Multiconfigurational Quantum Chemistry with a Simple Tensor Network: The Matrix-Product-State Ansatz

Stefan Knecht

GSI Darmstadt, Superheavy Element Chemistry, Germany

http://www.stefanknecht.xyz

What's to come...

- Multiconfigurational wave function ansätze
- From CI to MPS: optimizing an MPS with the DMRG algorithm
- Recent developments based on an MPS ansatz

Picking up where we ("Titou") left off on Monday...

How could we improve on a truncated CI approach?

$$\Psi^{\text{CISD...}} = C_0 \Phi_0 + \sum_{(ai)} C_{(ai)} \Phi_i^a + \sum_{(ai)(bj)} C_{(ai,bj)} \Phi_{ij}^{ab} + \dots$$

 $C_0, C_{(ai)}, C_{(ai,bj)} \in \{C_{\mathsf{I}}\}$ and $\Phi_0 \equiv \Phi^{\mathrm{HF}}$

(1) Use a CI-type Φ_0 as reference wave function \rightarrow multireference CI

2 Optimize E_{el} wrt CI coefficients $\{C_l\}$ and MO basis $\{\phi_i\}$

\rightarrow Multi-configuration self-consistent field (MCSCF) approach

First-order MCSCF

Alternately optimize CI-coefficients and MO basis

BUT: First-order MCSCF typically converges poorly!

Second-generation MCSCF

- To accelerate convergence use gradient and Hessian information
- Rewrite the wave function ansatz as follows

$$\Psi^{\text{MCSCF}} = \sum_{I} \tilde{\phi}_{I} C_{I}$$

with $\{\tilde{\phi}_I\}$ and $\{\phi_I\}$ connected by a unitary transformation $U = e^{\kappa}$ (κ being anti-hermitian, (κ^T)* = - κ)

$$egin{pmatrix} ilde{\phi_1} \ ilde{\phi_2} \ dots \ ilde{\phi_m} \end{pmatrix} = oldsymbol{U} \cdot egin{pmatrix} \phi_1 \ \phi_2 \ dots \ \phi_m \end{pmatrix}$$

NB: $\kappa_{pq} \; (\kappa = \{\kappa_{pq}\})$ are usually called orbital rotation parameter.

Newton–Raphson approach I

• Write electronic energy as a function of parameters p and Taylor-expand for $p_0 = 0$:

$$E_{\rm el}(\boldsymbol{p}) = E_{\rm el}(0) + \boldsymbol{g}^{\dagger}\boldsymbol{p} + \frac{1}{2}\boldsymbol{p}^{\dagger}\boldsymbol{H}\boldsymbol{p} + \cdots$$

with g and H given by

$$g_i = \left(\frac{\partial E_{\text{el}}}{\partial p_i}\right)_0$$
 (gradient) $H_{ij} = \left(\frac{\partial^2 E_{\text{el}}}{\partial p_i \partial p_j}\right)_0$ (Hessian)

• Optimize p with (Newton-step)

$$p = -H^{-1} \cdot g$$

$$E_{I}^{(1)} \equiv \frac{\partial E_{\rm el}^{\rm MCSCF}}{\partial C_{I}^{*}} \quad , \qquad E_{pq}^{(1)} \equiv \frac{\partial E_{\rm el}^{\rm MCSCF}}{\partial \kappa_{pq}^{*}}$$
$$E_{IJ}^{(2)} \equiv \frac{\partial^{2} E_{\rm el}^{\rm MCSCF}}{\partial C_{I}^{*} \partial C_{J}^{*}} \quad , \qquad E_{I,pq}^{(2)} \equiv \frac{\partial^{2} E_{\rm el}^{\rm MCSCF}}{\partial C_{I}^{*} \partial \kappa_{pq}^{*}}, \quad E_{pq,rs}^{(2)} \equiv \frac{\partial^{2} E_{\rm el}^{\rm MCSCF}}{\partial \kappa_{pq}^{*} \partial \kappa_{rs}^{*}}$$

Use the above derivatives to perform the Newton step:

$$\begin{pmatrix} \boldsymbol{C}_A \\ \boldsymbol{\kappa} \end{pmatrix} = - \begin{pmatrix} \{E_{IJ}^{(2)}\} & \{E_{I,pq}^{(2)}\} \\ \{E_{pq,I}^{(2)}\} & \{E_{pq,rs}^{(2)}\} \end{pmatrix}^{-1} \cdot \begin{pmatrix} \{E_I^{(1)}\} \\ \{E_{pq}^{(1)}\} \end{pmatrix}$$

Problem: How to choose the truncated CI wave function for an MCSCF ansatz?

Complete Active Space SCF — CASSCF

Pick an active orbital space (CAS) within which one solves a FCI problem and optimises the MO basis.

The active orbital space problem

• Traditional CASCI hits "exponential" scaling wall at \approx CAS(18,18)

- Requires efficient wave function parametrizations
 - Selected CI (SHCI, CIPSI, ...)
 - QMC (FCIQMC, DMC, ...)
 - incremental FCI approaches
 - DMRG

Stefan Knecht

Multiconfigurational methods for large CAS

Standard Cl approach

• CI-type diagonalization for a **preselected** set of many-particle basis states in a given CAS(N,L) (N electrons in L orbitals)

$$|\Psi
angle = \sum_{k_1,k_2,...,k_L} c_{k_1,k_2,...,k_L} |k_1
angle \otimes |k_2
angle \otimes \ldots \otimes |k_L
angle$$
 (1)

Density matrix renormalization group

• Determine CI coefficients from correlations among orbitals

$$|\Psi\rangle = \sum_{k_1, k_2, \dots, k_L} c_{k_1, k_2, \dots, k_L} |k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_L\rangle$$
(2)

• Local space k_l of *l*-th spatial orbital is of dimension d = 4

 $k_{l}=\left\{ \left|\uparrow\downarrow
ight
angle ,\left|\uparrow
ight
angle ,\left|\downarrow
ight
angle ,\left|0
ight
angle
ight\}$

(3)

From CI to MPS: optimizing an MPS with the DMRG algorithm

Optimizing an MPS wave function with the DMRG algorithm

- Optimisation algorithm
- Optimal bipartition
- Parameters that determine DMRG accuracy

Very useful introductory reference:

U. Schollwöck, *The density-matrix renormalization group in the age of matrix product states*, Annals of Physics, 326 (2011) 96–192.

Some reviews on about 20 years of DMRG in quantum chemistry

- Ö. Legeza et al., Lect. Notes Phys., 739, 653 (2008)
- G. K.-L. Chan et al., Prog. Theor. Chem. and Phys., 18, 49 (2008)
- D. Zgid and G. K.-L. Chan, Ann. Rep. Comp. Chem., 5, 149, (2009)
- G. K.-L. Chan and S. Sharma, Ann. Rev. Phys. Chem., 62, 465 (2011)
- K. Marti and M. Reiher, Phys. Chem. Chem. Phys., 13, 6750 (2011)
- U. Schollwöck, Ann. Phys., 326, 96 (2011)
- G. K.-L. Chan, WIREs, 2, 907 (2012)
- Y. Kurashige, Mol. Phys., 112, 1485 (2013)
- S. Wouters and D. van Neck, Eur. Phys. J. D, 68, 272 (2014)
- S. Szalay et al., Int. J. Quantum Chem. 115, 1342 (2015)
- T. Yanai et al., Int. J. Quantum Chem., 115, 283 (2015)
- G. K.-L. Chan et al., J. Chem. Phys., 145, 014102 (2016)
- A. Baiardi and M. Reiher, J. Chem. Phys. 152, 040903 (2020)

Intermission: singular value decomposition

• Singular value decomposition (SVD) of a matrix **M** $(n_a \times n_b)$ **M** = **U S V**[†]

yields:

- Left-singular matrix **U** $(n_a \times \min(n_a, n_b))$ with $\mathbf{U}^{\dagger}\mathbf{U} = 1$
- Right-singular matrix V (min $(n_a, n_b) \times n_b$) with V[†]V = 1
- Diagonal singular value matrix **S** $(\min(n_a, n_b) \times \min(n_a, n_b))$ with r nonzero singular values $\rightarrow r$ is the (Schmidt) rank of **M**

(4)

From a CI to an MPS parametrization I

 $\bullet\,$ Successive application of SVD to CI tensor $\rightarrow\,$ MPS wave function

From a CI to an MPS parametrization II

- Reshape coefficient tensor $c_{k_1,k_2,...,k_L}$ into a $d \times d^{L-1}$ matrix Γ $\Gamma_{k_1,(k_2,...,k_L)} = c_{k_1,k_2,...,k_L}$ (5)
- SVD of $\Gamma_{k_1,(k_2,\ldots,k_L)}$ yields

$$\Gamma_{k_1,(k_2,\dots,k_L)} = \sum_{a_1}^{r_1} U_{k_1,a_1} S_{a_1,a_1} (V^{\dagger})_{a_1,(k_2,\dots,k_L)}$$

$$\equiv \sum_{a_1}^{r_1} A_{a_1}^{k_1} c_{a_1,(k_2,\dots,k_L)}$$
(6)
with
(7)

- **S** and **V**[†] multiplied and reshaped into coefficient tensor $c_{a_1,(k_2,...,k_L)}$
- $r_1 < d$
- collection of d row vectors A^{k_1} with entries $A^{k_1}_{a_1} = U_{k_1,a_1}$

Stefan Knecht

From a CI to an MPS parametrization III

• Reshape coefficient tensor $c_{a_1,(k_2,...,k_L)}$ into a $r_1d imes d^{L-2}$ matrix Γ

$$c_{k_{1},k_{2},...,k_{L}} = \sum_{a_{1}}^{r_{1}} A_{a_{1}}^{k_{1}} \Gamma_{(a_{1}k_{2}),(k_{3},...,k_{L})}$$
(8)

$$\stackrel{\text{SVD}}{=} \sum_{a_{1}}^{r_{1}} \sum_{a_{2}}^{r_{2}} A_{a_{1}}^{k_{1}} U_{(a_{1}k_{2}),a_{2}} S_{a_{2},a_{2}} (V^{\dagger})_{a_{2},(k_{3},...,k_{L})}$$
(9)

$$\stackrel{\text{reshape}}{=} \sum_{a_{1}}^{r_{1}} \sum_{a_{2}}^{r_{2}} A_{a_{1}}^{k_{1}} A_{a_{1},a_{2}}^{k_{2}} \Gamma_{(a_{2}k_{3}),(k_{4},...,k_{L})}$$
(10)
with

•
$$r_2 < r_1 d < d^2$$

• collection of d matrices A^{k_2} with entries $A^{k_2}_{a_1,a_2} = U_{(a_1k_2),a_2}$

From a CI to an MPS parametrization IV

Continue with SVDs until last site which then gives

$$c_{k_{1},k_{2},\dots,k_{L}} = \sum_{a_{1},a_{2},\dots,a_{L}-1} A_{1,a_{1}}^{k_{1}} A_{a_{1},a_{2}}^{k_{2}} \cdots A_{a_{L-2,L-1}}^{k_{L-1}} A_{a_{L-1},1}^{k_{L}}$$
(11)
$$\equiv A^{k_{1}} A^{k_{2}} \cdots A^{k_{L-1}} A^{k_{L}}$$
(12)

with

- interpretation of sums as matrix-matrix multiplications
- first and last "matrices" are row- and column vectors!
- CI wave function rewritten as MPS wave function:

$$|\Psi\rangle = \sum_{\boldsymbol{k}} c_{\boldsymbol{k}} |\boldsymbol{k}\rangle = \sum_{k_1, k_2, \dots, k_L} A^{k_1} A^{k_2} \cdots A^{k_{L-1}} A^{k_L} |\boldsymbol{k}\rangle$$
(13)

From a CI to an MPS parametrization V

... schematically

Stefan Knecht

Matrix Product States

Properties of the MPS I

- Matrix dimensions grow exponentially up to dim(d^{L/2−1} × d^{L/2})
 <u>if no truncation</u> occurs, i.e., all singular values are kept
 → Optimal truncation scheme (in a least-square sense) required!
- From $U^{\dagger}U = I$ follows that all matrices $\{A^{k_l}\}$ are left-normalized

- MPS built from left-normalized matrices is called left-canonical
- For any lattice bipartition at site *l*, the states on sites 1,...,*l*

$$|a_l\rangle_{\mathcal{L}} = \sum_{k_1, k_2, \dots, k_l} \left(A^{k_1} \cdots A^{k_l} \right)_{1, a_l} |k_1, \dots, k_l\rangle$$
(15)

spanning a left subsystem $\ensuremath{\mathcal{L}}$ form an orthonormal basis

Stefan Knecht

Matrix Product States

Properties of the MPS II

• Starting SVD on coefficient tensor in Eq. (5) from right-hand side $\Gamma_{(k_1,k_2,...,k_{L-1}),k_L} = c_{k_1,k_2,...,k_L}$ (16)

yields right-normalized matrices $\{B^{k_l}\}$ (as $V^{\dagger}V = I$), e.g.,

- MPS built from right-normalized matrices is called right-canonical
- For any lattice bipartition at site l + 1, the states on sites $l + 1, \ldots, L$ $|a_l\rangle_{\mathcal{R}} = \sum_{k_{l+1}, k_{l+2}, \ldots, k_L} \left(B^{k_{l+1}} \cdots B^{k_L} \right)_{a_l, 1} |k_{l+1}, \ldots, k_L\rangle$ (18)

spanning a right subsystem $\ensuremath{\mathcal{R}}$ form an orthonormal basis

Gauge freedom and mixed-canonical form

- MPS representations are not unique ↔ existence of a gauge degree of freedom
- Consider two adjacent matrices M^{k_l} and $M^{k_{l+1}}$ of shared column/row dimension D and a square invertible matrix X ($D \times D$)
- Invariance of MPS immediately follows from

$$M^{k_l} \to M^{k_l} X; \quad M^{k_{l+1}} \to X^{-1} M^{k_{l+1}}$$
 (19)

since

$$M^{k_l} \underbrace{XX^{-1}}_{=I} M^{k_{l+1}} = M^{k_l} \cdot M^{k_{l+1}}$$
(20)

Mixed-canonical MPS representation

• Gauge freedom allows to write an MPS in **mixed canonical** form at sites {*l*, *l* + 1}

$$|\Psi\rangle = \sum_{\boldsymbol{k}} A^{k_1} \cdots A^{k_{l-1}} M^{k_l k_{l+1}} B^{k_{l+2}} \cdots B^{k_L} |\boldsymbol{k}\rangle$$
(21)

by starting from a general MPS wave function

$$|\Psi\rangle = \sum_{\boldsymbol{k}} M^{k_1} M^{k_2} \cdots M^{k_L} |\boldsymbol{k}\rangle$$
(22)

and the two-site MPS tensor in Eq. (21) reading as

$$M^{k_l k_{l+1}} \equiv M^{k_l k_{l+1}}_{a_{l-1}, a_{l+1}} = \sum_{a_l} M^{k_l}_{a_{l-1}, a_l} M^{k_{l+1}}_{a_l, a_{l+1}}$$
(23)

Matrix product operators I

• MPS concept applied to operators \rightarrow matrix product operators (MPOs)

• N-electron operator \widehat{W} in MPO form

$$\widehat{\mathcal{W}} = \sum_{\boldsymbol{k}\boldsymbol{k'}} \sum_{b_1,\dots,b_{L-1}} W_{1,b_1}^{k_1k'_1} W_{b_1,b_2}^{k_2k'_2} \cdots W_{b_{L-1},1}^{k_Lk'_L} |\boldsymbol{k}\rangle \langle \boldsymbol{k'}| \qquad (24)$$

$$= \sum_{\boldsymbol{k}\boldsymbol{k'}} W^{k_1k'_1} W^{k_2k'_2} \cdots W^{k_Lk'_L} |\boldsymbol{k}\rangle \langle \boldsymbol{k'}| \qquad (25)$$

$$\equiv \sum_{\boldsymbol{k}\boldsymbol{k'}} w_{\boldsymbol{k}\boldsymbol{k'}} |\boldsymbol{k}\rangle \langle \boldsymbol{k'}| \qquad (26)$$

Matrix product operators II

 For efficiency, rearrange summations in Eq. (24) such that the contraction proceeds first over the local site indices k_lk'_l

$$W_{b_{l-1},b_{l}}^{l} = \sum_{k_{l}k_{l}'} W_{b_{l-1},b_{l}}^{k_{l}k_{l}'} \left| k_{l} \right\rangle \left\langle k_{l}' \right| .$$
⁽²⁷⁾

- By means of Eq. (27) we can write Eq. (24) as $\widehat{W} = \sum_{b_1, \dots, b_{L-1}} W_{1, b_1}^1 \cdots W_{b_{l-1}, b_l}^l \cdots W_{b_{L-1}, 1}^L .$ (28)
- Note: the entries of $\{W_{b_{l-1},b_l}^l\}$ matrices comprise the elementary, *local* operators acting on the *l*-th orbital, e.g.,

$$\tilde{a}_{\uparrow l}^{\dagger} = \left|\uparrow\downarrow\right\rangle\left\langle\downarrow\right| + \left|\uparrow\right\rangle\left\langle0\right| \tag{29}$$

Variational MPS optimization I

- Goal: find optimal approximation $|\tilde{\Psi}\>\rangle$ to $|\Psi\>\rangle$ (in a least-square sense)
- Prerequisite: initialize suitable (valid) trial MPS wave function $| ilde{\Psi}\,
 angle$
 - choices for warm-up guess: random guess, encode HF determinant, CI-DEAS by Ö. Legeza, ...
 - assume normalization, i.e., $\langle \Psi | \Psi \rangle = 1$

Variational MPS optimization II

• Ansatz for variational MPS optimization: extremize the Lagrangian $\mathcal{L} = \langle \Psi | \hat{H} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle$ (30)

with the two-site $\{M^{k_l k_{l+1}}\}$ matrices as optimization parameters

- Optimize at each step of a "sweep" entries of site matrices of two orbitals ("two-site DMRG") while keeping all the others fixed
- Sweep through all sites multiple times until energy converges

Variational MPS optimization III

- At sites $\{l, l+1\}$, take derivative in Eq. (30) with respect to complex conjugate of $M^{k_l,k_{l+1}}$ $\frac{\partial}{\partial M^{k_{l},k_{l+1}*}} (\langle \Psi | \hat{H} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle) = 0$ (31)which then yields $\sum_{a_{l-1}'a_{l}'} \sum_{k_{l}'k_{l+1}'} L_{a_{l-1},a_{l-1}'}^{b_{l-1}} W_{b_{l-1},b_{l+1}}^{k_{l}k_{l+1},k_{l}'k_{l+1}'} R_{a_{l+1}',a_{l+1}}^{b_{l+1}} M_{a_{l-1}',a_{l+1}'}^{k_{l}'k_{l+1}'} = \lambda \sum_{a_{l-1}',a_{l-1}'} \Psi_{a_{l-1}',a_{l-1}}^{A} \times (1 - 1)^{a_{l-1}'} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}'} = \lambda \sum_{a_{l-1}',a_{l-1}'} \Psi_{a_{l-1}',a_{l-1}'}^{A} \times (1 - 1)^{a_{l-1}'} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}'} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}'} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l-1}',a_{l-1}'}^{A} \times (1 - 1)^{a_{l-1}'} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}'} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l-1}',a_{l+1}'}^{A} \times (1 - 1)^{a_{l-1}'} M_{a_{l-1}',a_{l+1}'}^{b_{l-1}'} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l-1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l-1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1}',a_{l+1}'} \Psi_{a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1}',a_{l+1}',a_{l+1}'}^{A} = \lambda \sum_{a_{l+1}',a_{l+1$ $\times M^{k'_lk'_{l+1}}_{a'_{l-1},a'_{l+1}}\times$ $\times \Psi^B_{a'_{l+1},a_{l+1}}$ (32)
 - L and R are the so-called *left* and *right boundaries* obtained by contracting the MPO with the bra and ket MPS starting from left (right) up to sites l 1 (l + 1)

Variational MPS optimization IV

Schematically

Variational MPS optimization V

- NB: Eq. (32) defines a generalized eigenvalue problem which can be simplified to a standard eigenvalue problem (Eq. (33)) if the MPS is a canonical MPS!
- The latter requires the initial MPS to be right-normalized!
- Hence, assuming correct normalization Eq. (32) simplifies to

R

Variational MPS optimization VI

- Recast Eq. (33) into a matrix eigenvalue equation $\mathcal{H}v - \lambda v = 0$,
 - by defining a local Hamiltonian matrix \mathcal{H} at sites $\{l, l+1\}$

$$H_{(k_{l}k_{l+1}a_{l-1}a_{l+1}),(k_{l}'k_{l+1}'a_{l-1}'a_{l+1}')} = \sum_{b_{l-1},b_{l+1}} L_{a_{l-1},a_{l-1}'}^{b_{l-1}} W_{b_{l-1},b_{l+1}}^{k_{l}k_{l+1}'} R_{a_{l+1}',a_{l+1}}^{b_{l+1}}$$
(35)
• and a vector v
 $v_{k_{l}'k_{l+1}'a_{l-1}'a_{l+1}'} = M_{a_{l-1}',a_{l+1}'}^{k_{l}'k_{l+1}'}.$ (36)

• Solve Eq. (34) by an iterative eigensolver

 \rightarrow eigenvalue λ^0 and corresponding eigenvector $v^0_{k'_l k'_{l+1} a'_{l-1} a'_{l+1}}$

(34)

Variational MPS optimization VII

- Reshape $v_{k'_lk'_{l+1}a'_{l-1}a'_{l+1}}^0$ back to $M_{a'_{l-1},a'_{l+1}}^{k'_lk'_{l+1}}$ • $M_{a'_{l-1},a'_{l+1}}^{k'_lk'_{l+1}}$ is subsequently subject to a left- or right-normalization $M_{a'_{l-1},a'_{l+1}}^{k'_lk'_{l+1}} = M_{(k'_l,a'_{l-1})(k'_{l+1},a'_{l+1})} = U_{(k'_l,a'_{l-1})s_l}S_{s_ls_l}V_{s_l(a'_{l+1},k'_{l+1})}$ (37)
- By discarding the 3m smallest singular values in $S_{s_l s_l}$ to obtain $S_{a'_l a'_l}$ we achieve the desired reduction in bond dimensionality!
- The maximum (fixed) number *m* of retained singular values is usually called **number of renormalized block states**

Variational MPS optimization VIII

• Discarding the 3m smallest singular values corresponds to discarding the last 3m columns (rows) of U(V) such that for the two site matrices $M_{a'_{l-1},a'_{l}}^{k'_{l}}$ and $M_{a'_{l},a'_{l+1}}^{k'_{l+1}}$ we obtain

$$M_{a'_{l-1},a'_{l}}^{k'_{l}} = U_{(k'_{l},a'_{l-1})a'_{l}}$$
(38)

$$M_{a'_{l},a'_{l+1}}^{k'_{l+1}} = \frac{1}{1 - \sum_{s_{l}=m+1}^{4m} S_{s_{l}s_{l}}} S_{a'_{l}a'_{l}} V_{a'_{l}(a'_{l+1},k'_{l+1})}$$
(39)

• Energy calculated as a function of the truncation error ϵ

$$\epsilon = \sum_{s_l=m+1}^{4m} S_{s_l s_l} = ||\Psi_{16m^2} - \Psi_{4m^2}||$$
(40)

can be employed to obtain an error estimate through extrapolation

Stefan Knecht

Matrix Product States

Variational MPS optimization IX

- Moving from sites {l, l + 1} to sites {l + 1, l + 2} completes the local optimization step
- **BUT**: Is the chosen approximation optimal in a least-square sense as we set out to do so?

Optimal bipartition in a least square sense I

• Given: many-body state $|\Psi
angle$ of composite system AB

$$|\Psi\rangle = \sum_{ij} C_{ij} |i\rangle_A \otimes |j\rangle_B \tag{41}$$

• { $|i\rangle_A$ } ({ $|j\rangle_B$ }) are orthonormal bases of **A** (**B**) with dimension N_A (N_B)

Optimal bipartition in a least square sense II

• SVD of
$$|\Psi\rangle$$
 yields

$$|\Psi\rangle = \sum_{ij} \sum_{a=1}^{\min(N_A, N_B)} U_{ia} S_{aa} V_{ja}^* |i\rangle_A |j\rangle_B \qquad (42)$$

$$= \sum_{a=1}^{\min(N_A, N_B)} \left(\sum_i U_{ia} |i\rangle_A\right) s_a \left(\sum_j V_{ja}^* |j\rangle_B\right) \qquad (43)$$

$$= \sum_{a=1}^{\min(N_A, N_B)} s_a |a\rangle_A |a\rangle_B \qquad (44)$$

Optimal bipartition in a least square sense III

Restricting the sum in Eq.(44) to some value *r* ≤ min(*N_A*, *N_B*) yields the *Schmidt decomposition*

$$|\Psi\rangle = \sum_{a=1}^{\prime} s_a |a\rangle_A |a\rangle_B \tag{45}$$

where r = 1 corresponds to (classical) product states and r > 1 to entangled (quantum) states

• For orthonormal states in **A** and **B**, the two-norm $||\Psi||_2^2$ is identical to the Frobenius norm of the matrix $\{C_{ij}\}, ||\mathbf{C}||_F^2$

$$||\Psi||_2^2 = ||\mathbf{C}||_F^2 = \sum_{a=1}^{\min(N_A, N_B)} s_a^2$$
(46)

Optimal bipartition in a least square sense IV

Hence, an optimal approximation |Ψ ⟩ to |Ψ ⟩ with respect to the 2-norm immediately follows from optimal approximation of C by C in the Frobenius norm, with C being a matrix of rank r' ≤ r

$$\left|\tilde{\Psi}\right\rangle = \sum_{a=1}^{r'} s_a |a\rangle_A |a\rangle_B \tag{47}$$

• **BUT** how does this relate to the truncation (dimensionality reduction) in the variational MPS optimization?

Optimal bipartition in a least square sense V

 Last line in Eq. (44) can be realized for site *l* by an MPS in mixed-canonical form (cf. Eq. (21))

$$\Psi \rangle = \sum_{\substack{a_{1},...,a_{L-1} \\ a_{1,...,a_{L-1}} \\ = \sum_{\substack{a_{l} \\ a_{1},...,a_{L-1} \\ a_{l},...,a_{L-1} \\ \\ \left(\sum_{\substack{k_{1},...,k_{l} \\ a_{1},...,a_{l-1} \\ a_{l},...,a_{l-1} \\ A_{1,a_{1}}^{k_{1}} \cdots A_{a_{l-1},a_{l}}^{k_{l}} |k_{1},...,k_{l}\rangle \right) \cdot S_{a_{l},a_{l}} \cdot \left(48 \right)$$

$$= \sum_{\substack{a_{l} \\ a_{l+1},...,k_{L} \\ a_{l+1},...,a_{L-1} \\ B_{a_{l},a_{l+1}}^{k_{l+1}} \cdots B_{a_{L-1},1}^{k_{L}} |k_{l+1},...,k_{L}\rangle \right)$$

$$= \sum_{a_{l}} S_{a_{l},a_{l}} |a_{l}\rangle_{\mathcal{L}} |a_{l}\rangle_{\mathcal{R}}$$
(49)

Optimal bipartition in a least square sense VI

Comparison of Eqs. (50) and (45) immediately reveals that an optimal bipartition in a least square sense can be obtained for |Ψ̃ > from an SVD retaining the lowest r (≡ m as usually referred to in DMRG terminology) values with r < dim(|Ψ >)

$$|\tilde{\Psi}\rangle = \sum_{a_l=1}^r S_{a_l a_l} |a_l\rangle_{\mathcal{L}} |a_l\rangle_{\mathcal{R}}$$
(51)

Scaling of variational MPS optimization

- Scaling is dominated by the cost of contracting the operator with the MPS on one site and is proportional to the number of non-zero elements in the MPO matrices $\{\widehat{W}\}$
 - in a naïve MPO ansatz this step scales as $\mathcal{O}(L^5)$
 - in an optimized code scaling reduces to $\mathcal{O}(L^4)$

Keller, Dolfi, Troyer, Reiher, J. Chem. Phys., 143, 244118 (2015)

• Further reduction through symmetry: U(1) and SU(2)

Keller and Reiher, J. Chem. Phys., 144, 134101 (2016)

- SVD scales as $\mathcal{O}(m^3)$ (but there are *L* of them in a sweep)
- Taking into account all operations a sweep scales $\approx \mathcal{O}(L^4 m^3)$

Wouters and van Neck, Eur. Phys. J. D, 68, 272 (2014)

Extrapolation

• Extrapolate E based on truncation error ϵ for different values of m

$$\ln\left(\frac{E_{\mathsf{DMRG}} - E_{\mathsf{FCI}}}{E_{\mathsf{FCI}}}\right) = a\ln\epsilon + b \tag{52}$$

Ö. Legeza, et al., Phys. Rev. B, 67, 124114 (2003)

• Example: ground-state calculation for F₂ molecule

S. Keller, M. Reiher, Chimia, 68, 200 (2014)

Stefan Knecht

Properties of DMRG

DMRG

- Variational
- Size consistent
- (approximate) FCI for a CAS
- Polynomial scaling ($\approx L^4 m^3$)
- MPS wave function
- For large *m* invariant wrt orbital rotations

CASCI

- Variational
- Size consistent
- FCI for a CAS
- Factorial scaling
- Linearly parametrized wave function
- Invariant wrt orbital rotations

MPS/MPO code: https://github.com/qcscine/qcmaquis

Keller, Dolfi, Troyer, Reiher, J. Chem. Phys., 143, 244118 (2015)

Keller, Reiher, J. Chem. Phys., 144, 134101 (2016)

Matrix Product States

Determining factors of DMRG convergence

- Size *L* of the CAS
- Type of molecular orbitals (HF, NO's, localized orbitals, ...)
- Guess of states in the right subsystem in the first sweep (for example CI-DEAS by Ö. Legeza or random guess)
- Ordering of orbitals (exploit entanglement measures)

Stein, Reiher, J. Chem. Theory Comput., 12, 1760 (2016)

- Number of renormalized block states *m*
- NB: One should never calculate results for just a single m, but increase it in various runs until results converge!

Recent developments based on an MPS ansatz

Many beautiful and original works of DMRG in QC by pioneers in the field

- Ö. Legeza
- Garnet Chan
- Takeshi Yanai
- Marcel Nooijen
- Yuki Kurashige
- Dominika Szgid
- Sandeep Sharma
- Dimitry van Neck
- Sebastian Wouters
- ... many other whom I might have forgotten to mention here

A biased view on our work...

Stefan Knecht

Matrix Product States

Assessing electron correlation effects

- Exploit the "regularization" effect in a hybrid range-separated short-range DFT ansatz to distinguish strong from dynamical electron correlation effects
- Based on the decomposition of two-electron repulsion into longand short-range contributions,

$$1/r_{12} = w_{ee}^{lr,\mu}(r_{12}) + w_{ee}^{sr,\mu}(r_{12}) ,$$
 (53)

$$w_{\rm ee}^{\rm lr,\mu}(r_{12}) = {\rm erf}(\mu r_{12})/r_{12},$$
 (54)

where erf is the error function and μ is a parameter in $[0, +\infty[$ that controls the range separation

• CAS-CI-like energy expression becomes

$$E_{\mathsf{CAS-CI}}^{\mathsf{srDFT}} = E_{\mathsf{I}}^{\mathsf{lr}} + E_{\mathsf{A}}^{\mathsf{lr}} + E_{\mathsf{H}}^{\mathsf{sr}}[n] + E_{\mathsf{xc}}^{\mathsf{sr}}[n]$$
(55)

Assessing electron correlation effects II

- Use measures obtained from quantum information theory to quantify orbital correlations
- Single-orbital von Neumann entropy $s_i(1)$

$$s_i(1) = -\sum_{\alpha=1}^4 n_{\alpha,i} \ln(n_{\alpha,i}),$$
 (56)

where $n_{\alpha,i}$ are the eigenvalues of the **one-orbital** RDM

• Mutual information I_{ij} between orbitals i and j is defined in terms of $s_i(1)$ and $s_{ij}(2)$

$$I_{ij} = \frac{1}{2} \left(s_i(1) + s_j(1) - s_{ij}(2) \right) \left(1 - \delta_{ij} \right)$$
(57)

Ö. Legeza and J. Solyom, Phys. Rev. B 68, 195116 (2003)

Ö. Legeza and J. Solyom, Phys. Rev. B 70, 205118 (2004)

Stefan Knecht

н

Matrix Product States

Assessing electron correlation effects III

One-orbital RDM contains elements of the 1- and 2-RDM!

$$\rho_i(1) = \begin{pmatrix} 1 - \gamma_i^i - \gamma_{\overline{i}}^{\overline{i}} + \Gamma_{i\overline{i}}^{i\overline{i}} & 0 & 0 & 0\\ 0 & \gamma_i^i - \Gamma_{i\overline{i}}^{i\overline{i}} & 0 & 0\\ 0 & 0 & \gamma_{\overline{i}}^{\overline{i}} - \Gamma_{i\overline{i}}^{i\overline{i}} & 0\\ 0 & 0 & 0 & \Gamma_{i\overline{i}}^{i\overline{i}} \end{pmatrix}$$

Two-orbital RDM contains elements of the 1-, 2-, 3- and 4-RDM!

Boguslawski and Tecmer, I. J. Quant. Chem., 115, 1289 (2015)

(58)

Assessing electron correlation effects IV

Stretching N2...

Hedegaard, Knecht, Kielberg, Jensen, Reiher, J. Chem. Phys., 142, 224108 (2015)

Stef	an	Kn	ec	ht

Assessing electron correlation effects V

Stretching N2...

Hedegaard, Knecht, Kielberg, Jensen, Reiher, J. Chem. Phys., 142, 224108 (2015)

Stof	an	Knor	aht
olei	anı	RHEU	JIII

Intermission: Relativistic quantum chemistry

One-step approaches

"j-j coupling"

- Include scalar-relativistic effects and SO coupling variationally *ab initio*
- Use Dirac Hamiltonian ("four-component")

or

block-diagonalization /

elimination techniques for

"two-component" form

Two-step approaches

"L-S coupling"

• "State-interaction" for *a posteriori* inclusion of SO coupling:

 $\mathbf{Hc} = E\mathbf{Sc}$

- Express **H** in basis of scalar-relativistic wave functions
- Use Hamiltonian of form

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}^{\mathsf{e}l,sf} + \hat{\mathcal{H}}^{\mathsf{S}O}$$

The state-interaction (SI) approach

- Property calculations for CAS-type wave functions often require an evaluation of matrix elements between individually optimized (nonorthogonal) electronic states calculated
 - in a state-specific approach and/or
 - which differ in their total spin: singlet, triplet, quintet, ...
- **Key**: transformation of MOs/wave functions to biorthonormal orbital basis (representation)

P. A. Malmqvist, Int. J. Quant. Chem. 30, 479 (1986)

S. Knecht, S. Keller, J. Autschbach, M. Reiher, JCTC, 12, 5881 (2016)

0.0.0.0.000000	Stet	fan I	Knec	ht
----------------	------	-------	------	----

Matrix Product States

MPS-SI: property calculations for NpO $_2^{2+}$

S. Knecht, S. Keller, J. Autschbach, M. Reiher, JCTC, 12, 5881 (2016)

- Magnetic properties of a prototypical 5f¹ molecule
- Relative energies of spin-orbit coupled electronic states arising from the spinfree ${}^{2}\Phi_{u}$ and ${}^{2}\Delta_{u}$ manifold

Qualitative molecular orbital diagram

^a F. Gendron et al., IC, 53, 8577 (2014)

MPS-SI: low-lying excited state spectrum of NpO $_2^{2+}$

S. Knecht, S. Keller, J. Autschbach, M. Reiher, JCTC, 12, 5881 (2016)

Computational details: ANO-RCC-VTZ, no symmetry, Cholesky decomposition, m = 256 for all DMRG-SCF calculations, pc-NEVPT2 with CAS(7,10) reference

state	DMRG-SCF			NEVPT2	CASPT2 ^a	
	ΔE	composition	ΔE	composition	ΔE	composition
	$[cm^{-1}]$	%	$[cm^{-1}]$	%	$[cm^{-1}]$	%
${}^{2}\Phi_{5/2u}$	0	89 ϕ , 11 δ	0	88 ϕ , 12 δ	0	88 ϕ , 12 δ
$^{2}\Delta_{3/2u}$	3294	99 δ , 1 π	3086	98 δ , 2 π	3107	98 δ , 2 π
$^{2}\Phi_{7/2u}$	8067	100 ϕ	8086	100 ϕ	8080	100 ϕ
$^{2}\Delta_{5/2u}$	9402	89 δ , 11 ϕ	9280	88 δ , 12 ϕ	9313	88 δ , 12 ϕ

^a F. Gendron, B. Pritchard, H. Bolvin, J. Autschbach, Inorg. Chem., 53, 8577 (2014)

MPS-SI: electronic g-factors of NpO $_2^{2+}$

S. Knecht, S. Keller, J. Autschbach, M. Reiher, JCTC, 12, 5881 (2016)

- Computational details: ANO-RCC-VTZ, no symmetry, Cholesky decomposition, m = 256 for all DMRG-SCF calculations
- All data for the ${}^2\Phi_{5/2u}$ state
- Reference value for g_∥ from a four-component SD(9)MRCI(1,4)SDT calculation: 4.283

active space	DMRG-SCF		NEVPT2		CASPT2 ^a		
	g∥	g⊥	g∥	g⊥	g∥	g⊥	
NpO_2^{2+}							
CAS(1,4)	4.211	0.001	4.214	0.002	4.225	0.001	
CAS(7,10)	4.228	0.002	4.235	0.002	4.233	0.002	
CAS(13,16)	4.223	0.002					

^a F. Gendron, B. Pritchard, H. Bolvin, J. Autschbach, Inorg. Chem., 53, 8577 (2014)

Relativistic DMRG with QCMaquis

Battaglia, Keller, Knecht, J. Chem. Theory Comput., 14, 2353 (2018)

• General formulation that works with 4- and 2-component Hamiltonian, e.g.

$$\begin{split} \hat{H}_{\mathsf{Dirac}} &= \sum_{i} \left[c^{2} (\beta - I_{4}) + c (\boldsymbol{\alpha} \cdot \hat{\boldsymbol{p}}_{i}) + \hat{V}_{i} \right] + \sum_{i < j} \hat{V}_{ij} \\ \hat{V}_{ij} &= \frac{1}{r_{ij}} - \frac{\boldsymbol{\alpha}_{i} \cdot \boldsymbol{\alpha}_{j}}{r_{ij}} - \frac{\left[(\boldsymbol{\alpha}_{i} \cdot \boldsymbol{\nabla}_{i}) (\boldsymbol{\alpha}_{j} \cdot \boldsymbol{\nabla}_{j}) r_{ij} \right]}{2} \end{split}$$

- Exploits time-reversal symmetry for one- and two-electron integrals
- Based on a Kramers-unrestricted spinor model with k_l = { ||⟩, |0⟩ }
 → spinor lattice (!)

Relativistic DMRG with QCMaquis

Battaglia, Keller, Knecht, J. Chem. Theory Comput., 14, 2353 (2018)

Block-matrix structure of (fermionic) operators in second quantization defines the Hamiltonian model in QCMaquis

non-relativistic Hamiltonian

op_t create_up_op, create_down_op, destroy_up_op, destroy_down_op, count_up_op, count_down_op, count_up_down_op, docc_op, e2d_op, d2e_op, d2u_op,u2d_op, ident_op, fill_op;

typename SymmGroup::charge A(0), B(0), C(0), D(1); B[0]=1; C[1]=1;

ident_op.insert_block(Matrix(1, 1, 1), A, A); ident_op.insert_block(Matrix(1, 1, 1), B, B); ident_op.insert_block(Matrix(1, 1, 1), C, C); ident_op.insert_block(Matrix(1, 1, 1), D, D);

create_up_op.insert_block(Matrix(1, 1, 1), A, B); create_up_op.insert_block(Matrix(1, 1, 1), C, D); create_down_op.insert_block(Matrix(1, 1, 1), A, C); create_down_op.insert_block(Matrix(1, 1, 1), B, D);

destroy_up_op.insert_block(Matrix(1, 1, 1), B, A); destroy_up_op.insert_block(Matrix(1, 1, 1), D, C); destroy_down_op.insert_block(Matrix(1, 1, 1), C, A); destroy_down_op.insert_block(Matrix(1, 1, 1), D, B);

relativistic Hamiltonian

op_t create_op, destroy_op, count_op, ident_op, fill_op; typename SymmGroup::charge A(0), B(0); B[0]=1; ident_op.insert_block(Matrix(1, 1, 1), A, A); ident_op.insert_block(Matrix(1, 1, 1), B, B); create_op.insert_block(Matrix(1, 1, 1), A, B); destroy_op.insert_block(Matrix(1, 1, 1), B, A); count_op.insert_block(Matrix(1, 1, 1), B, B); fill op.insert_block(Matrix(1, 1, 1), A, A);

fill_op.insert_block(Matrix(1, 1, 1), A, A);
fill_op.insert_block(Matrix(1, 1, -1), B, B);

Knecht, in preparation (2021)

- Relativistic DMRG-SCF calculations (*m* = 1024)
- State-averaged optimization
 - (UCl₆)¹⁻: 14 roots
 - (UCl₆)²⁻: 17 roots
- Basis sets
 - U: uncontracted ANO-RCC
 - CI: ANO-RCC-TZVP
- Customized fitting basis sets
- Excitation energies in eV

• octahedral f^1 and f^2 complexes

Knecht, in preparation (2021)

• Ground- and excited-state properties of (UCI₆)¹⁻

state	$aU_{3/2u}$	$aE_{5/2u}$	$\mathrm{bU}_{3/2\mathrm{u}}$	$aE_{1/2u}$	g-factor
CAS(7,20)	0.41	0.91	1.31	1.48	-1.15
CAS(19,32) [†]	0.46	0.85	1.32	1.48	-
CAS(19,32) [‡]	0.46	0.82	1.30	1.46	-
experiment ^a	0.47	0.84	1.26	1.43	-1.1
CAS-SOC ^b	-	0.89	1.34	1.53	-1.05
SO-CASPT2°	0.47	0.91	1.39	1.54	-1.06
CAS/CCSD(T)/SO ^d	0.39	0.73	1.13	1.30	-

[†] Dirac-Coulomb; [‡] Dirac-Coulomb-Breit

^a Selb *et al.*, Inorg. Chem., 7, 976 (1968); ^b Ganyushin and Neese, J. Chem. Phys., 138, 104113 (2013)

^c Notter and Bolvin, J. Chem. Phys., 130, 184310 (2009); ^d Su et al., J. Chem. Phys., 142, 134308 (2015)

Stefan Knecht

Knecht, in preparation (2021)

• Ground- and excited-state properties of (UCI₆)²⁻

state	${\sf aT}_{1{\sf g}}$	aEg	aT_{2g}	bEg	bT_{2g}	bT_{1g}
CAS(2,14) [†]	0.10	0.15	0.27	0.77	0.77	0.78
CAS(2,14) [‡]	0.10	0.15	0.27	0.76	0.76	0.76
CAS(20,32)	0.10	0.15	0.26	0.68	0.72	0.80
experiment ^a	0.11	0.16	0.28	0.63	0.61	0.79
SO-CASPT2 ^b	0.09	0.14	0.24	0.66	0.67	0.66

[†] Dirac-Coulomb; [‡] Dirac-Coulomb-Breit

^a Flint et al., Mol. Phys., 61, 389 (1987); ^b Su et al., J. Chem. Phys., 142, 134308 (2015)

• g-factor in the A_{1g} ground state: g_{\parallel} =0.57 (0.58), g_{\perp} =1.92 (1.91)

Knecht, in preparation (2021)

• Valence spinors (only one Kramers-partner shown) of (UCl₆)²⁻

Matrix Product States

Electron localization function (ELF)

ELF from non-relativistic and relativistic HF calculations

Jerabek et al., Phys. Rev. Lett., 120, 053001 (2018)

• $\Delta_{\mathsf{ELF}}^{\mathsf{relativistic}}(\mathsf{HF}\text{-}\mathsf{DMRG}(40,130))$

Knecht, Nachr. Chem., 67, 57 (2019)

ELF as a function of the distance from the nucleus

Jerabek et al., Phys. Rev. Lett., 120, 053001 (2018)

Knecht, Nachr. Chem., 67, 57 (2019)

Copernicium and Flerovium

ELF as a function of the distance from the nucleus

Copernicium

Flerovium

Knecht, unpublished (2020)

Coupling to (strong) external fields

Exploit template-based code structure of QCMAQUIS to implement a coupling to

• (uniform) external magnetic fields

DMRG(3,4)-SCF for N_2^+ with uniform magnetic field of 20,000 T

- quantized photon fields, i.e. optimize an MPS for a mixed fermonic and bosonic Hamiltonian
 - \rightarrow follow work on polaritonic CC by Manby and co-workers

Phys. Rev. Res., 2, 023262 (2020)

Acknowledgment

GSI

C. Düllmann

ETH Zürich

- M. Reiher
- S. Keller (now CSCS Lugano)
- S. Battaglia (now U Uppsala)
- L. Freitag (now U Vienna)
- A. Baiardi

Thank you for your kind attention