1),

with d0 = d the dimension of the input, and dL the dimension of the output. The number of
parameters is usually very large, possibly (much) larger than the number of training points; see
for instance Exercise 8.1 for a concrete example.

Exercise 8.1. What is the number of parameters for a neural network classifying the MNIST set
of digits (images of 28 × 28 pixels) based on a single hidden layer? What is this number for a
hidden layer of size 50? Comment the magnitude of this number in view of the size of the data set.

Correction. There are L = 2 layers overall besides the input layer. The size of the input
is d0 = 282 = 784, while the output has dimension d2 = 10 since there are 10 classes to predict.
Therefore, the total number of parameters is d1(1 + d0) + d2(1 + d1) = d1(1 + d0 + d2) + d2.
For d1 = 50, one obtains 39, 760 parameters. This number should be compared to the size of
the training data set, which is composed of 60, 000 training points: there are almost as many
parameters as the number of training points!
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Activation functions. There are various choices for the activation functions ρ` : R→ R used to
pass from one layer to the other:

• the linear function ρ`(z) = z, which can in particular be considered for the final layer, to
produce a result such as w>φ(x) + b, the first L − 1 layers being used to come up with a
featurization function;

• the sigmoid function ρ`(z) = σ(z) = (1 + e−z)−1;

• the hyperbolic tangent ρ`(z) = tanh(z) =
ez − e−z

ez + e−z
;

• the rectifier linear unit (ReLU) function ρ`(z) = max(0, z), or leaky versions such as ρ`(z) =
max(0, z) + αmin(0, z) with α > 0 small (the latter option ensuring that ρ′` does not vanish
for z < 0, which may cause issue for training, see Section 8.2.2).

The selection of the activation function should be made on the basis of a trial and error process, i.e.
it can somehow be considered as a hyperparameter to tune using some (cross) validation procedure.
However, many choices lead to similar performances. The general trend is that activation functions
with gradients that saturate at infinity, such as sigmoid or hyperbolic tangent, are fine for shallow
networks; but for deeper networks one should choose activation functions which do not saturate
in order for training to be possible. ReLU and its recent variations (for instance smoothed out
versions such as GELU (Gaussian Error Linear Unit) or swish) are currently common choices.

The activation function for the last layer (i.e. for the output) depends on the task:

• linear functions are considered for regression;
• sigmoid functions are used for binary classification in {0, 1}, and hyperbolic tangent for binary

classification in {−1, 1};
• multiclass classification can be performed with a softmax function, which, given zL =

(zL,1, . . . , zL,dL) returns

aL =
1

ZL
(ezL,1 , . . . , ezL,dL ) , ZL =

dL∑
j=1

ezL,j .

More advanced choices are discussed in [22, Section 6.2.2.4], for instance predictions based on
sampling from a Gaussian distribution with mean µθ(x) and variance σθ(x)2, where µθ, σ

2
θ are

learned by the first L− 1 layers.

Loss functions. The loss functions to consider for training neural networks are the same as for
other machine learning problems, in particular the square loss (y − ŷ)2 for regression problems,
and, for classification problems, the cross entropy (3.19) in the binary case or (3.21) for multiclass
classification.

Architecture design. Neural networks are quite flexible, and a practical question of interest is
how to choose the number of units and the way they are connected. For fully connected feed-forward
neural networks, this mean choosing the number of hidden layers, and the width of these layers. For
a given number of parameters, one can choose for instance between wider and shallower networks
or deeper networks with fewer units per layer in order to perform some hierarchical learning. The
reader is encouraged to test strategies on the tensorflow playground1 to get a feeling of various
options.

Some historical landmarks. Let us conclude this section with some historical perspective on add refer-
encesthe development of neural networks. Neural networks have been considered since Rosenblatt’s

perceptron in the 50s. Many ideas concerning the structure and training of neural networks were
already present in the 80s and 90s, but other learning models were more successful at the time. A
strong surge of interest arose after 2010 due to breakthtough results in image classification. The
progress here is due to two factors:

1 See https://playground.tensorflow.org
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(i) the increase in computing power, in particular through graphical processing units (GPUs)
which can very efficiently handle matrix/vector operations, and also through dedicated hard-
ware such as tensor processing units (TPUs);

(ii) the size of the data sets available for training have substantially increased, which made it
possible to train neural networks with more parameters, in particular deep neural networks.

8.1.2 Mathematical results on approximation properties

Neural networks have the so-called “universal approximation property”, which allow them to
approximate arbitrary continuous functions [12], and even any Borel measurable function [26].
The function to represent is however only obtained in the limit of layers of infinite width – in fact,
with a single hidden layer when the output is one-dimensional. We present here a simple argument
to substantiate these claims, taken from [4, Section 9.3], and, for simplicity of exposition, do not
provide convergence rates (which would require extra smoothness on the function to approximate
in order to state quantitative results). The proof we write is for ReLU activation functions, the
result being hower rather easy to extend to any non polynomial activation function [36].

Before writing an approximation argument, let us immediately emphasize that the results
mentioned above are representation results, meaning that they state that a given function can be
arbitrarily well approximated by neural networks of increasing sizes. This does not mean that, in
practice, the optimization algorithms used to train neural networks will be able to find parameters
which indeed allow to correctly approximate the function under consideration.

To write a precise approximation result, we consider the class of continuous functions with
one-dimensional input x ∈ [−R,R] for some R > 0 to simplify the presentation, and output in R.
The model we consider is that of a single layer of size m. The prediction function associated with
the neural network can then be written as

f(x) =

m∑
j=1

ηjρ (wjx+ bj) , ηj , wj , bj ∈ R,

with ρ the activation function, here ρ(z) = max(0, z). The arguments wjx + bj of the activation
functions are obtained by an affine transformation of the input, while the parameters ηj perform a
linear combination of the outcomes of the hidden layer to perform the prediction (note that there
is no bias for the last layer). The proof proceeds in two steps: (i) we first show that any piecewise
affine function with m− 2 kinks in [−R,R] can be represented by a neural network with a single
hidden layer of size m; (ii) we next conclude by an approximation argument.

Representation of piecewise affine function with m − 2 kinks in [−R,R]. We denote
by x+ = max(x, 0) the ReLU function. We first consider the case when f(−R) = 0, and denote
by −R < X1 < · · · < Xm−2 < R the location of the kinks. On the interval [−R,X1], one
has f(x) = v1(x+R)+ for some slope v1 ∈ R. On [X1, X2], we then add a part v2(x−X1)+. This
extra term does not change the representation on [−R,X1], and allows to represent the function
on [X1, X2] by choosing v2 such that the slope of f is v1 + v2. We then continue adding terms of
the form vk+1(x −Xk)+ for 2 6 k 6 m − 2, with vk+1 chosen such that the slope is the correct
one on the interval [Xk, Xk+1] (with the convention that Xm−1 = R). Overall, this requires m− 1
neurons.

When f(−R) 6= 0, we need an extra neuron. We use in fact the identity

1

2R
(x+R)+ +

1

2R
(−x+R)+ = 1.

This amounts to changing the weight v1 of the first neuron in the construction above, and adding an
extra neuron outputing (−x+R)+. Overall, the function is then represented by a linear combination
of m terms of the form (x−Xk)+ with 0 6 k 6 m− 1 (with the convention X0 = −R).
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Approximation argument to represent continuous functions. We use the property that
continuous functions can be approximated arbitrary closely in the C0 norm by piecewise affine
functions. Indeed, fix f ∈ C0([−R,R]). Then f is uniformly continuous on this interval: for any ε >
0, there exists η > 0 such that |f(x) − f(x′)| 6 ε/2 for |x − x′| 6 η. Consider then the piecewise

approximation f̃ which coincides with f on a regular mesh of size smaller than η, i.e. define η̃ =
2R/K with K = d2R/ηe, and introduce the points Xk = −R + kη̃ for 0 6 k 6 K. Then, for a
given x ∈ [−R,R], considering the mesh point Xi closest to x (i.e. such that |x−Xi| 6 |x−Xj |
for all 0 6 j 6 K),∣∣∣f(x)− f̃(x)

∣∣∣ 6 |f(x)− f(Xi)|+
∣∣∣f(Xi)− f̃(Xi)

∣∣∣+
∣∣∣f̃(Xi)− f̃(x)

∣∣∣ .
The first term on the right hand side is bounded by ε/2 in view of the property of uniform

continuity of f . The second term vanishes since f and f̃ coincide at the mesh points. For the last
term, we use the fact that f̃ is affine to write∣∣∣f̃(Xi)− f̃(x)

∣∣∣ 6 min
{∣∣∣f̃(Xi)− f̃(Xi+1)

∣∣∣ , ∣∣∣f̃(Xi)− f̃(Xi−1)
∣∣∣}

= min {|f(Xi)− f(Xi+1)| , |f(Xi)− f(Xi−1)|} .

The right hand side is bounded by ε/2 since mesh points are at a distance smaller than η. Overall,

we obtain that
∣∣∣f(x)− f̃(x)

∣∣∣ 6 ε uniformly in x ∈ [−R,R].

As a conclusion, one can therefore approximate arbitrarily closely in C0 norm any continuous
function on a finite interval [−R,R] by a finite neural network with ReLU activation functions.

Remark 8.2. The above approximation result is based on networks of infinite width. A similar
result for deep neural networks ( i.e. where the depth would grow instead of the width) is currently
less clear (see some reference in [4, Section 9.7]).

8.2 Training neural networks

The training of neural networks can be nicely visualized using the playground of tensorflow. This
task seems to be a rather difficult one at first sight, as it corresponds to a nonconvex optimization
problem involving a very large number of parameters. It can however be made computationnally
efficient thanks to

• backpropagation and more generally automatic differentiation to compute gradients with re-
spect to parameters and inputs;

• SGD and its variations to leverage minibatching to reduce the cost of one training step;
• good software to make the implementation easy for the user; in particular Tensorflow (Google)

and PyTorch (Meta).

We start by discussing how to compute the gradient in Section 8.2.1, then discuss some elements
on optimization and regularization which are specific to neural networks (see respectively Sec-
tions 8.2.2 and 8.2.3).

8.2.1 Computing the gradient

We discuss in this section how to compute the gradient of functionals of the output of neural net-
works, using the celebrated backpropagation algorithm. The presentation is based on [42, Chap-
ter 2]. We assume that the activations functions are continuously differentiable for the derivation
below.
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Network and loss function. We consider a neural network composed of L layers, whose pa-
rameters are

θ = {W`, b`}16`6L.

In accordance with the notation of Section 8.1.1, we denote the weighted input at layer ` by z`
and the activation by a`:

a` = ρ`(z`), z` = W`a`−1 + b`, b` ∈ Rd` , W` ∈ Rd`×d`−1 ,

starting from an input a0 = x. We provide the derivation here for a single input for simplicity. In
practice, operations are vectorized when several inputs are considered, so that the neural networks
takes a matrix as input, and returns a vector.

Let us first make precise the function whose gradient needs to be computed, namely the em-
pirical risk “Rn(θ) =

1

n

n∑
i=1

L (yi, aL,i), (8.1)

where L is some elementary loss function2 with values in R (for instance, L (y, ŷ) = (y − ŷ)2

for least square regression), and aL,i is the output of the neural network for the input xi. It is
possible to add a penalization term λΩ(θ), but this extra term does not pose any challenge in the
evaluation of its gradient, so we do not consider it in this discussion for simplicity of exposition.
Also, for simplicity, we write the derivation for a single data point (i.e. n = 1), and denote by “R
the corresponding loss function. It is straightforward to obtain gradients for general values of n
from the formulas for n = 1.

Computation of gradients with respect to parameters. We now discuss how to compute the
gradient of “R with respect to θ (a similar derivation can be performed to compute the gradient
of the output of the neural network with respect to the input x, which is needed for certain
applications). This is done by starting from the output, and going back to the input, with the
chain rule. More precisely, define

∀j ∈ {1, . . . , d`}, δ`j =
∂“R
∂z`,j

∈ R,

where “R is seen (with some abuse of notation) as a function of z`. In fact, we write“R(θ) = R`(z`)

in the sequel in order to understand the recursion relation between δ` and δ`−1. Let us start with
the output layer, for which “R(θ) = RL(zL) = L (y, ρL(zL)).

Therefore,
δL = ρ′L(zL)∂ŷL (y, ρL(zL)) ∈ RdL .

We next express RL−1 in terms of RL as“R(θ) = RL−1(zL−1) = RL (WLρL−1(zL−1) + bL) ,

and claim that
δL−1 =

(
W>L δ

L
)
� ρ′L−1(zL−1) ∈ RdL−1 . (8.2)

In the latter equality, � is the componentwise product: for two vectors a, b ∈ Rd,

2 We do not use here the notation ` for the elementary loss function, as in other chapters, in order to
avoid confusions with the index of the layer.
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a� b =

á
a1b1
a2b2

...
adbd

ë
.

Note that the dimensions agree in (8.2) as zL−1,W
>
L δ

L ∈ RdL−1 , so that the componentwise
product indeed makes sense. Note also that for backward operations, it is the transpose of the
matrix WL that appears (while in the forward pass WL is being used).

Exercise 8.2. Prove the equality (8.2).

Correction. We prove the result by perturbing the argument zL−1 by a small quantity h ∈
RdL−1 , and performing Taylor expansions. By definition of δL−1, the perturbation in the output
is

RL (WLρL−1(zL−1 + h) + bL)−RL (WLρL−1(zL−1) + bL) = h>δL−1 + O
(
‖h‖2

)
.

Now,
ρL−1(zL−1 + h) = ρL−1(zL−1) + ρ′L−1(zL−1)� h+ O

(
‖h‖2

)
,

where ρL−1, ρ
′
L−1 are applied componentwise, so that

WLρL−1(zL−1 + h) + bL = WLρL−1(zL−1) + bL +WL

(
ρ′L−1(zL−1)� h

)
+ O

(
‖h‖2

)
.

Using the definition of δL as the gradient of RL, we find

RL (WLρL−1(zL−1 + h) + bL)−RL (WLρL−1(zL−1) + bL) = δL·WL

(
ρ′L−1(zL−1)� h

)
+O

(
‖h‖2

)
.

Let us finally rewrite the first term on the right hand side of the previous equality as

δL ·WL

(
ρ′L−1(zL−1)� h

)
=

dL∑
j=1

dL−1∑
k=1

δLj [WL]j,k ρ
′
L−1(zL−1,k)hk

=

dL−1∑
k=1

hk

dL∑
j=1

[
W>L

]
k,j
δLj ρ

′
L−1(zL−1,k)

=

dL−1∑
k=1

hk
[
W>L δ

L � ρ′L−1(zL−1)
]
k

= h ·
[
W>L δ

L � ρ′L−1(zL−1)
]
.

The claimed expression for δL−1 comes from the fact that the latter quantity is equal to h·δL−1.

It can similarly be shown that

δ`−1 =
(
W>` δ

`
)
� ρ′`−1(z`−1) ∈ Rd`−1 .

The latter expression makes sense as the componentwise multiplication of ρ′`−1(z`−1) ∈ Rd`−1

and W>` δ
` ∈ Rd`−1 . Here as well, the expression of δ`−1 involves the transpose matrix W>` , which

encodes the transpose operation allowing to go from the layer ` to the layer `− 1.
Once the vectors (δ`)`=L,...,1 are determined, one can compute the gradients of the loss with

respect to b` as
∇b`“R(θ) = δ`,

where we used that z` = W`ρ`−1(z`−1) + b`. The gradient with respect to W` is

∇W`
“R(θ) = δ`ρ`−1(z`−1)> = δ`a>`−1. (8.3)
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Note that the latter equality makes sense since δ` ∈ Rd`×1 while a>`−1 = ρ`−1(z`−1)> ∈ R1×d`−1 ,

so that ∇W`
“R(θ) ∈ Rd`×d`−1 has the same dimension as W`.

Exercise 8.3. Prove the equality (8.3).

Correction. Fix all parameters in θ except the component W`, and consider a perturba-
tion w` ∈ Rd`×d`−1 of this parameter. The associated perturbed set of parameters is denoted
by θ + ηw` . We compute“R (θ + ηw`)− “R(θ) = R` (z` + w`ρ`−1(z`−1))−R`(z`) = δ` · w`ρ`−1(z`−1) + O(‖w`‖2)

=

d∑̀
j=1

d`−1∑
k=1

δ`j [w`]j,kρ`−1(z`−1,k) + O(‖w`‖2)

=

d∑̀
j=1

d`−1∑
k=1

[w`]j,k
[
δ`ρ`−1(z`−1)>

]
j,k

+ O(‖w`‖2).

By definition of the gradient, the first term on the right hand side of the previous equality is

Tr
Ä
w>` ∇W`

“R(θ)
ä
,

which leads to the claimed equality.

Final backpropagation algorithm. Let us summarize the procedure for the loss based on a
single data point and for parameters θ = {W`, b`}16`6L:

• one first does a forward pass through the network, starting from the input a0 = x, and evalu-
ating, for ` = 1, . . . , L:

z` = W`a`−1 + b`, a` = ρ`(z`).

This allows to perfom the final prediction fθ(x) = aL. The associated loss is “R(θ) = L (y, aL).
• one then performs a backward pass, starting from the gradient of the output

δL = ρ′L(zL)∂ŷL (y, aL),

and then evaluating, for ` = L, . . . , 2:

δ`−1 =
(
W>` δ

`
)
� ρ′`−1(z`−1).

The gradients with respect to the parameters are finally obtained for ` = 1, . . . , L as

∇W`
“R(θ) = δ`a>`−1, ∇b`“R(θ) = δ`.

Extension to more complex architectures. The most recent neural networks have structures
more complicated than feedforward multilayer perceptrons (see some elements in Section 8.4), and
the backpropagation algorithm as described above is no longer sufficient. One example of a new
element in the architecture is the presence of skip connection, where the value of a node at some
layer ` is directly fed to a subsequent layer `+ k with k > 2 (i.e. not only to the next layer).

One resorts in these situations to automatic differentiation techniques, see [22, Section 6.5] for
a more detailed presentation. In these methods, the dependence of the final output in terms in
the input can be made precise with a computational graph (which is a directed acyclic graph).
The determination of this dependency graph is made “just in time” in software such as JAX
or PyTorch. As an example, one can construct the graph associated with the evaluation of the
function
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f(x1, x2) = x2ex1
√
x1 + x2ex1 .

This involves going from the input x1 to ex1 , then multiplying this value by the input x1. This
quantity is then added to the input x1 using a skip connection from the input, and then passed
through a square root; and also directly passed to the output using a skip connection in order to
multiply the result of taking the square root.

8.2.2 Optimization methods

The various optimization techniques presented in Chapter 4 are used to train neural networks.
Early stopping is used throughout to monitor convergence and decide when to stop training. Let us
already mention that there is a strong practical knowledge to be used to make training effective,
in particular in the choice of the parameters of the algorithms (minibatch size, learning rates,
etc). The algorithms which are particularly relevant to train neural networks are SGD (with or
without momentum variables) and Adam. The latter algorithm is currently the most common
choice. These methods work surprisingly well to minimize (regularized) empirical risks, despite
the non-convexity of the problem. This fact is not well understood from a theoretical viewpoint.

Let us next discuss points specific to the training of neural networks, in particular elements
which make the optimization easier, and allow to effectively train deep neural networks. The main
point is to avoid gradients which degenerate, either by being too small or too large for certain
parameters. When gradients are small, it is no longer possible to optimize; while, when gradients are
too large, learning rates need to be severely limited, and/or the computational procedure crashes
due to some overflow. As the computation of the gradient involves operations over series of layers,
it is generically expected that the magnitude of the gradient either exponentially decreases or
increases (this can be understood for instance when multiplying vectors by random matrices). It
is possible to ensure that gradients are better behaved by

• choosing activation functions that do not saturate, for instance ReLU instead of sigmoids or
hyperbolic tangent. The idea is that derivatives of activation functions should not be too small
when the input of this function are large in absolute values, otherwise gradients will vanish;

• considering loss functions such as the cross entropy which involve a log and therefore allow
to limit the saturation of the sigmoid function used to predict probabilities for classification
problems. The use of properly chosen convex surrogate functions can have an impact on the
quality of the training;

• introducing batch normalization layers (see [22, Section 8.7.1]). The idea is to add a layer to
renormalize the outputs a` ∈ Rd` for the `-th layer to express them as a` = γ`a` +β`, where a`
has mean 0 and variance 1. The two parameters γ`, β` are learnt, and allow to set the scale of
the outputs of the `-th layer. This procedure does not change the expressivity of the neural
network, but renders the numerical method better behaved;

• modifying the architechture. This is where, historically, most of the benefit came from. One
idea is to consider “more linear” functions, as in ResNets where the update can be written
as a`+1 = a`+F`(a`−1; θ`−1) for some of the blocks instead of the update a`+1 = F`(a`−1; θ`−1),
i.e. there is a dominant linear part to which a perturbation is added. Another idea is to resort
to skip connections in order for certain parameters to have a shorter computational path to
the output;

• clipping gradients, which means that a component gk of the gradient is replaced by min(1, c/|gk|)gk
for some parameter c > 0, so that the effective gradient is gk for |gk| 6 c, and c sign(gk) oth-
erwise;

• carefully initializing the parameters of the neural network. There are various rules here, de-
pending on the activation function and the topology of the neural network. A typical rule is
that the variance of the random variables used to initialize the parameters at a given node
should be proportional to 1/(nin + nout), where nin is the number of incoming connections
and nout is the number of outgoing connections. In order to motivate such a rule, consider the
simple case when
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g =

nin∑
m=1

wmxm,

where wm ∼ N (0, σ2) (one could also consider wm ∼ U [−σ, σ]). Note that E(g) = 0
and Var(g) = E(g2) = ninσ

2γ2 when the inputs (xm)16m6nin
are i.i.d. with E(x2m) = γ2.

The variance of g is of order 1 for σ2 of order 1/nin. The above computation was motivated
by the computation of properties in the forward pass of the neural network, but a similar
argument can be made for the backward pass, in which case nin should be replaced by nout.
Refined heuristics can be worked out depending on the activation function at hand, see [22,
Section 8.4]).

In terms of computational efficiency, it is often better to consider minibatches of sizes 2k for
some integer k > 1 due to the GPU memory formats. It is also good practice to shuffle the data
before starting training in order to possibly destroy spurious correlations in the data set (which
can arise for instance from the way data was collected). Note that second order methods (Newton
or quasi-Newton techniques) are typically not used because of their computational cost; and also
because there are generically many saddle points in high dimension, and not so many local minima
in proportion, which is not good for Newton methods.

8.2.3 Regularization

Recall that regularization allows to trade some bias in the predictions for a limitation of the
variance in these predictions, by limiting the capacity of the model. Regularization is particularly
important for neural networks, which can have millions of parameters. Let us first emphasize that
early stopping, which is used throughout, already provides some form of regularization. In addition
to this, it is customary to consider additional penalization terms in the empirical risk function
similar to the ones considered in Sections 2.3 and 2.4, namely ‖θ‖2 or ‖θ‖1. In fact, in practice,
one usually considers only a penalization of the weights W` and not of the biases b`, as the latter
parameters are merely used to recenter the outputs from one layer to the other. A `2 penalization
of the weights corresponds to what is known as “weight decay” (the naming coming from the

update of the parameter, which is of the form θn+1 = (1 − λγ)θn + γ“F (θn) for some stochastic
estimator of the gradient of the unregularized loss, so that the first term decreases the magnitude
of the coefficients of θ); while a `1 penalization encourages some form of sparsity.

One regularization specific to neural networks is dropout. This consists in randomly switching
off some connections in the neural network at training time, in order to avoid the co-adaptation
of units to the data at hand, and allow for a more robust learning. In practice this is implemented
by adding a Bernoulli random variable at each neuron, and removing the corresponding neuron
with the associated probability3 (no incoming nor outgoing connection). At validation/test time,
several options are possible, such as not turning off units or averaging the predictions over an
ensemble of neural networks with randomly deactivated units.

A last comment is that it is currently believed that SGD-like algorithms have some regularizing
effect, as they allow to converge to flat local minima which better generalize. This is known as
“implicit regularization” and is an active field of research.

8.3 Unsupervised learning with neural networks

Autoencoders networks are an elegant tool for dimensionality reduction, denoising and generative
modeling. Autoencoders have been considered early on in the neural network literature, where
they were also called auto-associative neural networks [33]. The models considered in these early
works correspond to what is currently known as bottleneck autoencoders, and were rather shallow.

3 It is not very clear what happens if all the neurons in a hidden layer are deactivated... This depends on
the implementation of the model.
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Deep autoencoders were used later on with the advent of modern computing architectures [25].
Bottleneck autoencoders were initially introduced to provide a nonlinear generalization of PCA, as
it was shown that the linear neural networks obtained by minimizing the mean-square error were
essentially equivalent to PCA [9, 5]. We refer for instance to [8, Section 12.4.2], [22, Chapter 14]
and [40, Section 20.3] for textbook presentations of autoencoders, which include some historical
perspectives, and mention many variations and extensions that were considered.

We first discuss the structure of autoencoders in Section 8.3.1, and then more precisely interpret
their loss function in Section 8.3.2. The presentation of this section is taken from [35].

8.3.1 Structure of autoencoders

Autoencoders fall into the class of unsupervised machine learning methods. For a given input data
point x ∈ X ⊂ RD, we denote by fθ(x) the prediction of the neural network. The parameters θ ∈ Θ
are chosen to minimize the expected risk

R(θ) = E[`(X, fθ(X))], (8.4)

where ` is a given elementary loss function, and the expectation is over the realizations of the
input data X distributed according to some probability measure denoted by pdata. The typical
choice for the latter elementary loss function is the square loss `(x, y) = ‖x− y‖2, although other
choices, such as the mean absolute loss `(x, y) = ‖x− y‖ could also be considered in order to give
less weight to outliers. In practice, the risk R is replaced by the empirical risk over a training set
of n given input data points D = {x1, . . . , xn}:“R(θ) =

1

n

n∑
i=1

`(xi, fθ(xi)).

Families of autoencoders. There are various classes of autoencoders. It is useful to distinguish
between undercomplete and overcomplete models. Undercomplete models have a limited capacity
that prevents them from achieving zero training loss. The most prominent example is provided by
bottleneck autoencoders for which

fθ = fdec,θ2 ◦ fenc,θ1 , (8.5)

where the parameters θ = (θ1, θ2) have been decomposed into parameters used in the encoder and
decoder parts, respectively (see Figure 8.1 below). The limitation in the capacity of the autoencoder
arises from the fact that the encoding function fenc,θ1 has values in a latent space Z ⊂ RD of
dimension D strictly smaller than the dimension d of the input/output space X , usually much
smaller in fact. Overcomplete models can on the other hand achieve zero training error. These
models are of course useless as such since they would simply copy the input without extracting
the salient features explaining the data at hand. This is why some regularization process should
be considered to limit the capacity of the neural network. Regularization is however also useful
for undercomplete models. Standard examples of regularization mechanisms include:

• resorting to regularization strategies commonly used for neural networks in general, in par-
ticular early stopping, dropout, and standard weight decay to name a few options (see Sec-
tion 8.2.3);

• sparse autoencoders where a penalization term is added to the loss function to prevent too
many neurons to be active [41];

• denoising autoencoders [54], where outputs should be predicted from inputs corrupted by some
noise, which forces networks to learn the structure of the distribution of the data [2];

• contractive autoencoders, where the Jacobian of the encoder is penalized in order to ensure
smoother variations of this function, and limit its sensitivity to small variations in the input [45];

• variational autoencoders (VAEs) [31, 32, 21] can also be interpreted as some regularized version
of the usual autoencoder framework.
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Other variations/extensions of autoencoders were also considered for more specific purposes, and
are still studied, in particular for manifold learning, where the preservation of neighborhood
relationships and/or geometric information in the dimensionality reduction process are impor-
tant [28, 16, 34].

Fig. 8.1: Schematic representation of a symmetric autoencoder. Blue neurons correspond to hidden
layers, while the input and output layers are respectively in green and red. Activation functions
are hyperbolic tangents, except for the bottleneck and output layers, for which linear activation
functions are considered in order not to restrict the range of values.

In some applications, for instance molecular dynamics, overcomplete models in particular are
not directly interesting in terms of dimensionality reduction.

Autoencoders architectures. Autoencoders are often symmetric in their structures. In some
cases, tied weights are being used, i.e. the weights θ2 are the transpose of the weights θ1 when
writing the prediction function as (8.5). This choice reproduces at the level of autoencoders the
symmetric structure of PCA, where the decoder matrix is the transpose of the encoder matrix
(recall Lemma 5.1). In this case, a regularization on the encoder part only, as in contractive au-
toencoders, in fact also regularizes the decoder part. However, there is no particular motivation to
use symmetric architectures, and various works, such as [50], studied the impact of an asymmetric
architecture on the performance of the model. This point is further discussed below, where we mo-
tivate that decoders should be rather expressive in order to appropriately reproduce conditional
expectations in the context of dimensionality reduction.

Another important consideration, more specific to bottleneck autoencoders, is the choice of the
bottleneck dimension. In PCA, the number of dimensions to retain usually corresponds to some
“knee” in the plot of eigenvalues of the empirical covariance matrix. Similar plots can be drawn
for bottleneck autoencoders, for which the reconstruction error can be reported as a function of
the bottleneck dimension (the remainder of the architecture being fixed). The optimal dimension
should ideally coincide with the intrinsic dimension of the data set in manifold learning [14], which
can be quantified using the Frechet inception distance (see for instance the method described in [27]
in the context of VAEs).
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8.3.2 Interpretations of the loss function

We discuss here various reformulations and reinterpretations of the loss function (8.4) for bottle-
neck autoencoders (8.5) when the loss function is the square loss, and discuss in particular the
relationship with principal curves/manifolds [23, 52].

Three viewpoints on the loss function. We consider an ideal setting where we minimize upon
all measurable functions fenc : X → Z and fdec : Z → X . We denote by Fenc and Fdec the sets of
measurable functions from X to Z and from Z to X , respectively; and by F the set of measurable
functions obtained by composing functions of Fenc with functions of Fdec:

F = {f = fdec ◦ fenc, fenc ∈ Fenc, fdec ∈ Fdec} .

Minimizing the reconstruction error over the set of functions in F can be then rewritten as

inf
f∈F

E
î
‖X − f(X)‖2

ó
. (8.6)

Note that we do not consider a regularization term here, so that overfitting may occur in practice
when considering empirical risks (for instance, even with Z of dimension 1, fdec can parametrize
a space-filling curve).

As discussed in [18] (which complements [20] which was already hinting at autoencoders), the
unsupervised least-square problem (8.6) can be thought of in various ways. In particular, there is
some duality in the way the minimization over f ∈ F is performed, as one can decide to either

(i) simultaneously minimize over fenc and fdec, which is the standard way to proceed when
training neural networks;

(ii) minimize first over the encoder part, which allows to reformulate the minimization as the
well-known problem of finding principal manifolds;

(iii) minimize first over the decoder part, which is natural when thinking of the reconstruction
error as some total variance to be decomposed using a conditioning on the values of the
encoder.

The chosen numerical approach has a natural impact on the topology of the networks which
are considered: in situation (i), encoders and decoders are treated on an equal footing, and it is
therefore natural to consider them to be of a similar complexity; whereas options (ii) and (iii)
suggest to consider asymmetric autoencoders. For instance, in option (iii), the minimization over
the decoder part, which is performed first, could be done more carefully, with more expressive
networks in order to better approximate the optimal decoder for a given encoder.

Principal manifold reformulation. We start by minimizing the reconstruction error (8.6) over
the encoder part for a given decoder:

inf
f∈F

E
î
‖X − f(X)‖2

ó
= inf
fdec∈Fdec

ß
inf

fenc∈Fenc

E
î
‖X − fdec ◦ fenc(X)‖2

ó™
= inf
fdec∈Fdec

E
î∥∥X − fdec ◦ h?fdec(X)

∥∥2ó , (8.7)

where the optimal encoder h?fdec
: X → Z for a given decoder fdec : Z → X is defined pointwise as

h?fdec
(x) ∈ argmin

z∈Z
‖x− fdec(z)‖,

provided that this minimization problem admits a solution. When fdec is smooth and has an
invertible Jacobian, the principal manifold is then the set fdec(Z) ⊂ X . For any x ∈ X , h?fdec(x) ∈
Z gives the coordinates in the latent space of the projection of x on the principal manifold (the
so-called projection index).

The reformulation of the minimization problem in terms of the decoder function leads to a
minimization problem similar to the one encountered when searching for principal curves and man-
ifolds. These mathematical concepts generalize in some sense PCA to curves and surfaces rather
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than lines and hyperplanes, as already discussed in the work introducing principal curves [23].
The minimization problems associated with finding principal manifolds are in general difficult to
solve as these manifolds correspond to saddle-points of the loss functional [15]. In practice, this
means that it is possible to move away from a critical point without increasing the test loss. This
leads to overfitting issues and prevents the use of traditional cross-validation procedures to tune
regularization hyperparameters.

Reformulating autoencoders with conditional expectations. We discuss here how to re-
formulate the training of autoencoders with conditional expectations, and provide alternative in-
terpretations to the reconstruction error. In contrast to (8.7), we minimize here the reconstruction
error (8.6) by first minimizing over the decoder part for a given encoding function, as already con-
sidered in [19]. This approach is natural in molecular dynamics. From a mathematical viewpoint,
it corresponds to introducing conditional averages associated with fixed values of the encoder.

The loss function for unsupervised least-squares can be rewritten as

inf
f∈F

E
î
‖X − f(X)‖2

ó
= inf
fenc∈Fenc

ß
inf

fdec∈Fdec

E
î
‖X − fdec ◦ fenc(X)‖2

ó™
= inf
fenc∈Fenc

E
î∥∥X − g?fenc ◦ fenc(X)

∥∥2ó , (8.8)

where the ideal decoder g?fenc
for a given encoder fenc is the Bayes predictor associated with the

least square regression problem (similarly to what is done in Exercise 1.6; see Exercise 8.4):

g?fenc
(z) = E[X | fenc(X) = z]. (8.9)

Let us recall that, in all these expressions, expectations are taken with respect to the probability
distribution pdata of the input data. Equations (8.8)-(8.9) show that the question of finding the
best autoencoder can be reduced to finding the best encoding function, provided that one is able
to compute good approximations of the conditional expectation.

Exercise 8.4. Prove the equality (8.9).

Correction. We start by introducing the quantity g?fenc ◦ fenc(x) in the reconstruction error:
for any fdec ∈ Fdec and fenc ∈ Fenc,

E
î
‖X − fdec ◦ fenc(X)‖2

ó
= E
î∥∥[X − g?fenc ◦ fenc(X)

]
+
[
g?fenc ◦ fenc(X)− fdec ◦ fenc(X)

]∥∥2ó
= E
î∥∥X − g?fenc

◦ fenc(X)
∥∥2ó+ E

î∥∥g?fenc ◦ fenc(X)− fdec ◦ fenc(X)
∥∥2ó , (8.10)

where we used the following identity, obtained by conditioning on the values of the random
variable Z = fenc(X):

E
[(
X − g?fenc

◦ fenc(X)
)
·
(
g?fenc ◦ fenc(X)− fdec ◦ fenc(X)

)]
= E

[(
E [X|Z]− g?fenc(Z)

)
·
(
g?fenc(Z)− fdec(Z)

)]
= 0,

in view of the definition (8.9) of g?fenc . It is clear from (8.10) that the decoding function which
minimizes the reconstruction error for a given encoder fenc ∈ Fenc is indeed g?fenc , as defined
by (8.9).

The reconstruction error (8.8) can be reinterpreted in terms of variances. Indeed, on the one
hand,

E
î∥∥X − g?fenc

◦ fenc(X)
∥∥2ó = E

î
‖X − E [X|fenc(X)]‖2

ó
= E

[
E
(
‖X − E [X|fenc(X)]‖2

∣∣∣ fenc(X)
)]

= E [Var(X|fenc(X))] . (8.11)
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On the other hand,

E
î∥∥X − g?fenc

◦ fenc(X)
∥∥2ó = E

î
‖X − E [X|fenc(X)]‖2

ó
= E

(
‖X‖2

)
− E
Ä
E [X|fenc(X)]

2
ä

= Var(X)−Var [E(X|fenc(X))] . (8.12)

These two equalities yield the well-known formula for the total variance decomposition, namely Var(X) =
E [Var(X|fenc(X))] + Var [E(X|fenc(X))].

A consequence of (8.12) is that the minimization problem (8.8) can be reformulated as the
following equivalent maximization problem:

sup
fenc∈Fenc

Var [E(X|fenc(X))] . (8.13)

In words, this reformulation translates the equivalence between (the ”classes” referring here to the
level sets of fenc)

• minimizing the intraclass dispersion (8.11): the distribution of configurations x ∈ X for a fixed
value z of fenc should concentrate around the mean value g?fenc(z) by having a variance as small
as possible;

• maximizing the interclass dispersion (8.13): the values of the conditional averages of X for
fixed values of fenc should be as spread out as possible over the range of fenc.

Let us conclude for providing a formal characterization of the optimal encoding function. A
key equality to establish (8.12), namely

E
î∥∥X − g?fenc

◦ fenc(X)
∥∥2ó = E

î
‖X‖2

ó
− E
î∥∥g?fenc ◦ fenc(X)

∥∥2ó ,
shows that the minimization of the reconstruction error is equivalent to the maximization of the
second moment of the conditional expectation:

sup
fenc∈Fenc

E
î∥∥g?fenc ◦ fenc(X)

∥∥2ó . (8.14)

This alternative viewpoint allows to characterize the optimal encoding function fenc by some
orthogonality condition similar to the self-consistency condition of principal curves, see [20, Sec-
tion 2]. In fact, it can be formally shown that critical points of (8.14) satisfy

∀j ∈ {1, . . . , d}, ∀x ∈ Supp(pdata),
[
x− g?fenc(fenc(x))

]>
∂zjg

?
fenc(fenc(x)) = 0, (8.15)

where Supp(pdata) is the support of the probability measure pdata. The derivation of this condition,
which can be read in [35, Appendix A], can be seen as a variation of derivations of optimality
conditions for principal curves, as written already in [23]; see also [20] where (8.15) is used to
construct a new objective function to minimize in order to find fenc.

An interesting implication of (8.15) is that the intersection of Supp(pdata) and the submanifold

Σz = f−1enc{z} = {x ∈ X | fenc(x) = z}

is in fact included in the (d−D)-dimensional hyperplane containing the point g?fenc(z) and orthog-
onal to the vectors ∂z1g

?
fenc

(z), . . . , ∂zdg
?
fenc

(z) (recalling that X and Z have dimensions d and D,
respectively). As these hyperplanes generally have a non-empty intersection, finding a regular
function fenc which satisfies (8.15) is only possible for distributions pdata which have a support
sufficiently concentrated around the principal manifold. The issue of having hyperplanes intersect-
ing can be seen as the counterpart in the context we consider here of the concept of ambiguity
points for principal curves [23].



144 8 Neural networks

8.4 Other types of neural networks

We (very) briefly mention in this section neural network architectures which go beyond the simple
feedforward multilayer perceptrons. These modern architectures, which can be rather complicated,
are key to the current successes of machine learning, for classification and regression, and also more
and more for generative tasks such as those related to natural language processing.

Convolution neural networks. Convolutional neural networks (CNNs) are a default choice for
image processing. Their motivation is threefold:

• they allow to treat inputs of variable sizes (depending on the resolution of the image under
consideration for instance);

• they can handle inputs of large dimension, coming in the form width × height × input channel.
For images, the input channel is typically RGB, i.e. the input for color images is composed of
three matrices of pixels intensities, for the colors red, green and blue;

• they naturally encode some translation invariance and various symmetries. This is important
for image classification for instance, as the main element in the image can be rotated, translated,
etc.

From a structural viewpoint, matrix multiplications in CNN are replaced by convolution oper-
ations, which work with filters that take local averages of pictures. In practice, CNNs alternate
between convolutional layers and pooling layers (see for instance [40, Figure 14.13]). Pooling lay-
ers take the minimum or maximum of an input over certain regions; this allows to reduce the
sensitivity to the location of elements in the image.

Famous examples of CNNs include (see [40, Section 14.3]): LeNet, AlexNet (2012; this is the
network which reintroduced neural networks in machine learning, by its dramatic improvement in
classficiation performance), GoogLeNet (2015), ResNet (2015, Microsoft), DenseNet, ... All these
networks are constructed on the similar building blocks, which are rearranged in various manners.

They can be used for other tasks than classification, such as image tagging, object detection,
segmentation, ...Complete

the para-
graphs
below,
and also
possibly
the de-
scription
of CNNs

Graph neural networks. These networks use connections between nodes which are not orga-
nized in a strictly sequential manner, but rather on a graph. This can be useful for various tasks,
for instance the prediction of atomic forces in molecular models; in this situation, the nodes of
the graph correspond to an atom, and the connections between the nodes, which provide some
transfer of information, mimick the interactions between atoms.

Recurrent neural networks. These networks are used to generate sequences or trajectories y1:T ,
for instance for language modeling. They include long short term memory (LSTM) blocks to have
better gradients for training and ensure that the memory in sequences is better taken into account.

Attention networks. These networks use a dictionary lookup where a query/input is compared
to various keys, and the output depends on the key.

Transformers. Many successful current large language models, such as ChatGPT, are based on
networks of GPT type (“generative pre-trained transformers”). They include attention layers –
self-attention in fact. They also make use of positional encoding. Finally, they are made to scale
efficiently with the data size.

Kolmogorov–Arnold networks.
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We discuss in this chapter a set of unsupervised techniques aiming at grouping together data
points which are similar in a common class. We discuss more precisely the aim of clustering in
Section 9.1, and then successively present various techniques, starting in Section 9.2 with K-means
clustering, turning next in Section 9.3 to hierarchical clustering, then in Section 9.4 to clustering
with mixture models, and concluding with density based clustering in Section 9.5 and spectral
clustering in Section 9.6. Our presentation is based on [40, Chapter 20], [49, Chapter 22 and
Section 24.4], [24, Sections 14.3 and 6.8], as well as [38, Section 13].

9.1 Aims and scope of clustering

We consider a set D of n data points {x1, . . . , xn} ⊂ X , which are unlabelled. The informal aim
of clustering is to group data points into clusters – similar elements should be in the same class,
while dissimilar elements should be in different classes. In fact, one should talk about segmentation
rather than clustering when the data is not well separated. Applications include grouping families
of genes in biology, customers depending on their behavior for marketing, communities in social
media, atomic configurations in molecular dynamics, etc.

There are two major difficulties with clustering:

(1) The precise definition of clustering (i.e. a quantitative definition) is rather difficult to make
rigorous as the notion of similarity is not a transitive relation, while cluster assignement is.
To illustrate the issue at stake, think of two parallel lines of data points regularly spaced, the
separation between the two lines being quite larger than the separation between the points
in each line. If one emphasizes grouping close-by points, then each line would be a cluster,
each data point being close to its neighbors, but the extremal points on each line can be quite
different;

(2) Another difficulty is the lack of ground truth, which is a usual problem in unsupervised learn-
ing. There may be many ways to cluster a given data set. In particular, the distance or
metric used for clustering can have a dramatic impact on the results. Think for example of
grouping movies by main actor, topic, rating, year, etc. The quality of the clustering can be
assessed if labelled data is available, by evaluating the purity of each cluster; or if some refer-
ence clustering is available (through the Rand index computed from the number of true/false
positives/negatives; see [40, Section 21.1.1.2]).
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On the practical side, let us mention two points:

(i) normalizing the data set is not a good idea in general as the notion of closedness is not
invariant by rescaling. Normalization could however still be relevant for some problems.
Whether to normalize or not is problem specific, requires some domain knowledge, and
possibly some trial and error procedure;

(ii) clustering in high dimension can be challenging as data points are generically all far away
from each other, see Exercise ?? below. It makes sense to perform some dimensionality
reduction as a pre-processing step, using for instance PCA (see Chapter 5) or autoencoders
(see Section 8.3).

Exercise 9.1. Consider a data composed of two clusters of points in Rd, independently drawn
from Gaussian distributions with means 0 and µ respectively, and identity covariance in both
cases. Compute the average distance between points within one of the clusters, and the average
distance between two points in different clusters. How easy is it to distinguish these quantities as d
increases?

Correction. Consider x1, x2 ∼ N (0, Idd) and x3 ∼ N (µ, Idd), which are all independent.
Then, the average distance between points within one of the clusters is

E
[
‖x1 − x2‖22

]
= E

[
‖x1‖22

]
+ E

[
‖x2‖22

]
= 2d,

while the average distance between two points in different clusters is

E
[
‖x1 − x3‖22

]
= E

[
‖x1‖22

]
+ E

[
‖x3‖22

]
= 2d+ µ2,

since E
[
‖x3‖22

]
= µ2 + Var(x3). As d increases, the shift between the two clusters becomes

more and more difficult to detect. For high dimensional systems, the average distance between
points within one of the clusters is very close to the the average distance between two points
in different clusters, and in fact both are large.

9.2 K-means and center-based clustering methods

The aim of K-means clustering is to group the data points into K clusters. Using a combinatorial
algorithm to this end is impossible because the number of possible partitions into K classes is too
large (see [24, Equation (14.30)] for the formula giving the number of classes). We consider here a
method to perform an approximate clustering based on some cost function, with an optimization
procedure to find the assignement function X → {1, . . . ,K}. The cost function is itself based on
a distance function d : X × X → R+, for instance the Euclidean distance.

Loss function. Let us write the loss function for the K-means algorithm when X = Rd, the
chosen distance is the Euclidean norm, i.e. d = ‖ · ‖2, and the number of classes K > 2 is
fixed/predetermined. The algorithm updates a partition C1, . . . , CK of D, and considers the loss
function

J(C1, · · · , CK) = min
(m1,...,mK)∈(Rd)K

{
K∑
k=1

∑
x∈Ck

‖x−mk‖22

}
=

K∑
k=1

∑
x∈Ck

‖x− xk‖22 , (9.1)

where

xk =
1

|Ck|
∑
x∈Ck

x

is the empirical mean of the data points in the cluster Ck.
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Exercise 9.2. Prove that the second equality in (9.1) holds.

Correction. Note that

min
(m1,...,mK)∈(Rd)K

K∑
k=1

∑
x∈Ck

‖x−mk‖22 =

K∑
k=1

(
min
mk∈Rd

∑
x∈Ck

‖x−mk‖22

)
.

The minimization problem on the right hand side is classical and has been solved various times
in these lecture notes, the unique minimizer being m?

k = xk (see for instance Exercise 7.1).

Remark 9.1 (Formulation using an assigmement function/matrix). Note that

K∑
k=1

∑
x∈Ck

‖x−mk‖22 =
n∑
i=1

∥∥xi −mz(i)

∥∥2
2

=
∥∥X − ZM>∥∥2 ,

where X ∈ Rn×d is the matrix whose i-th line is xi, the matrix M = [m1|m2| . . . |mK ] ∈ Rd×K

has the vectors mk as columns, and Z ∈ {0, 1}n×K is the assignement matrix, with entries Zi,k =
1z(i)=k for

z(i) ∈ argmin
16k6K

‖xi −mk‖2

the assignement function.

K-means algorithm. The precise algorithm is the following.1 Starting from some initial parti-

tion (C
(0)
1 , · · · , C(0)

K ), and given a partition (C
(t)
1 , · · · , C(t)

K ) at step t > 0:

• compute the centers x
(t)
k of the cluster C

(t)
k ;

• for every data point xi with 1 6 i 6 n, find the index zt+1(i) ∈ {1, . . . ,K} of the cen-

ter (x
(t)
k )16k6K closest to xi (with some rule to break ties):

zt+1(i) ∈ argmin
16k6K

∥∥∥xi − x(t)k ∥∥∥
2

;

• update the clusters as C
(t+1)
k = {xj ∈ D : zt+1(j) = k}.

The algorithm is iterated until convergence (i.e. (C
(t+1)
1 , · · · , C(t+1)

K ) = (C
(t)
1 , · · · , C(t)

K )). Note
that the computational cost of a single iteration is O(n). The assignement step is based on a
Voronoi tesselation of the space based on the cluster centers.

It is good practice to run several times the algorithm with random initializations and retain
the clustering leading to the smallest value of the objective function (9.1). A typical way to start
with a random partition is to draw at random K cluster centers, either fully at random (all points
are uniformly sampled over the full space) or by emphasizing more uniform clusters in order
to better cover the data. This can be achieved by choosing the random centers in a sequential
manner, and emphasizing points which are further apart from the current centers (the so-called
K-means++ method, which is the default initialization method in scikit-learn for instance); see [40,
Section 21.3.4].

1 See the website http://www.bytemuse.com/post/k-means-clustering-visualization/ for a nice graphical
illustration.
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Convergence of the K-means algorithm. We present a result on the evolution of the loss
function (9.1), which however does not give insight on the number of iterations of the algorithm.
This also does not provide indication on the quality of the so-obtained clustering – for instance
because the minimization problem is non convex, and there is no guarantee that the minimal loss
is obtained.

Lemma 9.1. Each iteration of the K-means algorithm does not increase the objective func-
tion (9.1):

∀t > 0, J
Ä
C

(t+1)
1 , · · · , C(t+1)

K

ä
6 J
Ä
C

(t)
1 , · · · , C(t)

K

ä
. (9.2)

Proof. By definition of zt+1(i), it holds∥∥∥xi − x(t)k ∥∥∥
2
>
∥∥∥xi − x(t)zt+1(i)

∥∥∥
2
.

Therefore, making first use of the reassignement of xi (previous inequality) and then of the update
of the clusters,

J
Ä
C

(t)
1 , · · · , C(t)

K

ä
>

K∑
k=1

∑
xi∈C(t)

k

∥∥∥xi − x(t)zt+1(i)

∥∥∥2
2

=

K∑
k=1

∑
xi∈C(t+1)

k

∥∥∥xi − x(t)k ∥∥∥2
2
.

Now,∑
xi∈C(t+1)

k

∥∥∥xi − x(t)k ∥∥∥2
2

=
∑

xi∈C(t+1)
k

Å∥∥∥xi − x(t+1)
k

∥∥∥2
2

+
∥∥∥x(t+1)

k − x(t)k
∥∥∥2
2

ã
>

∑
xi∈C(t+1)

k

∥∥∥xi − x(t+1)
k

∥∥∥2
2
.

Therefore,

J
Ä
C

(t)
1 , · · · , C(t)

K

ä
>

K∑
k=1

∑
xi∈C(t+1)

k

∥∥∥xi − x(t+1)
k

∥∥∥2
2

= J
Ä
C

(t+1)
1 , · · · , C(t+1)

K

ä
,

which allows to conclude. ut

The proof of Lemma 9.1 shows that if equality holds in (9.2), then the partitions
Ä
C

(t+1)
1 , · · · , C(t+1)

K

ä
and
Ä
C

(t)
1 , · · · , C(t)

K

ä
coincide2 as the centers of the clusters are unchanged.

Variations of the K-means algorithm. We present two variations of the K-means algorithm:

• K-medoids, for which the empirical average in a cluster is replaced by some element of the
dataset. This allows to apply K-means type algorithms to data which is not in Rd, for which
averages may be undefined (think of categorical variables, or matrices with positivity or norm
constraints). The objective function to be considered instead of (9.1) reads

min
(m1,...,mK)∈D

K∑
k=1

∑
x∈Ck

d(x,mk)2.

There are various approaches to try and solve this problem. A common one is “partitioning
around medoids” [29], but it is computationally rather expensive. A more recent and less
expensive option is the Voronoi iteration of [44], which has a cost O(nK) per iteration and
works by reassigning points and updating the medoids, very similarly to what is done for K-
means.

2 Except maybe for points equidistant from two centers or more.
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• K-median builds upon K-medoids but relies on a loss function which uses a distance rather
than a squared distance as in (9.1), namely

min
(m1,...,mK)∈D

K∑
k=1

∑
x∈Ck

d(x,mk).

Considering unsquared norms may be better for problems such as facility location (think of
houses as data points and look for places where to position K firestations).

• K-autoencoders, introduced in [43], consider the loss function

n∑
i=1

min
16k6K

‖xi − Φθk(xi)‖2 ,

which is minimized with respect to the parameters θ1, . . . , θK for each autoencoder. This can
therefore be seen as some extension of K-means where Φθk(xi) replaces the cluster empirical
average. The cluster assignement is performed based on the index of the autoencoder for which
the reconstruction loss is minimized, namely

Ck =

®
xi ∈ X

∣∣∣∣∣ k = argmin
16k′6K

∥∥xi − Φθk′ (xi)∥∥2
´
.

Choosing the number of clusters K. There is a monotonic decrease of the minimal value for
the objective function (9.1) when K is increased, so that (as in PCA) it is not possible to use
some form of cross-validation to identify the best value of K. There are two main ways to find an
appropriate value for K:

• rely on probabilistic models (such as the Gaussian mixture models consider in Section 9.4) and
use the tools of Bayesian model selection to determine K;

• look for a kink/elbow in the within cluster distances (see [24, Section 14.3.11]) or in silhouette
coefficients (see [40, Section 21.3.7.3]).

9.3 Hierarchical clustering

There are two types of hierarchical clustering:

• agglomerative, in which case one starts from n clusters composed of single data points and
merges them;

• divisive, in which case one starts from a single cluster with all data points, and splits it. This
approach is not as well studied and less common (see [24, Section 14.3.12]).

A nice property of hierarchical clustering is its nested property, and the fact that one does not
need to specify the desired number of clusters. Partitions of the data are obtained by transforming
dendrograms representing the hierarchical structure using two possible termination criteria: cutting
when a fixed number of clusters is attained, or when a certain upper bound in distance is reached.

Hierarchical agglomerative clustering. In order to make these statements more precise, we
present agglomerative clustering in more detail. The key element to specify the method is a dis-
tance D between clusters, which allows to determine the closest clusters, which should be merged.
The computational cost of the algorithm is a priori O(n3) (as picking the two most similar clusters
has a cost O(n2), and this operation should be repeated O(n) times). The precise algorithm is the

following. Starting from the n clusters C
(0)
i = {xi}, iterate on 0 6 t 6 n− 2:

• select among the remaining n − t clusters the pair
Ä
C

(t)
k , C

(t)
`

ä
which minimizes the distance

between clusters:
(k, `) ∈ argmin

(a,b):16a<b6n−t
D
Ä
C(t)
a , C

(t)
b

ä
;

• form a new partition C
(t+1)
1 , . . . , C

(t+1)
n−t−1 by keeping the previous clusters C

(t)
a for a 6∈ {1, . . . , n−

t} \ {k, `}, and adding the merged cluster C
(t)
k ∪ C

(t)
` .



150 9 Clustering methods

Choice of the distance. The key element in this algorithm is the choice of the distance D. The
result crucially depends on it. We present three choices here:

• single link is based on the distance between the two closest elements of Ck and C`:

D(Ck, C`) = min
xi∈Ck
xj∈C`

d(xi, xj).

A possible issue with this choice is chaining, which corresponds to grouping together data
points related by a series of close intermediate points, the overall cluster being however not
very compact (somehow elongated, hence the name);

• complete link is based on the distance between the two farthest elements of Ck and C`:

D(Ck, C`) = max
xi∈Ck
xj∈C`

d(xi, xj).

This metric emphasizes compact clusters but may lead to “closedness losses” (two elements of
the same cluster can be separated because they are somewhat far away from each other);

• average link considers the average distance between the elements of Ck and C`:

D(Ck, C`) =
1

|Ck| |C`|
∑
xi∈Ck

∑
xj∈C`

d(xi, xj).

It somewhat interpolates between the single and complete link, and hence allows to form
relatively compact clusters with elements that are relatively close. It is however sensitive to
monotonic transformations of the baseline distance d.

There are many other possible choices, in particular Ward’s distance. The main issue is the al-
gorithmic complexity of the resulting algorihtm. Hierarchical clustering is suitable for small data
sets, or should be initialized with K-means with a large value of K, however sufficiently small
compared to the number of data points (i.e. 1� K � n).

Hierarchical clustering can be nicely visualized using dendrograms (see for instance the presen-
tation in [24, Section 14.3.12]). In this representation, the data points are placed on the horizontal
axis, at zero height. When two points are merged to form a cluster, say x1 and x2, then one draws
a vertical line starting from x1 and x2, until the height corresponding to the distance D({x1}, {x2})
where a horizontal line is drawn. This is repeated for other data points and when merging clusters,
until a single cluster remains. In this representation, the height of each node in the resulting binary
tree is proportional to the distance between the two daughter clusters. The tree can indeed be
plotted as such due to the monotone increasing character of the distances between clusters.

9.4 Clustering with mixture models

Mixture models make use of a latent/hidden variable in the context of a generative model. Here,
this latent variable is the cluster identity of a data point, the overall distribution of data points
being a mixture of Gaussian distributions with different means and variances. This requires making
an assumption on the form of the data distribution, in accordance with the “no free lunch theorem”
(see Section 10.3).

Gaussian mixture model. The algorithm consists in determining the most likely value of the la-
tent variable zi for a given data point xi. In fact, one determines the vector of discrete probabilities
to belong to a cluster. The precise model for the density of the data distribution is

pθ(x) =

K∑
k=1

πkGµk,Σk(x), Gµ,Σ(x) = (2π)−d/2 det(Σ)−1/2 exp

Å
−1

2
(x− µ)>Σ−1(x− µ)

ã
,

with parameters
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θ = (π1, . . . , πK , µ1, . . . , µK , Σ1, . . . , ΣK) ∈ Θ,
where

Θ =

{
θ ∈ [0, 1]K ×

(
Rd
)K × (Rd×d)K ∣∣∣∣∣

K∑
k=1

πk = 1, Σk = Σ>k > 0

}
.

This models corresponds to having a prior distribution (π1, . . . , πK) on the latent variable zi, and
a conditional distribution pθ(xi | zi = k) = Gµk,Σk(xi). The likelihood of a data point x is obtained
by marginalizing out the latent variable, i.e.

pθ(x) =

K∑
k=1

pθ(zi = k)pθ(xi | zi = k).

Bayes’ rule is used to obtain the responsibility for each data point, i.e. the posterior membership
probability:

ri,k := pθ(zi = k |xi) =
pθ(zi = k)pθ(xi | zi = k)

K∑
k′=1

pθ(zi = k′)pθ(xi | zi = k′)

=
πkGµk,Σk(xi)

K∑
k′=1

πk′Gµk′ ,Σk′ (xi)

.

The latter formula can be seen as an application of the general Bayes formula to the case of
Gaussian mixture models (as the previous equation can be rewritten as pθ(zi = k |xi) = pθ(zi =
k)pθ(xi | zi = k)/pθ(xi)). Assignement can be made in various ways, for instance through the “hard
assignement” rule

zi ∈ argmax
16k6K

ri,k.

Estimation of the parameters of the model. The difficulty in this approach is that the vector
of parameter θ needs to be estimated. This can be done using some maximum likelihood method,
in which case one obtains

θ̂ ∈ argmax
θ∈Θ

{log pθ(x1, . . . , xn)} = argmax
θ∈Θ

{
n∑
i=1

log

(
K∑
k=1

πkGµk,Σk(xi)

)}
. (9.3)

Gradient-like methods could be used to find (local) maxima. A more standard strategy in this
context is however to rely on Expectation-Maximization (EM) algorithms, which ensure that the
likelihood is non decreasing.

The precise EM algorithm is the following. Starting from an initial guess θ0, iterate on t > 0:

• (expectation step) update the responsibilities as

r
(t)
i,k =

π
(t)
k G

µ
(t)
k ,Σ

(t)
k

(xi)

K∑
k′=1

π
(t)
k′ Gµ(t)

k′ ,Σ
(t)

k′
(xi)

;

• (maximization step) update θt+1 as

π
(t+1)
k =

1

n

n∑
i=1

r
(t)
i,k ∈ [0, 1], µ

(t+1)
k =

n∑
i=1

r
(t)
i,kxi

n∑
i=1

r
(t)
i,k

∈ Rd,

Σ
(t+1)
k =

n∑
i=1

r
(t)
i,k

Ä
xi − µ(t+1)

k

ä Ä
xi − µ(t+1)

k

ä>
n∑
i=1

r
(t)
i,k

∈ Rd×d.

(9.4)
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In the previous expressions, the data points xi are considered as column vectors Rd×1. This update
corresponds to recomputing the first moments of the clusters based on the weights given by the
updated responsibilities.

Motivation for the update rules in the EM algorithm. We first claim that the update
rules (9.4) correspond to the maximization problem

max
θ∈Θ

{
n∑
i=1

K∑
k=1

r
(t)
i,k (log πk + log Gµk,Σk(xi))

}

= max
θ∈Θ

{
n∑
i=1

K∑
k=1

r
(t)
i,k

Å
log πk −

1

2
(xi − µk)>Σ−1k (xi − µk)− 1

2
log det(Σk)

ã}
;

(9.5)

and next motivate why this maximization problem is considered instead of (9.3). We assume that
the maximization problem is well posed, with a maximizer θt+1 ∈ Θ.

Exercise 9.3. Prove that θt+1 defined in (9.4) is the unique critical point of (9.5).

Correction. Define

Ft(θ) =

n∑
i=1

K∑
k=1

r
(t)
i,k

Å
log πk −

1

2
(xi − µk)Σ−1k (xi − µk)− 1

2
log det(Σk)

ã
,

which should be maximized under the constraint

Φ(θ) =

K∑
k=1

πk − 1 = 0.

We do not consider the positivity constraints for πk and Σk, but check a posteriori that these
are satisfied.

A necessary condition of optimality is that ∂πkFt(θ
t+1) + λ∂πkΦ(θt+1) = 0 for some λ ∈ R,

which leads to
n∑
i=1

r
(t)
i,k

π
(t+1)
k

+ λ = 0.

Necessarily, λ < 0. Therefore,

π
(t+1)
k = − 1

λ

n∑
i=1

r
(t)
i,k.

The value of λ is adjusted so that Φ(θ(t+1)) = 0, which leads to the claimed expression for π
(t+1)
k .

Let us next consider the optimality condition involving µk, which reads ∇µkFt(θt+1) = 0.
This leads to

n∑
i=1

r
(t)
i,k

Ä
Σ

(t+1)
k

ä−1 Ä
xi − µ(t+1)

k

ä
= 0 =

Ä
Σ

(t+1)
k

ä−1 [ n∑
i=1

r
(t)
i,k

Ä
xi − µ(t+1)

k

ä]
,

which vanishes with the claimed formula for µ
(t+1)
k .

The computation of the necessary optimality condition ∇ΣkFt
(
θ(t+1)

)
= 0 requires more

care. We consider to this end a perturbation Mk = M>k of Σk, all other parameters being fixed.
Denoting by ηMk

∈ Θ the vector of parameters whose single non zero component is Mk, we can
write

Tr
[
M>k ∇ΣkF (θ)

]
= Ft (θ + ηMk

)− Ft(θ) + O(‖Mk‖2).

Now, (Σk +Mk)−1 = Σ−1k −Σ
−1
k MkΣ

−1
k + O(‖Mk‖2) when Σk and Σk +Mk are both positive

definite (hence invertible), so that
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(xi − µk)(Σk +Mk)−1(xi − µk)− (xi − µk)Σ−1k (xi − µk)

= −(xi − µk)Σ−1k MkΣ
−1
k (xi − µk) + O(‖Mk‖2)

= −Tr
[
Σ−1k MkΣ

−1
k (xi − µk)(xi − µk)>

]
+ O(‖Mk‖2).

Moreover, using det(Idd +A) = 1 + Tr(A) + O(‖A‖2),

log det(Σk +Mk) = log
[
det(Σk) det

(
Idd +Σ−1k Mk

)]
= log det(Σk) + log

[
1 + Tr

(
Σ−1k Mk

)]
+ O(‖Mk‖2)

= log det(Σk) + Tr
(
Σ−1k Mk

)
+ O(‖Mk‖2).

Therefore,

Ft (θ + ηMk
)− Ft(θ) =

1

2

n∑
i=1

r
(t)
i,kTr

(
Σ−1k Mk

[
Σ−1k (xi − µk)(xi − µk)> − Idd

])
+ O(‖Mk‖2)

=
1

2

n∑
i=1

r
(t)
i,kTr

(
M>k

[
Σ−1k (xi − µk)(xi − µk)> − Idd

]
Σ−1k

)
+ O(‖Mk‖2).

This allows to conclude that

n∑
i=1

r
(t)
i,k

ïÄ
Σ

(t+1)
k

ä−1 Ä
xi − µ(t+1)

k

ä Ä
xi − µ(t+1)

k

ä>
− Idd

ò
= 0,

which leads to the claimed expression for Σ
(t+1)
k .

Let us now discuss why the maximization problem (9.5) is considered, following the presentation
in [40, Section 8.7.2]. We start by rewriting the log-likelihood of the data points by summing over
the cluster assignements for conditional probabilities:

Ln(θ) =

n∑
i=1

log pθ(xi) =

n∑
i=1

log

(
K∑
k=1

pθ(xi, zi = k)

)
=

n∑
i=1

log

(
K∑
k=1

qi,k
pθ(xi, zi = k)

qi,k

)
,

where we introduced a discrete probability distribution (qi,1, . . . , qi,K) with non zero entries for
all 1 6 i 6 n. Using Jensen’s inequality and the concavity of the log,

Ln(θ) >
n∑
i=1

K∑
k=1

qi,k log

Å
pθ(xi, zi = k)

qi,k

ã
:=

n∑
i=1

E(θ, qi |xi). (9.6)

The right hand side of the previous inequality is called an “evidence lower bound” (ELBO), as it
provides a lower bound to the negative log-likelihood. Moreover, the terms which appear in the
ELBO can be rewritten as

E(θ, qi |xi) =

K∑
k=1

qi,k log

Å
pθ(zi = k |xi)pθ(xi)

qi,k

ã
=

K∑
k=1

qi,k log

Å
pθ(zi = k |xi)

qi,k

ã
+

(
K∑
k=1

qi,k

)
log pθ(xi)

= −KL(qi | pθ(zi |xi)) + log pθ(xi), (9.7)

where

KL(q | p) =

K∑
k=1

qk log
qk
pk

> 0
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is the Kullback–Leibler entropy between two discrete probability distributions. The quantity (9.7)
is maximized by setting qi,k = pθ(zi = k |xi), in view of Exercise 9.4 below. This corresponds to
the expectation step. On the other hand, the maximization step is recovered by maximizing the
lower bound (9.6) with respect to θ. Overall, denoting by

PK =

{
p ∈ [0, 1]K

∣∣∣∣∣
K∑
k=1

pk = 1

}

the set of discrete probabilities over a finite set of cardinality K, the EM algorithm can then be
rewritten as

q
(t)
i = argmax

qi∈PK

E
(
θt, qi

∣∣xi) = pθt(zi |xi) = r
(t)
i ,

θt+1 = argmax
θ∈Θ

{
n∑
i=1

E
Ä
θ, q

(t)
i

∣∣∣xiä} = argmax
θ∈Θ

{
n∑
i=1

K∑
k=1

r
(t)
i,k log pθ(xi, zi = k)

}
,

the latter maximization problem being (9.5) since pθ(xi, zi = k) = πkGµk,Σk . In addition, by (9.7),

n∑
i=1

E
Ä
θt, q

(t)
i

∣∣∣xiä =

n∑
i=1

log pθt(xi) = Ln

(
θt
)

is the log-likelihood to be maximized. Therefore, by construction of the algorithm,

Ln

(
θt
)
6

n∑
i=1

E
Ä
θt+1, q

(t)
i

∣∣∣xiä 6 n∑
i=1

E
Ä
θt+1, q

(t+1)
i

∣∣∣xiä = Ln

(
θt+1

)
,

so that the log-likelihood is indeed non decreasing as claimed.

Exercise 9.4. Consider two discrete probability distributions q, p ∈PK . Prove that KL(q | p) > 0,
and KL(q | p) = 0 if and only if q = p. It is useful to this end to first prove the identity

∀z ∈ [0,+∞), z log z − z + 1 > 0,

with equality if and only if z = 1.

Correction. We first prove the identity z log z − z + 1 > 0, with equality if and only if z = 1.
This can be proved by noting that the derivative of the function z 7→ z log z−z+1 is z 7→ log z,
so that the function decreases from 1 to 0, and then increases for z > 1. The value at z = 1 is 0,
which shows that the function remains nonnegative. Moreover, the only value of z for which
the function vanishes is z = 1.

The above identity then allows to write

KL(q | p) =

K∑
k=1

qk log
qk
pk

=

K∑
k=1

Å
qk
pk

log
qk
pk

ã
pk >

K∑
k=1

Å
1− qk

pk

ã
pk =

K∑
k=1

pk −
K∑
k=1

qk = 0.

Equality holds if and only if qk/pk = 1 for all 1 6 k 6 K, i.e. q = p.

Remark 9.2. One could alternatively make use of the fact that ϕ : z 7→ z log z is convex (since
its first derivative z 7→ log z is increasing) in order to write

KL(q | p) =

K∑
k=1

pkϕ

Å
qk
pk

ã
> ϕ

(
K∑
k=1

pk
qk
pk

)
= ϕ(1) = 0.
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(Soft) K-means. The cluster assignement

zi = argmax
16k6K

r∞i,k,

with r∞i the limiting responsibility obtained from the EM algorithm, allows to fall back to hard
clustering. One can consider some soft clustering by using the vector r∞i ∈ [0, 1]K , which provides
the probabilities to be in one of the clusters. In any case, one benefit of Gaussian mixture clustering
is that anisotropic shapes for the clusters are allowed thanks to the covariance matrices Σ∞k . The
standard K-means algorithm corresponds to hard assignements ri for which a single component
is equal to 1 (at each step of the procedure), with parameters πk = 1/K and Σk = Idd, so that
the only quantities to estimate are the cluster centers µk (see [40, Section 21.4.1.1]).

9.5 Density based clustering

The presentation in this section is inspired by [38, Section 13.1.3]. The idea behind density based
clustering is that clusters are defined by regions of space with a higher density of data points;
outliers being in regions of low density. These methods therefore allow to identify clusters and the
associated points, but also outliers, which should not be assigned to any cluster.

The most famous density based clustering algorithm is DBSCAN [17] (but other methods exist,
see for instance the review in [56, Section 2.2]). Its computational cost scales as O(n log n) and it
can therefore be used for large data sets. It relies on ε-neighborhoods of data points, defined as

Nε(xi) = {x ∈ D | d(x, xi) < ε} .

In addition to the parameter ε > 0, the method uses the integer Nmin, which is the minimal
number of neighbors needed for a data point to be considered a “core point”. This parameter
should be chosen depending on the size of the smallest cluster one expects. A point is said to be
“density reachable” if it is in the neighborhood of a core point.

The precise algorithm is the following: until all points have been visited,

• pick a data point x which has not been visited, determine Nε(x) and mark the point as visited;
• if x is a core point (i.e. the cardinality of Nε(x) is larger or equal to Nmin),

– find the set C of all points that are density reachable from x;
– C forms a cluster; mark all points in it as visited.

The algorithm then returns the cluster assignements C1, . . . , CK . Note that K is not fixed in
advance in this method. Note also that some points are not assigned to a cluster, and are therefore
considered as noise or outliers. Each cluster contains at least one core point. Non-core points form
the “edge” of a cluster. Overall, clusters are composed of one or several core points and all points
(core or non-core) which are density reachable from these core points.

9.6 Spectral clustering

The presentation in this section is based on the review article [55]. Spectral clustering starts by
constructing a similarity graph from the data points, by considering data points as vertices, linked
by edges with weights Wij = s(xi, xj) for some similarity function s : X 2 → R+. A classical choice
is

Wij = exp

Å
− 1

2σ2
‖xi − xj‖22

ã
,

or more generally d(xi, xj) for some distance function. The aim of spectral clustering is to find a
partition of the graph such that

• edges between different groups have low weights;
• edges within a group have large weights.



156 9 Clustering methods

Graph cuts. A first attempt to partition the graph is to consider the first objective above, which
leads to the so-called “mincut” problem:

Cut(C1, . . . , CK) =

K∑
k=1

W
(
Ck, Ck

)
, W (A,B) =

∑
a∈A
b∈B

Wab,

where Ck = D \Ck is the complement of the data points Ck in the training data set. The mincut
problem therefore minimizes the weight of connections between nodes of a given cluster and all
other clusters. In practice, it often separates individual vertices from the rest of the graph. Think
for instance of the case of a set evenly split into two subsets C,C of sizes n/2: in this case, W (C,C)
involves a summation over n2/4 terms, while W (D \ {xi}, {xi}) involves a summation over n− 1
terms only.

A simple fix is to normalize the cut in some way, by a term somewhat proportional to the size
of the sets, so that the sums in the example above are of the same order of magnitude:

• unnormalized spectral clustering considers

RatioCut(C1, . . . , CK) =

K∑
k=1

1

|Ck|
W
(
Ck, Ck

)
;

• normalized spectral clustering considers

NCut(C1, . . . , CK) =

K∑
k=1

1

vol(Ck)
W
(
Ck, Ck

)
, vol(A) =

∑
a∈A

da, da =

n∑
i=1

Wai;

Normalized spectral clustering explicitly aims at maximizing the within cluster similarityW (Ck, Ck)
since

W (Ck, Ck) = vol(Ck)−W
(
Ck, Ck

)
,

the first term being maximized by the objective function while the second term is minimized. On
the other hand, unnormalized spectral clustering emphasizes larger clusters, but these may contain
many connections of low weight. See [55, Section 8.5.1] for a more detailed discussion of this point.

Relaxed graph cuts. It is helpful in fact to solve relaxed versions of the minimization problems
NCut and RatioCut: instead of assigning points to a cluster, i.e. finding ci ∈ {0, 1}K with cik = 1
if and only if xi ∈ Ck (in particular, cik = 0 if xi 6∈ Ck), one solves a simpler linear algebra
problem; see [55, Sections 5.3 and 5.4] and Exercise 9.5 below for a precise discussion on how this
relaxation is performed.

A useful matrix to consider for the relaxed problem is L = D − W , where D (the degree
matrix) is a diagonal matrix with entries Dii = di, the total weight of the edges connected to xi.
The following result is fundamental to the spectral approach to clustering (see [55, Proposition 2]
and [40, Theorem 21.5.1]).

Proposition 9.1. The multiplicity K of the eigenvalue 0 of L is equal to the number of con-
nected components C1, . . . , CK of the graph, and the associated eigenvectors are proportional
to 1C1 , . . . ,1CK .

Proof. Note first that L is real symmetric, so that its spectrum is contained in R. For ξ ∈ Rn,
consider

ξ>Lξ =

n∑
i=1

diξ
2
i −

n∑
i,j=1

Wijξiξj =
1

2

n∑
i,j=1

Wij (ξi − ξj)2 ,

where we used Wij = Wji for the last equality. Therefore, L is positive semidefinite, so its spectrum
is contained in [0,+∞).
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If Lξ = 0, then ξi = ξj for all nodes for which Wij > 0, i.e. for all nodes in the same connected
component of the graph. When K = 1, there is a single connected component, and eigenvectors
associated with the eigenvalue 0 are proportional to 1D. When K > 2, upon reordering the data
points, one can write L in block diagonal form as

L =

á
L1 0 . . . 0
0 L2 . . . 0

. . .

0 0 . . . LK

ë
.

Then, the spectrum of L is

σ(L) =

K⋃
k=1

σ(Lk).

The operators Lk all admit 0 as a nondegenerate eigenvalue, with associated eigenvectors 1Sk ,
which allows to conclude. ut

The above result suggests by a perturbative analysis that, when the connected components
are weakly linked, the spectrum should consist of K small eigenvalues and then a spectral gap
between the (K + 1)-th and the K-th eigenvalues. This remark allows to find the relevant number
of clusters K in practice by diagonalizing L and locating the spectral gap.

Moreover, the eigenvectors associated with these eigenvalues should be almost constant on the
connected components (i.e. have values close to 1 on one of the connected components, and close
to 0 on the others, when normalized). A practical algorithm to find these eigenvectors, and hence
identify the clusters, is to perform K-means on the lines of the matrix

U =

Ñ
U1 U2 . . . UK

é
∈ Rn×K ,

where (Uk)16k6K are the first (normalized) K eigenvectors of L. This corresponds to the relaxed
version of RatioCut. Some authors suggest to nomalize L as Lsym = D−1/2LD−1/2 in order to
take into account that some clusters are more connected to others (see [40, Section 21.5.2]) and
perform K-means clustering on the first K eigenvectors of Lsym. This corresponds to the relaxed
version of NCut. There is no consensus on which approach to prefer, see the discussions in [55,
Section 8.5.3].

Exercise 9.5. We make precise in this exercise in which sense the spectral problem on the graph
Laplacian can be understood as a relaxed version of graph cut problems.

(a) We first consider RatioCut for K = 2, i.e. consider the partition (C,C). Introduce the vec-
tor h ∈ Rn with components

hi =

 
|C|
|C|

1xi∈C −
 
|C|
|C|

1xi∈C . (9.8)

Denoting by 1n ∈ Rn the vector for which all components are equal to 1, prove that

h · 1 = 0, h>h = n, RatioCut
(
C,C

)
=

1

n
h>Lh.

Deduce that

RatioCut
(
C,C

)
> min
ξ∈Rn\{0}
ξ·1n=0

ξ>Lξ

ξ>ξ
.

What is the minimizer of the right hand side?
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(b) We next consider RatioCut for K > 2. Define the matrix H ∈ Rn×K with entries

Hik =
1√
|Ck|

1xi∈Ck . (9.9)

Prove that H>H = IdK and that

1

|Ck|
Cut

(
Ck, Ck

)
=
(
H>LH

)
kk
.

Deduce that

RatioCut(C1, . . . , CK) > min
H∈Rn×K

{
Tr
(
H>LH

) ∣∣∣ H>H = IdK
}
.

What is the minimizer of the right hand side?
(c) We finally consider NCut. By proceeding as in the previous question, and introducing the

matrix ‹H ∈ Rn×K with entries ‹Hik =
1√

vol(Ck)
1xi∈Ck ,

show that the relaxed version of NCut is

min
H∈Rn×K

{
Tr
(
H>LsymH

) ∣∣∣ H>H = IdK
}
.

Correction.

(a) The normalization conditions on h are readily verified:

h · 1 =

n∑
i=1

hi =
∑
xi∈C

 
|C|
|C|
−
∑
i∈C

 
|C|
|C|

= 0,

and

h>h =

n∑
i=1

h2i =
∑
xi∈C

|C|
|C|

+
∑
i∈C

|C|
|C|

= |C|+ |C| = n.

Moreover, since hi = hj when (xi, xj) ∈ C2 or (xi, xj) ∈ C
2
,

1

n
h>Lh =

1

2n

n∑
i,j=1

Wij(hi − hj)2 =
1

2n

Ü∑
xi∈C
xj∈C

+
∑
xi∈C
xj∈C

ê
Wij

( 
|C|
|C|

+

 
|C|
|C|

)2

=
1

n

Ç
|C|
|C|

+
|C|
|C|

+ 2

å∑
xi∈C

∑
xj∈C

Wij

=
1

n

Ç
|C|+ |C|
|C|

+
|C|+ |C|
|C|

å
Cut

(
C,C

)
=
|C|+ |C|

n

Ç
1

|C|
+

1

|C|

å
Cut

(
C,C

)
= RatioCut

(
C,C

)
.

Therefore, denoting by hC the vector with components (9.8), and by

H = {hC , C ⊂ D} ⊂
{
ξ ∈ Rn

∣∣∣ ξ · 1n = 0, ξ>ξ = n
}
,
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it holds

min
C⊂D

RatioCut
(
C,C

)
= min

ξ∈H

ξ>Lξ

ξ>ξ
> min
ξ∈Rn\{0}
ξ·1n=0

ξ>Lξ

ξ>ξ
= σ2(L),

where σ2(L) is the second eigenvalue of L, the first one being 0 with associated eigenvec-
tor 1n. The minimal value is attained for ξ proportional to the second eigenvector of L.

(b) The fact that H>H = IdK follows by a direct computation. Moreover, by computations
similar to the ones performed in the previous question, and denoting by Hk the k-th column
of H,

1

|Ck|
Cut

(
Ck, Ck

)
=

1

|Ck|
∑
xi∈C

∑
xj∈C

Wij = H>k LHk =
[
H>LH

]
kk
,

which gives the claimed formula. Therefore, denoting by HC the matrix with compo-
nents (9.9), and by

H = {HC , C ⊂ D} ⊂
{
H ∈ Rn×K

∣∣∣H>H = IdK
}
,

it holds

RatioCut(C1, . . . , CK) = min
H∈H

Tr
(
H>LH

)
> min
H∈Rn×K

{
Tr
(
H>LH

) ∣∣∣ H>H = IdK
}
.

By the Rayleigh–Ritz principle, the right hand side of the previous inequality is mini-
mized for H = [U1| . . . |UK ], the matrix whose k-th column Uk is a normalized eigenvector
associated with the k-th eigenvalue of L.

(c) Computations very similar to the ones of the previous question give‹H>D‹H = IdK ,

so that
NCut(C1, . . . , CK) > min

H̃∈Rn×K

¶
Tr
Ä‹H>L‹Hä ∣∣∣ ‹H>D‹H = IdK

©
.

By writing ‹H = D1/2H, the claimed lower bound is obtained on the right hand side of the
previous inequality.
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This chapter gathers additional material which is mentioned at various places in the lecture
notes: guarantees on empirical risk minimization in Section 10.1, elements on model selection in
Section 10.2, and some key facts in Statistical Learning Theory in Section 10.3.

10.1 Empirical risk minimization and statistical learning theory

We present here a brief introduction to some theoretical aspects of empirical risk minimization for
supervised learning, in particular estimates motivating that this approach provides good predictors.
The material in this section is taken from [4, Sections 2.3 to 2.5] as well as selected parts of
Chapter 4 of this reference, [40, Section 5.4] and [39, Sections 4.1 and 4.2].

10.1.1 Framework

Let us briefly recall here the setting of empirical risk minimization. We consider a parametrized
family of predictors fθ : X → Y for θ ∈ Θ. In practice, predictors can be obtained from data by
minimizing with respect to θ the empirical risk“Rn(fθ) =

1

n

n∑
i=1

`(yi, fθ(xi)),

where Dn = {(x1, y1), . . . , (xn, yn)} is a dataset of i.i.d. pairs (xi, yi) sampled with respect to some
unknown distribution pdata (see for instance (2.1) and specific formulations such as (2.3), or (8.1),
to give just two examples). The minimization of such empirical risks can sometimes be easy (as for
linear regression problems, for which the optimal value of the parameter has an analytic expression;
or for logistic regression, for which the empirical risk is convex), and can in any cases be considered
for parameters of arbitrary dimensions. However, the minimization can also be quite difficult, for
instance for non-convex empirical risks (as those encountered for supervised learning with neural
networks), or when the gradient with respect to θ is complex or expensive to compute. Moreover,
classification requires parametrizing functions with values in {0, 1} (and/or convexifying the loss,
as discussed in Section 3.1), and in general one needs capacity control to avoid overfitting.
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10.1.2 Decomposition of the risk minimization

The aim of this section is to provide estimates on the quality of the predictor found by empir-
ical risk minimization. We decompose to this end the excess risk into an estimation error and
an approximation error. We consider for this a family F of predictor functions X → Y (for in-
stance {fθ, θ ∈ Θ} with Θ belonging to Rd or to some ball in order to have some capacity control).
The predictor found by the empirical risk minimization is

f̂ ∈ argmin
f∈F

“Rn(f). (10.1)

The question is how large the excess risk R(f̂)−R? is. We rewrite the latter quantity as

R(f̂)−R?︸ ︷︷ ︸
excess risk

= R(f̂)− inf
f ′∈F

R(f ′)︸ ︷︷ ︸
estimation error

+ inf
f ′∈F

R(f ′)−R?︸ ︷︷ ︸
approximation error

. (10.2)

Let us discuss the two errors on the right hand side of the previous equality:

• The approximation error is a deterministic quantity, which depends on F and the underlying
(unknown) distribution pdata. It quantifies how well the Bayes predictor f? can be represented
in F . The idea is that the larger F is, the smaller the approximation error is. Precise convergence
rates depend on the regularity of f? (which is a classical result in analysis and approximation
theory).

• The estimation error is a random quantity, which depends implicitly on the data set through the
minimizer f̂ of the empirical risk (see (10.1)). This error is not easy to quantify as such. A key
idea here is to upper bound it in terms of the supremum over f ∈ F of the differences |R(f)−“Rn(f)|, as made precise in Proposition 10.1.

Proposition 10.1 (Bound on the estimation error). For any data set Dn, it holds

0 6 R(f̂)− inf
f∈F
R(f) 6 2 sup

f∈F

∣∣∣“Rn(f)−R(f)
∣∣∣ .

The main interest of this result is that it is more convenient to work with “Rn than f̂ . Let us
emphasize that the upper bound is a random quantity (depending on the data set). This random

quantity usually decays with n (with “Rn(f) converging almost surely to R(f) for f given).

Proof. Assume that inff∈F R(f) = R(gF ) is attained for some gF ∈ F (otherwise the argument
below needs to be modified as in the proof of [39, Proposition 4.1]). Then,

R(f̂)− inf
f∈F
R(f) = R(f̂)−R(gF )

=
Ä
R(f̂)− “Rn(f̂)

ä
+ “Rn(f̂)− “Rn(gF )︸ ︷︷ ︸

60

+
Ä“Rn(gF )−R(gF )

ä
6 2 sup

f∈F

∣∣∣R(f)− “Rn(f)
∣∣∣ ,

which is the claimed result. ut

Let us give a few comments on the above result:

• the statistical dependence between f̂ and “Rn is removed at the end of the proof by considering
a uniform bound over all possible functions in F . This uniform deviation bound typically grows
as F becomes larger;

• it would be possible to take into account an additional optimization error (quantifying the
fact that the minimizer of the empirical risk is obtained by a numerical procedure) by writing

that “Rn(f̂)− “Rn(gF ) 6 ε instead of saying that this quantity is nonnegative.
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In order to instantiate the bound on the estimation error provided by Proposition 10.1, we
consider the simple setting when F is a set of finite cardinality |F| < +∞, and the elementary
loss ` is bounded.

Proposition 10.2. Suppose that F is finite, and the elementary loss ` is bounded: there exists L <
+∞ such that

∀(y, z) ∈ Y2, 0 6 `(y, z) 6 L < +∞.
Then, for any δ ∈ (0, 1), the following bound holds with probability larger than 1− δ:

0 6 R(f̂)− inf
f∈F
R(f) 6 L

 
2

n

Å
log |F|+ log

2

δ

ã
. (10.3)

This result, which is based on Hoeffding’s inequality, is proved in Section 10.1.3. Let us make
a few comments on it:

• the error is “with high probability”: the upper bound becomes larger as the probability 1− δ
comes closer to 1;

• the decay rate of the upper bound is 1/
√
n, consistent with the scaling “R(f)−R(f) = O(n−1/2)

obtained from the central limit theorem;
• the size |F| of the set of functions for the approximation appears only logarithmically. The

result can be extended to set which are not discrete, under some conditions, in which case the
term log |F| should be replaced by the dimension of the set.

The result on the estimation error of Propositions 10.1 and 10.2, combined with the decompo-
sition of the excess risk (10.2), suggests that a trade-off should be reached in the complexity of F :
the approximation error is smaller for F larger, while the estimation error increases in this case;
and conversely. The increase of the estimation error is related to the generalization capability of
the model: a model with a small estimation error generalizes better.

A typical scenario, as the size of F (or the set Θ of parameters for the function fθ in the set F)
increases, is the following:

• for small sizes of F , the train and validation (test) errors are both large. This corresponds to
the regime of underfitting, where the estimation error is small but the approximation error is
large (“large bias but small variance”);

• for large sizes of F , the train error is small but the validation error is large. This corresponds
to the regime of overfitting, where the approximation error is small but the estimation error
is large since the predictor learnt from the train dataset fits too closely the training data and
hence generalizes poorly (“small bias but large variance”);

10.1.3 Proof of Proposition 10.2

A key tool in the proof of Proposition 10.2 is Hoeffding’s inequality (proved in Exercise 10.4
below).

Proposition 10.3 (Hoeffding’s inequality). If Z1, . . . Zn are independent random variables
such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] > t

)
6 e−2nt

2

. (10.4)

Note that the random variables Zi need not be identically distributed. The result above can
be considered as a quantitative version of the Law of Large Numbers.

Exercise 10.1. Under the same assumptions as in Proposition 10.3, prove that

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi]

∣∣∣∣∣ > t

)
6 2e−2nt

2

.
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Correction. The result directly follows from the fact that {|X| > t} = {X > t} ∪ {−X > t}
together with the union bound. Indeed, the inequality (10.4) holds with Zi replaced by −Zi
since it suffices to apply Proposition 10.3 to the family of random variables Z ′i = 1− Zi.

Remark 10.1. The bound (10.4) can be compared with the asymptotic bound given by the Central
Limit Theorem when the random variables Zi are i.i.d. Indeed, as n→ +∞,

lim
n→+∞

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] >
t√
n

)
=

…
1

2πσ2

ˆ +∞

t

e−z
2/(2σ2) dz, (10.5)

for σ2 = Var(Z1). The integral in the right-hand side of the above equality can be upper bounded
as
ˆ +∞

t

e−z
2/(2σ2) dz = e−t

2/(2σ2)

ˆ +∞

0

e−y
2/(2σ2)e−ty/σ

2

dy 6 e−t
2/(2σ2)

ˆ +∞

0

e−y
2/(2σ2) dy

=

√
2πσ2

2
e−t

2/(2σ2),

so that the right-hand side of (10.5) is smaller than e−t
2/(2σ2)/2. Now, random variables with values

in [0, 1] have a variance smaller than 1/4 (see Exercise 10.2), so that e−t
2/(2σ2)/2 6 e−2t

2

/2, which

is itself smaller than the bound e−2t
2

obtained from (10.4). The result (10.5) is however only an
asymptotic result, whereas (10.4) holds for any n > 1.

Exercise 10.2. Consider a random variable Y which takes almost surely values in [0, 1]. Prove
that Var(Y ) 6 1/4.

Correction. Note that

Var(Y ) = min
a∈[0,1]

E
(
|Y − a|2

)
6 E

Ç∣∣∣∣Y − 1

2

∣∣∣∣2
å

=
1

4
E
(
|2Y − 1|2

)
.

Now, |2Y − 1| ∈ [0, 1] almost surely, so that E
(
|2Y − 1|2

)
6 1, which leads to the claimed

result.

Exercise 10.3. Which bounds holds instead of (10.4) when Zi ∈ [a, b] almost surely with −∞ <
a < b < +∞?

Correction. The random variable

Zi =
Zi − a
b− a

has values in [0, 1] almost surely, so that Proposition 10.3 implies that

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] > (b− a)t

)
6 e−2nt

2

.

This shows that

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] > t

)
6 e−2nt

2/(b−a)2 .
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We are now in position to prove Proposition 10.2 with Hoeffding’s inequality. For t > 0, using
the upper bound on the estimation error provided by Proposition 10.1, then the union bound,

P
Å
R(f̂)− inf

f∈F
R(f) > t

ã
6 P

Ç
2 sup
f∈F

∣∣∣“Rn(f)−R(f)
∣∣∣ > t

å
6
∑
f∈F

P
(

2
∣∣∣“Rn(f)−R(f)

∣∣∣ > t
)
.

For f given, it holds, in view of Exercises 10.3 and 10.1 and since Zi = `(f(xi), yi) ∈ [0, L],

P
(

2
∣∣∣“Rn(f)−R(f)

∣∣∣ > t
)
6 2 exp

Ç
−2n

L2

Å
t

2

ã2å
.

Therefore,

P
Å
R(f̂)− inf

f∈F
R(f) > t

ã
6 2|F|e−nt

2/(2L2).

We set δ = 2|F|e−nt2/(2L2), i.e.

t = L

 
2

n
log

Å
2|F|
δ

ã
,

from which the result follows.

Exercise 10.4 (Proof of Hoeffding’s inequality). Consider a random variable Z which almost
surely has values in [0, 1], and introduce

ϕ(s) = log E
î
es(Z−E(Z))

ó
.

We start by proving that eϕ(s) 6 es
2/8 for any s > 0, and then derive the claimed bound.

(1) Compute ϕ′(s) and ϕ′′(s), and prove that ϕ′′(s) > 0 for any s > 0.
(2) Show that ϕ′′(s) 6 1/4 by relying on Exercise 10.2, and deduce that

E
î
es(Z−E(Z))

ó
6 es

2/8. (10.6)

(3) Use Markov’s inequality P (X > a) 6 E(X)/a for a nonnegative random variable X and a > 0
to prove

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] > t

)
6 e−st+s

2/(8n).

Conclude.

Correction. (1) Denote by Xs = es(Z−E(Z)). A simple computation shows that

ϕ′(s) =
E [(Z − E(Z))Xs]

E(Xs)
, ϕ′′(s) =

E
[
(Z − E(Z))2Xs

]
E(Xs)

−
Å

E [(Z − E(Z))Xs]

E(Xs)

ã2
.

A Cauchy–Schwarz inequality implies that E
[
(Z − E(Z))2Xs

]
E(Xs) > E [(Z − E(Z))Xs]

2
,

so that ϕ′′(s) > 0.
(2) Introduce the random variable Ys with values in [0, 1], defined by the following equality: for

any measurable set A ⊂ [0, 1],

P(Ys ∈ A) =
E(1AXs)

E(Xs)
.
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Alternatively, one can define Ys as a random variable with law proportional
to e−s(z−E(Z)) µ(dz), where µ is the law of Z. In any case, Var(Ys) = ϕ′′(s), so that ϕ′′(s) 6
1/4 by Exercise 10.2. Since ϕ(0) = ϕ′(0) = 0, a Taylor formula with exact remainder gives,
for some θs ∈ [0, 1],

ϕ(s) = ϕ(0) + sϕ′(0) +
s2

2
ϕ′′(θss) =

s2

2
ϕ′′(θss) 6

s2

8
,

which gives the desired upper bound by exponentiation.
(3) Introduce

Zn =
1

n

n∑
i=1

Zi.

Then, using first Markov’s inequality, then the independence of Z1, . . . , Zn, and fi-
nally (10.6),

P

(
1

n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi] > t

)
= P

(
exp

[
s
(
Zn − E[Zn]

)]
> est

)
6 e−stE

(
exp

[
s
(
Zn − E[Zn]

)])
6 e−st

n∏
i=1

E
(

exp
[ s
n

(Zi − E[Zi])
])

6 e−st
n∏
i=1

es
2/(8n2) = exp

Å
−st+

s2

8n

ã
.

The right-hand side of the previous inequality is minimized for s/(4n) = t, i.e. s = 4nt. The
argument of the exponential function for this value of s is −2nt2, which allows to conclude.

10.2 Model selection

This section discusses the mathematical foundations behind the techniques to estimate the ex-
pected risk and choose hyperparameters of models. More precisely, we rely on model selection,
whose aim is to find the right balance between the estimation and approximation errors. We
present the approach when looking for the best hyperparameters (e.g. the number of neighbors
for KNN), but this can be readily generalized to choosing a regularization strength (which corre-
sponds to the so-called structural risk minimization). The presentation is based on [49, Chapter 11]
and [39, Sections 4.4 and 4.5].

10.2.1 Validation

The principle of cross-validation is introduced in Section 1.3.2, when studying KNN. It corresponds
to using some part of the training set as validation set to select hyperparameters. To formalize
the discussion, introduce a dataset D = {(x1, y1), . . . , (xn, yn)} is a dataset of i.i.d. pairs (xi, yi)
sampled with respect to some unknown probability distribution. This dataset is randomly decom-
posed into a training data set Dtrain of size (1 − α)n and a validation set Dval of size αn, for
some fraction α ∈ [0, 1] (chosen such that αn is an integer; a typical value would be α = 0.2).
This is equivalent to independently sampling a training and validation set of i.i.d. data points, of
respective sizes (1− α)n and αn.

Proposition 10.4. Assume that the elementary loss function is bounded, namely 0 6 `(y, z) 6
L < +∞ for any y, z ∈ Y. Then,
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P
(∣∣∣R(f̂Dtrain

)− “Rval(f̂Dtrain
)
∣∣∣ > ε

)
6 2e−2αnε

2/L2

, (10.7)

where f̂Dtrain
is a minimizer of the training loss (defined on Dtrain). Therefore, with probability

larger that 1− δ over the choice of the train and validation sets,∣∣∣R(f̂Dtrain)− “Rval(f̂Dtrain)
∣∣∣ 6 L

 
1

2αn
log

Å
2

δ

ã
. (10.8)

Remark 10.2. Note that the bound (10.8) is tighter than bounds such as (10.3) (in the sense that
it involves a single term with log(2/δ)) because a “fresh” sample, independent of the training set,
is considered.

Proof. The first inequality is obtained by fixing f̂Dtrain
(which is determined by the training set)

and then using Hoeffding’s inequality (10.4) with respect to realizations of the validation set. The
choice

δ = 2e−2αnε
2/L2

,

that is

ε = L

 
1

2αn
log

Å
2

δ

ã
,

directly leads to the second inequality. ut

10.2.2 Model selection with validation

Consider the training of models on a training set Dtrain of size (1− α)n, for r different choices of
hyperparameters (e.g. order of polynomials for polynomial regression, topology of neural networks,

etc), henceforth leading to associated predictors f̂1, . . . , f̂r. A natural question is to choose a single
predictor out of these r candidates, to be used on the test set.

A standard procedure is to characterize the performance of the prediction on a validation
set Dval of size αn; more precisely, to choose the predictor which minimizes the validation error:

min
16i6r

Rval(f̂i),

with

Rval(f̂i) =
1

αn

∑
(xj ,yj)∈Dval

`
Ä
f̂i(xj), yj

ä
.

This is similar to learning from a finite set F , but this set F is not fixed ahead in time as it depends
on the training dataset Dtrain. However, the sets Dtrain and Dval are independent, so that Dval is
independent of the set of predictors being considered. We can therefore use the same techniques
as the ones used to obtain learning guarantees for finite sets F .

Theorem 10.1. Consider an arbitrary set of predictors F = {f1, . . . , fr} (possibly depending
on Dtrain), and assume that the elementary loss function is bounded, namely 0 6 `(y, z) 6 L < +∞
for any y, z ∈ Y. Consider a validation set Dval of size αn, sampled independently of F . Then,
with probability at least 1− δ over the choice of Dval,

∀h ∈ F , |R(h)−Rval(h)| 6 L

 
1

2αn
log

Å
2|F|
δ

ã
.

Proof. The estimate (10.7) for a given element h ∈ F , combined with the union bound, leads to

P
Å

sup
h∈F

∣∣∣R(h)− “Rval(h)
∣∣∣ > ε

ã
6
∑
h∈F

P
(∣∣∣R(h)− “Rval(h)

∣∣∣ > ε
)
6 2|F|e−2αnε

2/L2

,

from which the proof is concluded similarly to the proof of Proposition 10.4. ut
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The interpretation of Theorem 10.1 is that the error on the validation set approximates the
true error as long as F is not too large. If one tries too many methods or values of the parameters
(i.e. the number r of predictors f̂1, . . . , f̂r is too large), then there is no good guarantee on the
performance of the predictor. This corresponds to a situation of overfitting, where the training
loss is typically small while the test loss is large.

In practice, one should avoid testing too many parameters – both because it is dangerous from
the above discussion on the interpretation of Theorem 10.1, and also because it is time consuming.
To this end, one should

• start with a rough coverage of parameter values (for instance using a coarse logscale for positive
parameters);

• refine in a second step the parameter grid in the most relevant regions to fine tune the choice
of the parameters;

• potentially, it may be a good idea not to optimize all hyperparameters and models at the same
time, and proceed sequentially (for instance, set the hyperparameters of the training procedure
in order to have an efficient training for extreme values of the other hyperparameters, and then
look for optimal values of these other hyperparameters).

Remark 10.3 (Learning curves). The behavior of the training and validation losses as a func-
tion of the size of the training set is a useful criterion to determine how to improve the learning
when the validation error is large, in particular when the training error is small but the validation
error is large. In essence, does the issue come from n being too small (large estimation error) or
the class F being too small (large approximation error)? When the approximation error is large
(F is too small), the validation error does not decrease much as n increases. On the other hand,
when the approximation error is small (F is large enough), the validation error can be large for n
small but then decreases as n is increased since the estimation error decreases, and one expects
that the difference between the train and validation errors vanishes as n→ +∞.

10.3 Statistical learning theory

The goal of learning theory is to provide guarantees of performance of unseen data. From a technical
viewpoint, this can be described as relating the in-sample and out-of-sample errors. Recall that
we work in these lecture notes in the statistical framework: the data points are assumed to be
i.i.d. with respect to some unknown distribution pdata(dx dy). This corresponds to considering a
random set Dtrain = {(x1, y1), . . . , (xn, yn)} := Dn(pdata). In this context, an algorithm A is a
mapping which associates to a dataset Dn(pdata) a function X → Y. The associated expected risk
is Rpdata

(f) with f = A (Dn(pdata)). The aim is to find A such that

Rpdata (A (Dn(pdata)))−R? (10.9)

is small. The challenge is that pdata is unknown and should be considered as arbitrary (so
that ideally one should make minimalistic assumptions on it); and that the the risk is random
since Dn(pdata) is random.

Metrics of performance. To quantify the performance, there are two main metrics:

• minimize the average error, namely the expectation of (10.9) with respect to realizations
of Dn(pdata):

E [Rpdata (A (Dn(pdata)))]−R?; (10.10)

• in the probably approximately correct (PAC) framework, one wants to ensure that (10.9) is
smaller than ε with probability larger than 1− δ:

P [Rpdata
(A (Dn(pdata)))−R? 6 ε] > 1− δ.

Typically, one fixes δ ∈ (0, 1) and seeks to minimize ε > 0, or fixes ε > 0 and seeks to
minimize δ ∈ (0, 1).

An algorithm is consistent in expectation if (10.10) converges to 0 as n→ +∞. It is PAC consistent
if, for any ε > 0, the inequality (10.10) holds for any n > 1 with δn → 0 as n→ +∞.
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Consistency. Consistency can also be assessed over classes of problems, with an analysis that
can be asymptotic or not. An algorithm is said to be universally consistent if it is consistent
in expectation for all distributions pdata (but the rate of convergence will generically depend
on pdata in view of the “no free lunch theorem”; see Theorem 10.2 below). Consistency can also be
established for classes of distributions with some regularity properties (for instance with compact
support, or leading to a Bayes predictor which is Lipschitz, etc). For such a given class P, this
amounts to finding an algorithm A such that

sup
p∈P

E [Rp (A (Dn(p)))]−R?

is as small as possible.
One can also consider minimax risks, which correspond to taking infima over A in the previous

metrics of convergence. Upper bounds on the minimax risk can be derived from the results obtained
by studying one particular algorithm. Lower bounds are more difficult to establish.

No free lunch theorems. The spirit of various results going under the name “no free lunch”
theorem is that there is no algorithm that works optimally for all distributions – i.e. learning is
not possible without assumptions. We present here one possible result, which shows that, for any
algorithm and any fixed number of samples n > 1, there is a probability distribution which makes
the algorithm useless – i.e. no better than guessing at random (“chance level”).

Theorem 10.2 (No free lunch). Consider binary classification with the elementary loss func-
tion `(y, z) = 1y 6=z and a space of inputs X of infinite cardinality (|X | = +∞). Denote by P the set
of probability measures on X ×{0, 1}. Then, for any learning algorithm A and any integer n > 1,

sup
p∈P

E [Rp (A (Dn(p)))]−R? > 1

2
.

There are versions of such results with some uniformity in n, for instance statements such
as: for any decreasing sequence (an)n>1 with an → 0 as n → +∞, there exists pdata ∈ P such
that E [Rpdata

(A (Dn(pdata)))]−R? > an.

Proof. We write the result for X = N. Fix k ∈ N (this number will ultimately be sent to infinity).
The proof proceeds in two steps: we first construct a probability distribution supported on k
elements of N, with k � n such that the knowledge of the n labels does not imply doing well on
all k elements; and next choose the parameters of the distribution (characterized by the vector r
below) by comparing the performance of the algorithm to the one of random guesses.

For the first step, we introduce a vector of labels r ∈ {0, 1}k and define a joint distribution pr
on (x, y) by

∀j ∈ {1, . . . , k}, P(x = j, y = rj) =
1

k
, ∀j ∈ {k + 1, . . . , n}, P(x = j, {0, 1}) = 0.

This means that x is uniformly distributed over {1, . . . , k} with labels rx deterministically obtained
from x. Since the relationship from inputs to labels is deterministic, R? = 0.

We next denote by

S(r) = E
î
Rpr
Ä
f̂Dn

äó
the average (over realizations of the data set) of the expected risk, with the predictor

f̂Dn = A (Dn(pr)).

In order to maximize the quantity S with respect to r ∈ {0, 1}k, we consider in fact a distribution q
of possible elements in {0, 1}k (for instance the uniform distribution). The maximum over all
elements is larger that the average with respect to q. More precisely,
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max
r∈{0,1}k

S(r) > Er∼q[S(r)] = P
Ä
f̂Dn(x) 6= rx

ä
= E

[
P
Ä
f̂Dn(x) 6= rx

∣∣∣ (x1, r1), . . . , (xn, rn)
ä]

> E
[
P
Ä
f̂Dn(x) 6= rx and x ∈ {x1, . . . , xn}

∣∣∣ (x1, r1), . . . , (xn, rn)
ä]

=
1

2
E [P (x ∈ {x1, . . . , xn} | (x1, r1), . . . , (xn, rn))]

=
1

2

n∏
i=1

P(xi 6= x |x) =
1

2

Å
1− 1

k

ãn
.

where the second line is obtained by conditioning on Dn and r, so that the conditional probability
is over realizations of x; while in the third line the lower bound corresponds to realizations of x not
in the data set, for which the label rx was not observed, and so it has probability 1/2 to be 0 or
1 when averaging over r ∼ q. Note that the random variables x1, . . . , xn (realizations of the data
set Dn), r (realizations of the labels) and x are independent. The desired lower bound is finally
obtained in the limit k → +∞. ut
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Implementing and debuging machine learning programs

We refer for instance to [22, Chapter 11] for various practical advice on how to implement and
debug machine learning programs. When predictions on the test set are poor, several options
should be considered:

• increase or decrease the model capacity, depending on whether underfitting or overfitting is the
issue. This can be achieved by playing with the parameters of the model (for instance increase
or decrease the size of a neural network) and/or the regularization used;

• improve the quality of the optimization of the parameters of the model if the training error is
large;

• debug the software implementation by looking at the worst errors, for instance wrong pre-
dictions obtained with a good confidence (think of a binary classification problem, where the
probability to observe a class label would be close to 1 for an incorrect label);

• gather more data and/or clean it up. This can be assessed and quantified with learning curves,
which report the predictive performance on the training and test sets as a function of the
number of data points, possibly with a logarithmic scale on the number of data points;

• carefully select the hyperparameters of the method with refined grid searches and cross vali-
dations.
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