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Introduction

These notes constitute a short introduction to the tensor train (TT) decomposition (also
called matrix product state - MPS), with a particular focus on solving the many-body
electronic Schrödinger equation. The beginning of TT can be tied to the density ma-
trix renormalisation group [Whi92] (DMRG), although the connection with the TT/MPS
ansatz has been made a few years later. Originally, DMRG has been applied to one-
dimensional statistical physics systems with tremendous success, becoming the state-of-
the-art numerical method to compute ground-state and low-excited states properties. It
has then been tested for two-dimensional systems, where the question of the geometry
of the tensor train, or the ordering of the sites has been difficult to overcome. It has
also been successfully applied to quantum chemistry systems -with the name QC-DMRG
(quantum chemistry-DMRG)-, where the question of the ordering of the sites is at first
glance unclear.

The first part of the lecture notes is devoted to the electronic Schrödinger equation in
the second quantisation and the introduction of the tensor to approximate.

The tensor train decomposition [OT09] is presented as a generalisation of the singular
value decomposition for matrices, which is central in the characterisation of the low-rank
approximation problem.

As quantum entropy is central in the ordering scheme for QC-DMRG [BLMR11], we
introduce several notions of the quantum entropy as well as the connection with the
TT/MPS approximation.

Finally, we address two points that explain the success of DMRG:

• Hastings area law [Has07] for one-dimensional system which proves that the TT/MPS
approximation of a nearest neighbour Hamiltonian is at most polynomial in the sys-
tem size;

• the DMRG algorithm and its polynomial scaling for electronic structure problems.

The content is inspired by the following texts on TT/MPS [Hac12, Hac14, Sch11,
BSU16, UV20].
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Chapter 1

Tensors in quantum chemistry

1.1 The many-body Schrödinger equation

1.1.1 The equation and its discretisation

Under the Born-Oppenheimer approximation, the ground-state of an electronic system
with N electrons and Nat atoms with charges ZK and located at the positions RK , 1 ≤
K ≤ Nat is given by the lowest eigenvalue

HNΨN
0 = EN

0 ΨN
0 , (1.1.1)

where the operator HN is the many-body electronic Schrödinger operator

HN =
N∑
i=1

(
− 1

2
∆ri −

Nat∑
K=1

ZK

|ri −RK |
)
+

∑
1≤i<j≤N

1

|ri − rj|
, (1.1.2)

and the wave function ΨN
0 belongs to

∧N L2(R3 × Z2).
Using the Rayleigh-Ritz principle, the eigenvalue problem can be rephrased as an

optimisation problem
EN

0 = min
Ψ∈∧N L2(R3×Z2)

∥Ψ∥L2=1

⟨Ψ, HNΨ⟩. (1.1.3)

A standard way to solve the eigenvalue problem (1.1.1) is to use a Galerkin scheme of
the following form. Let (ϕi)1≤i≤L be an L2-orthogonal family of L2(R3 × Z2) and let

VL
N = Span

(
ϕi1 ∧ · · · ∧ ϕiN =

1√
N !

det
(
ϕij(xk)

)
, 1 ≤ i1 ≤ · · · ≤ iN ≤ L

)
, (1.1.4)

then the problem to solve numerically becomes

EN
0,L = min

Ψ∈VL
N

∥Ψ∥L2=1

⟨Ψ, HNΨ⟩ ≥ EN
0 . (1.1.5)
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8 CHAPTER 1. TENSORS IN QUANTUM CHEMISTRY

The approximate ground-state wave function is given by

Ψ0,L =
∑

1≤i1<···<iN≤L

Ci1...iNϕi1 ∧ · · · ∧ ϕiN . (1.1.6)

The number of such coefficients is exponential in the number of electrons, hence a clever
parametrisation of the coefficients as well as an insightful choice of the Galerkin basis is
needed.

Several methods have been tried to sparsely parametrise the coefficients of the ground-
state wave function:

• the configuration interaction (CI) method, which is a hierarchical truncation of the
coefficients in (1.1.6);

• the coupled-cluster (CC) method, which relies on an intricate parametrisation of
the wave function;

• the density matrix renormalisation group (DMRG) which is based on a tensor fac-
torisation of the coefficients in the second quantisation.

1.1.2 Fock space

The discrete Fock space FL is defined as the direct sum of the Galerkin spaces VL
N given

in Eq. (1.1.4)
FL = VL

0 ⊕ VL
1 ⊕ · · · ⊕ VL

L . (1.1.7)

A general state Ψ ∈ FL is the collection (Ψ0,Ψ1, . . . ,ΨL) where each Ψk is a wave function
belonging to VL

k .
To move from VL

k to its neighbour, the creation operator (c†j)1≤j≤L and the annihilation
operator (cj)1≤j≤L are used. The annihilation operator cj is the map such that

cj :


VL
k+1 → VL

k

ϕi1 ∧ · · · ∧ ϕik+1
7→

{
0 if ∀ 1 ≤ ℓ ≤ k + 1, j ̸= iℓ

(−1)ℓ−1ϕi1 ∧ · · · ∧ ϕiℓ−1
∧ ϕiℓ+1

∧ · · · ∧ ϕik+1
, if j = iℓ.

(1.1.8)
The annihilation operator cj destroys a particle in the state ϕj if it exists and returns 0
otherwise. Likewise, the creation operator c†j is given by

c†j :

{
VL
k → VL

k+1

ϕi1 ∧ · · · ∧ ϕik 7→ (−1)ℓϕi1 ∧ · · · ∧ ϕiℓ ∧ ϕj ∧ ϕiℓ+1
∧ · · · ∧ ϕik+1

,
(1.1.9)

with i1 < · · · < iℓ < j < iℓ+1 < · · · < ik. Note that by antisymmetry, if j = iℓ for some ℓ,
then c†j(ϕi1 ∧ · · · ∧ ϕik) = 0. For the creation operator c†j, a particle is created in the state
ϕj.
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The creation and annihilation operators satisfy the following anticommutation rules

{c†i , c†j} = {ci, cj} = 0, and {ci, c†j} = δij. (1.1.10)

The Hamiltonian is written (in the Mulliken convention)

Ĥ =
L∑

i,j=1

hijc
†
icj +

1

2

L∑
i,j,k,ℓ=1

Vijkℓc
†
ic

†
jcℓck, (1.1.11)

where c†i , cj are the creation and annihilation operators, h is a Hermitian matrix and
(Vij,kℓ) ∈ CL2×L2 is also Hermitian.

In quantum chemistry, given an orthonormal basis (ϕi)i∈N of L2(R3 × Z2) the coeffi-
cients hij and Vijkℓ are given by [HJO14, Equation (1.4.40) and (1.4.41)]

hij =
∑

s∈{0,1}

∫
R3

ϕi(r, s)
∗(− 1

2
∆+ vne

)
ϕj(r, s) dr

Vijkℓ =
∑

s,s′∈{0,1}

∫
R3

ϕi(r, s)
∗ϕj(r

′, s′)∗ϕk(r, s)ϕℓ(r
′, s′)

|r − r′| drdr′.

(1.1.12)

The problem to solve is

min
{
⟨Ψ, ĤΨ⟩F ,Ψ ∈ FL, ∥Ψ∥FL

= 1, N̂Ψ = NΨ
}
, (1.1.13)

where N̂ is the particle number operator

N̂ =
L∑
i=1

c†ici. (1.1.14)

Remark 1.1.1. As the constraint on the number of particles can be cumbersome to take
into account, the constraint is changed to a mean-value constraint

min
{
⟨Ψ, ĤΨ⟩F ,Ψ ∈ FL, ∥Ψ∥FL

= 1, ⟨Ψ, N̂Ψ⟩ = N
}
. (1.1.15)

This quadratic constraint can be reformulated as a Lagrange multiplier where we solve

min
{
⟨Ψ, (Ĥ − µN̂)Ψ⟩F ,Ψ ∈ FL, ∥Ψ∥FL

= 1,
}
. (1.1.16)

for a fixed value µ ∈ R. Both minimisation problem are not equivalent in general.
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A minimiser of (1.1.15) or (1.1.16) is of the form

Ψ =
∑

µ1,...,µL

Ψi1...iN c(ϕi1)
† · · · c(ϕiN )

†|Ω⟩. (1.1.17)

Another way to parametrise the wave function Ψ is with respect to the occupation number
representation where instead of only keeping track of the occupied orbitals, we look at
the occupancy of each orbital. More precisely, we define

Φ(µ1,...,µL) = c(ϕi1)
† · · · c(ϕik)

†|Ω⟩, (1.1.18)

if i1 < · · · < ik and (ij)1≤j≤k are precisely the indices such that µij = 1. The wave function
Ψ can then be written

Ψ =
∑

µ1,...,µL

Ψµ1,...,µL
Φ(µ1,...,µL). (1.1.19)

In DMRG, the tensor Ψ ∈ C2L is expressed as a matrix product state, also called a
tensor train in the mathematical community.



Chapter 2

The low-rank approximation problem
for matrices and tensors

2.1 Singular value decomposition and generalisations
for tensors

This chapter is devoted to the tensor train decomposition, as a generalisation of the
singular value decomposition (SVD) for high-dimensional tensors. The SVD arises in the
low-rank approximation of matrices, as such, it is natural to look for generalisation of the
SVD for high-dimensional tensors. As it will be mentioned, the historical tensor formats,
i.e. the CP decomposition and the Tucker decomposition suffer from drawbacks that the
tensor train format does not have.

2.1.1 The low-rank approximation for matrices

The basis tool for the low-rank approximation of matrices is the singular value decompo-
sition (SVD).

Theorem 2.1.1 (Singular value decomposition). Let A ∈ Cm×n be a matrix. There exist
unitary matrices U ∈ Cm×rA and V ∈ Cn×rA, and a diagonal matrix Σ = Diag(s1, . . . , srA)
with s1 ≥ · · · ≥ srA > 0 such that A = UΣV ∗. The triplet of matrices (U,Σ, V ∗) satisfying
these properties is called a singular value decomposition (SVD) of A.

The SVD given in the above theorem is sometimes called the compact SVD of A.
Another common definition of the SVD is a decomposition of the matrix A ∈ Cm×n is to
write the SVD as A = UΣV∗ where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and
Σ ∈ Cm×n is diagonal. The relationship between this SVD and its compact version is the
following

U =
[
U 0

]
, Σ =

[
Σ 0
0 0

]
, V =

[
V 0

]
.

11
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The SVD of A can be derived from the eigenvalue decomposition of the matrices AA∗ and
AA∗. Indeed, if A = UΣV∗ is the SVD of A, then A∗ = VΣU∗ so using that U and V are
unitary matrices, we have

AA∗ = UΣΣ∗U∗ = U


s21

. . .
s2r

0
. . .

U∗, A∗A = VΣ∗ΣV∗ = V


s21

. . .
s2r

0
. . .

V∗.

The singular values of A are simply the eigenvalues of the matrices AA∗ and A∗A and the
unitary matrices U and V the corresponding eigenvectors.

From the singular value decomposition -and its connection to the eigenvalue decomposition-
it is possible to give another characterisation of the singular values:

sk = max
dimVk=k

min
x∈Vk

∥Ax∥2
∥x∥2

. (2.1.1)

From the SVD, it is possible to directly read the rank of the matrix A. It is simply
the number of nonzero singular values.

Another important property of the singular value decomposition for the low-rank ap-
proximation problem is the following.

Theorem 2.1.2 (Best rank r approximation of a matrix [Sch08]). Let A ∈ Cm×n be a
matrix and (U,Σ, V ∗) an SVD of A. The best rank-r of A in the Frobenius norm is given
by

Ar = UrΣrV
∗
r =

r∑
k=1

skukv
∗
k,

where Ur ∈ Cm×r, Σr ∈ Rr×r and Vr ∈ Cn×r are the respective truncations of U , Σ and
V . The error is given by

∥A− Ar∥F =
( ∑

k≥r+1

s2k

)1/2

. (2.1.2)

The best approximation is unique if sr > sr+1.

Proof. An upper bound is obtained by a direct computation

∥A− Ar∥2F =
∥∥ ∑

j≥r+1

sjujv
∗
j

∥∥2

F
=

∥∥ ∑
j≥r+1

sjuj ⊗ vj
∥∥2

2
=

∑
j≥r+1

s2j .

The lower bound is shown using a bound on the singular values: let M,N ∈ Rp×q

∀ 1 ≤ i, j ≤ min(p, q), 0 ≤ j ≤ d− i, si+j−1(M +N) ≤ si(M) + sj(N), (2.1.3)
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where (sk(M))k, (sk(N))k, (sk(M + N))k are the respective singular values of M,N and
M + N . This singular value bounds are derived by considering the following subspaces
(without loss of generality, we can assume that q ≤ p):

V M+N = Span
(
vM+N
1 , . . . , vM+N

i+j−1

)
, V M = Span

(
vMi , . . . , vMq

)
V N = Span

(
vNj , . . . , vNq

)
.

By estimating the dimension of the intersection (by using that dimV M + dimV N +
dimV M+N = (q − i + 1) + (q − j + 1) + i + j − 1 = 2q + 1), we deduce that there
exists a normalised vector x ∈ V M ∩ V N ∩ V M+N :

si+j−1(M +N) ≤ ∥(M +N)x∥2 ≤ ∥Mx∥2 + ∥Nx∥2 ≤ si(M) + sj(N).

We apply the inequality (2.1.3) with M = A− Ãr, N = Ãr and j = r + 1, where Ãr is a
matrix of rank r. Since sr+1(Ãr) = 0, we have

∀ 1 ≤ i ≤ q, sk+i(A) ≤ si(A− Ãr).

Hence ∥A− Ãr∥2F =
∑q

i=1 si(A− Ãr)
2 ≥∑q

i=k+1 si(A)
2, which is the result.

Remark 2.1.3. A similar approximation result can be written in the matrix norm ∥ · ∥2
subordinate to the vector ∥·∥2. In that case, it is straightforward to check that ∥A−Ar∥2 =∥∥∑

j≥r+1 sjujv
∗
j

∥∥
2
= sr+1. Moreover for a rank-r matrix Ãr, by definition, there is a

normalised vector x ∈ Span(v1, . . . , vr+1) such that Ãrx = 0. Thus

∥A− Ãr∥2 ≥ ∥(A− Ãr)x∥2 ≥ ∥Ax∥2 ≥ sr+1.

Another way to phrase the best rank r approximation of a matrix is to take the
subspace point of view. A matrix A ∈ Cm×n can be viewed as a vector of the product
space Cm⊗Cn which is isometrically isomorphic to Cmn. The subspace problem is phrased
as follows: find subspaces U ⊂ Cm and V ⊂ Cn both of dimension r such that it minimises
the distance

dist(A,U ⊗ V) = ∥A− ΠU⊗VA∥ = min
Ũ⊂Cm,dim Ũ=r

Ṽ⊂Cn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥, (2.1.4)

where ΠW is the orthogonal projection onto the subspace W ⊂ Cmn. The SVD of the
matrix (Aj

i ) is also a representation of the vector (Aij)1≤i≤m,1≤j≤n in the orthonormal
basis (ui ⊗ vj)1≤i≤m,1≤j≤n:

A =

rA∑
k=1

skuk ⊗ vk. (2.1.5)
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Proposition 2.1.4. Let A ∈ Cm×n, (U,Σ, V ∗) its SVD and r ∈ N. Denote (u1, . . . , urA)
and (v1, . . . , vrA) the respective columns of U and V . A solution to the subspace minimi-
sation problem (2.1.4) is given by

U = Span(u1, . . . , ur), V = Span(v1, . . . , vr). (2.1.6)

The solution is unique if sr > sr+1.

Proof. Let Ũ and Ṽ be respectively subspaces of Cm and Cn of dimension r. Let (ũi)1≤i≤r

and (ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . The minimisation problem (2.1.4) can be
rewritten as

min
Ũ⊂Cm,dim Ũ=r

Ṽ⊂Cn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥ = min
Ũ⊂Cm,dim Ũ=r

Ṽ⊂Cn,dim Ṽ=r

∥A− PŨAPṼ∥2F ,

where PŨ (resp. PṼ) is the orthogonal projection onto Ũ (resp. Ṽ).
Let Ũ and Ṽ be respectively subspaces of Cm and Cn of dimension r. Let (ũi)1≤i≤r

and (ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . Then we have

∥A− PŨAPṼ∥2F = Tr
(
(A− PŨAPṼ)

∗(A− PŨAPṼ)
)

= Tr
(
A∗A− PṼA

∗PŨA− A∗PŨAPṼ + PṼA
∗PŨAPṼ

)
= Tr(A∗A)− Tr

(
PṼA

∗PŨAPṼ
)
,

where we have used that since PṼ is an orthogonal projection, we have Tr
(
PṼA

∗PŨA
)
=

Tr
(
A∗PŨAPṼ

)
= Tr

(
PṼA

∗PŨAPṼ
)
. We realise that

Tr
(
PṼA

∗PŨAPṼ
)
=

∑
1≤i,j≤r

⟨ũi, Aṽj⟩2.

Solving the minimisation problem (2.1.4) is equivalent to maximising
∑

1≤i,j≤r

(
⟨ũi, Aṽj⟩

)2
where (ũi)1≤i≤r and (ṽi)1≤i≤r are orthonormal families. Using the SVD of A, the previous
quantity is maximised for Ũ = Span(u1, . . . , ur) and Ṽ = Span(v1, . . . , vr).

2.1.2 Tensors and reshapes

A tensor C of order L ∈ N is a multidimensional array Ci1...iL ∈ Cn1×···×nL .
A convenient way to represent tensor and product of tensors is the graphical repre-

sentation. Let C ∈ Cn1×···×nL be a tensor. The graphical representation of C is given by
Figure 2.1. It is a powerful tool to avoid writing cumbersome operations between tensors,
using the dictionary in Figure 2.2.

Definition 2.1.5 (Reshape of a tensor). Let C ∈ Cn1×···×nL be a tensor. Let (j1, . . . , jℓ, k1, . . . , kn)
be a permutation of {1, . . . , L}. We say that the matrix C

ik1 ...ikn
ij1 ...ijℓ

∈ Rnj1
···njℓ

×nk1
···nkn is a

reshape of C.

The reshapes C
iℓ+1...iL
i1...iℓ

will be of particular interest for tensor trains.
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i1
i2

i3

i4

i5

C

Figure 2.1: Graphical representation of C. The tensor C is represented by its vertex and
its indices by the free edges.

i2
v

(a) Vector vi2 .

i2 i1
A

(b) Matrix Ai2
i1

.

i1
Av

(c) Matrix-vector product
(Av)i1 =

∑
i2
Ai2

i1
vi2 .

Figure 2.2: Contraction of tensors. Every pair of connected edges is a summation over
the shared index.

2.1.3 Generalisations of the SVD for tensors

For higher-order tensors, different schematic generalisations of the SVD are possible. With
the previous discussion, there are two natural options that emerge:

• write the tensor as a sum of rank-1 tensors:

C =
r∑

k=1

u
(1)
k ⊗ · · · ⊗ u

(L)
k ,

where u
(j)
k ∈ Cnj . This is the canonical polyadic decomposition (CP decomposition);

• consider the subspace minimisation problem:

dist(C,U1 ⊗ U2 ⊗ · · · ⊗ UL) = min
Ũ1⊂Cn1 ,dim Ũ1=r1,...,ŨL⊂CnL ,dim ŨL=rL

∥C − ΠŨ1⊗···⊗ŨL
C∥,

where dimUk = rk for all 1 ≤ k ≤ L. This yields the Tucker decomposition.

The canonical decomposition looks the most appealing as it is the most sparse way
to represent a tensor. It has however one major drawback, being that the best rank
r approximation (in the sense of the CP decomposition) is ill-posed! [DSL08] Consider
noncolinear vectors a ∈ Cn, b ∈ Cn and the tensor

C = b⊗ a⊗ a+ a⊗ b⊗ a+ a⊗ a⊗ b.
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which is a tensor of canonical rank 3. It can however be approximated as well as we wish
by a tensor of canonical rank 2: let ε > 0, then we see that

C −
(1
ε
(a+ εb)⊗ (a+ εb)⊗ (a+ εb)− 1

ε
a⊗ a⊗ a

)
= O(ε). (2.1.7)

Contrary to matrices, the set of tensors of canonical rank less than r is not closed.
Regarding the Tucker decomposition, let C ∈ U1 ⊗ · · · ⊗ UL. Then there is a core

tensor S ∈ Cr1×···×rL and matrices (Uk)1≤k≤L ∈
⊗L

k=1Cnk×rk such that

∀ 1 ≤ ik ≤ nk, Ci1...iL =

r1∑
j1=1

· · ·
rL∑

jL=1

Sj1...jL(U1)
j1
i1
· · · (UL)

jL
iL
.

The storage cost of the tensor C is still exponential in the order L of the tensor (except
if some rk are equal to 1). As such it is a useful decomposition only for low order tensors.
In the following, we will focus on the efficient representation of tensors of order up to a
hundred, for which the Tucker decomposition is not suited.

S

U1

i1

U3

i3

U2

i2
U4

i4

(a) Tucker decomposition

A1 A2 A3 AL−2 AL−1 AL

i1 i2 i3 iL−2 iL−1 iL

(b) Tensor train decomposition

Figure 2.3: Tucker and tensor train decompositions

Remark 2.1.6. In the context of quantum chemistry, the previous tensor decompositions
have been tried in a disguise form in the context of electronic structure. The Tucker
decomposition corresponds to the MC-SCF ansatz whereas the CP decomposition is behind
the CI methods.

2.2 Tensor train decomposition

2.2.1 Definition

The tensor train (TT) decomposition [OT09], also called matrix product state [KSZ91] in
the physics litterature is the simplest instance of a tensor network. The TT decomposition
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A1[i1] ∈ R1×r1

A1[1]

A1[2]

A2[i2] ∈ Rr1×r2

A2[1]

A2[2]

. . .

AL−1[iL−1] ∈ RrL−2×rL−1

AL−1[1]

AL−1[2]

AL[iL] ∈ RrL−1×1

AL[1]

AL[2]

Figure 2.4: Schematic representation of the TT decomposition

is related to the density-matrix renormalisation group (DMRG) [Whi92] pioneered by
White for the computation of properties of one-dimensional statistical physics systems.
The connection between DMRG and TT has been realised later [OR95, DMNS98].

Definition 2.2.1 ([KSZ91, OT09]). Let C ∈ Cn1×···×nL be a tensor. We say that (A1, . . . , AL)
is a tensor train decomposition of C if we have for all 1 ≤ ik ≤ nk

Ci1...iL = A1[i1]A2[i2] · · ·AL[iL] (2.2.1)

=

r1∑
α1=1

r2∑
α2=1

· · ·
rL−1∑

αL−1=1

A1[i1]α1A2[i2]
α1
α2
· · ·AL[iL]

αL−1 , (2.2.2)

where for each 1 ≤ ik ≤ nk, Ak[ik] ∈ Crk−1×rk (r0 = rL = 1). The tensor Ak are called
the TT cores and the sizes of the TT cores are the TT ranks of C.

Such a representation has a storage cost of
∑L

k=1 nkrk−1rk. Provided that the TT
ranks do not increase exponentially with the order L of the tensor, the TT decomposition
is a sparse representation of the tensor C. As it will be highlighted later, an exact TT
representation of any tensor C can be derived using the hierarchical SVD. Generically,
the TT ranks of the tensor will be exponential in L, however, good approximations for
problems can be achieved for problems with some notion of sparsity [Has07, DDGS16].

Example 2.2.2. • a tensor product Ci1...iL = u
(1)
i1
· · ·u(L)

iL
is a TT of TT rank 1, as

the cores are (u
(k)
ik
)1≤k≤L,1≤ik≤nk

.

• the unnormalised Bell state B ∈⊗2L
1 C2

Bi1...i2L =
(
δ1,i1δ2,i2 + δ2,i1δ1,i2

)(
δ1,i3δ2,i4 + δ2,i3δ1,i4

)
· · ·(
δ1,i2L−1

δ2,i2L + δ2,i2L−1
δ1,i2L

)
,

is a TT of rank 2: let (Bk)1≤k≤2L be defined by

B2k−1[i2k−1] =
[
δ1i2k−1

δ2i2k−1

]
, B2k[i2k] =

[
δ2i2k
δ1i2k

]
, k = 1, . . . , L.

By a direct calculation, we can check that Bi1...i2L = B1[i1] · · ·B2L[iL].
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• for L = 2, the following reordering of the indices of the Bell state B̃ ∈⊗4
1C2

B̃i1...i4 =
(
δ1,i1δ2,i3 + δ2,i1δ1,i3

)(
δ1,i2δ2,i4 + δ2,i3δ1,i4

)
has a TT decomposition of rank 4:

ik B̃1 B̃2 B̃3 B̃4

1
[
1 0

] [
0 0 1 0
0 1 0 0

] 
0 0
0 1
0 0
1 0

 [
1
0

]

2
[
0 1

] [
1 0 0 0
0 0 0 1

] 
1 0
0 0
0 1
0 0

 [
0
1

]

This elementary example highlights the importance of the ordering of the indices of
the tensor for an efficient TT representation.

Remark 2.2.3. The reordered Bell state example B̃ ∈⊗2L
1 C2

B̃i1...i2L =
L∏

k=1

(
δ1,ikδ2,ik+L

+ δ2,ikδ1,ik+L

)
has a TT decomposition of rank 2L. The optimality of the ranks is proved by the charac-
terisation of the TT ranks stated in Theorem 2.2.7.

It is clear that there is no uniqueness of the TT decomposition. Indeed for a tensor
C ∈ Cn1×···×nL if (A1, . . . , AL) is a tensor train decomposition, then for any invertible
matrices (Gk)1≤k≤L−1 ∈

⊗L−1
k=1 GLrk(C), the TT cores (Ã1, . . . , ÃL) defined by{

Ã1[i1] = A1[i1]G1, i1 = 1, . . . , n1, ÃL[iL] = G−1
L−1AL[iL], iL = 1, . . . , nL

Ãk[ik] = G−1
k−1Ak[ik]Gk, ik = 1, . . . , nk, k = 2, . . . , L− 1,

is an equivalent TT representation.
As we are going to see later on, it is possible to partially lift this gauge freedom by

imposing additional properties on the TT cores (Ak).
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Proposition 2.2.4 (Algebraic properties of TT). Let (A1, . . . , AL)and (Ã1, . . . , ÃL) be
the respective TT decompositions of the tensors C, C̃ ∈ Cn1×···×nL. Then

B1[i1] =
(
A1[i1] Ã1[i1]

)
, BL[iL] =

[
AL[iL]

ÃL[iL]

]
Bk[ik] =

[
Ak[ik] 0

0 Ãk[ik]

]
, k = 2, . . . , L− 1

(2.2.3)

is a TT decomposition of the sum C + C̃.

The proof consists in expanding the TT decomposition (B1, . . . , BL). The TT de-
composition (2.2.3) is in general not minimal and can be compressed as explained in
Section 2.3.

Remark 2.2.5. Since a tensor product u(1) ⊗ · · · ⊗ u(L) is a TT of rank 1, we deduce
that a CP decomposition of rank r has at most a TT representation of rank r. The
TT decomposition is a generalisation of the CP format, with advantageous algebraic and
topologic properties.

2.2.2 The hierarchical SVD

The hierarchical SVD (HSVD) is an algorithm [Vid03, OT09] to obtain a tensor train
representation of any tensor. In the HSVD, we apply successive SVD to C ∈ Rn1×···×nL :

Ci1...iL = (Ci2...iL
i1

) (reshape of C to n1 × n2 · · ·nL)

=
(
U1

)α1

i1

(
Σ1V1

)i2...iL
α1

(SVD)

=
(
U1

)α1

i1

(
Σ1V1

)i3...iL
α1i2

(reshape of Σ1V1)

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V2

)i3...iL
α2

(SVD of Σ1V1)

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V2

)i4...iL
α2i3

(reshape of Σ2V2),

we repeat the process until we get

Ci1...iL =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
ΣL−1VL−1

)iL
αL−1

.

The identification with the TT decomposition is clear, one simply needs to be careful with
the switch in the role played by the virtual indices:

Ci1...iL =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
ΣL−1VL−1

)iL
αL−1

= A1[i1]α1 A2[i2]
α1
α2
· · · AL−1[iL−1]

αL−2
αL−1

AL[iL]
αL−1 .

There are a few immediate remarks:
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(i). it is possible to start at the end, i.e. by first reshaping C into the matrix CiL
i1...iL−1

∈
Cn1···nL−1×nL , perform its SVD and carry on. Another TT representation is obtained
this way;

(ii). from the HSVD algorithm, we guess that the singular values Σk are related to the
singular values of the reshapes Cik+1...iL

i1...ik
∈ Cn1···nk×nk+1···nL and that they play a key

role in the best approximation by a TT at fixed TT ranks. This is indeed the case
and it will be treated in Section 2.3.

This algorithm is central in the theory of TT and more generally in the approximation
theory by tensor networks. It is somewhat clear that such an algorithm extends to the
decomposition into a tree tensor network. Indeed, in the HSVD algorithm, we simply
partition {1, . . . , L} into the sets ({1}, {2, . . . , L}), then ({1}, {2}, {3, . . . , L}), and so on
so forth. For trees, we choose different partition choices that does not have to reduce to a
singleton right away. For tensor networks with loops, there is no equivalent of the HSVD
for the construction of a tensor network directly from the tensor. This makes the analysis
of such networks much more difficult.

2.2.3 Normalisation and gauge freedom

Definition 2.2.6. We say that a TT decomposition (A1, . . . , AL) is

• left-orthogonal if for all 1 ≤ k ≤ L− 1 we have

nk∑
ik=1

Ak[ik]
∗Ak[ik] = idrk ; (2.2.4)

• right-orthogonal if for all 2 ≤ k ≤ L we have

nk∑
ik=1

Ak[ik]Ak[ik]
∗ = idrk−1

. (2.2.5)

From the HSVD algorithm, we see that we obtain a left-orthogonal TT decomposi-
tion of the tensor C. By starting from the end, we would get a right-orthogonal TT
representation of C.

Such a normalisation turns out to be convenient for the computation of the norm a
tensor. Suppose that (A1, . . . , AL) is a left-orthogonal TT decomposition. The norm of



2.2. TENSOR TRAIN DECOMPOSITION 21

the corresponding tensor C remarkably simplifies

∥C∥2F =

n1∑
i1=1

· · ·
nL∑

iL=1

(
A1[i1] · · ·AL[iL]

)2
=

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
∗ · · ·A1[i1]

∗A1[i1] · · ·AL[iL]

=

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
∗ · · ·A1[i1]

∗A1[i1] · · ·AL[iL]

=

n2∑
i2=1

· · ·
nL∑

iL=1

AL[iL]
∗ · · ·

( n1∑
i1=1

A1[i1]
∗A1[i1]

)
· · ·AL[iL]

=

n2∑
i2=1

· · ·
nL∑

iL=1

AL[iL]
∗ · · ·A2[i2]

∗A2[i2] · · ·AL[iL],

where the left-orthogonality of A1 has been used. Hence by iterating this argument, the
norm of C is simply the norm of the last TT core AL.

Another instance where the choice of the normalisation is crucial is in solving eigen-
value problems in DMRG (see Chapter 5).

It is also possible to mix both normalisations, in the sense that for some 2 ≤ n ≤ L−1,
we have

• the first n− 1 TT cores are left-orthogonal: for 1 ≤ k ≤ n− 1

nk∑
ik=1

Ak[ik]
∗Ak[ik] = idrk ;

• the last L− n+ 1 TT cores are right-orthogonal: for n+ 1 ≤ k ≤ L

nk∑
ik=1

Ak[ik]Ak[ik]
∗ = idrk−1

. (2.2.6)

In that case, the norm of the tensor is carried by the TT core that is not normalised,
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using the following trick:

∥C∥2F =

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
∗ · · ·A1[i1]

∗A1[i1] · · ·AL[iL]

=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
AL[iL]

∗ · · ·A1[i1]
∗A1[i1] · · ·AL[iL]

)
=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
Ak+1[ik+1] · · ·AL[iL]AL[iL]

∗ · · ·A1[i1]
∗A1[i1] · · ·Ak[ik]

)
=

nk∑
ik=1

Tr
(
Ak[ik]

∗Ak[ik]).

Conversion between left and right orthogonal TT representations

By successive LQ decompositions, it is possible to transform a left-orthogonal to a right
orthogonal TT decomposition. Let (A1, . . . , AL) be a left-orthogonal TT decomposition
of C ∈ Cn1×···×nL . Then we have

Ci1...iL = A1[i1] · · ·AL[iL]

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−1[iL−1]

αL−1
αL−2

(
AL

)iL
αL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−1[iL−1]

αL−1
αL−2

(
LL

)βL−1

αL−1

(
QL

)iL
βL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−2[iL−2]

αL−2
αL−3

(
AL−1LL

)iL−1βL−1

αL−2

(
QL

)iL
βL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−2[iL−2]

αL−2
αL−3

(
LL−1

)βL−2

αL−2

(
QL−1

)iL−1βL−1

βL−2

(
QL

)iL
βL−1

,

we repeat this process until we reach

Ci1...iL = (A1L2)
i1β1

(
Q2

)i2β2

β1
· · ·

(
QL−1

)iL−1βL−1

βL−2

(
QL

)iL
βL−1

= B1[i1]β1 B2[i2]
β1

β2
· · · BL−1[iL−1]

βL−2

βL−1
BL[iL]

βL−1 .

We simply need to check that the TT cores B2, . . . , BL are right-orthogonal:
nk∑

ik=1

Bk[ik]Bk[ik]
∗ = idrk−1

.

Theorem 2.2.7 (Characterisation of the TT ranks [HRS12b]). Let C ∈ Cn1×···×nL be a
tensor. Then the following assertions are true:

(i). the HSVD algorithm given in Section 2.2.2 gives a TT decomposition of minimal
TT rank;
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(ii). the minimal TT rank (r1, . . . , rL−1) is equal to the rank of the reshapes of C, i.e.

rk = RankC
ik+1...iL
i1...ik

. (2.2.7)

Proof. Let (A1, . . . , AL) be the TT cores given by the HSVD algorithm. The proof of
item (ii) follows from the following identity

C
ik+1...iL
i1...ik

=
(
A1[i1]A2[i2] · · ·Ak[ik]

)(
Ak+1[ik+1] · · · AL[iL]

)
,

where
(
A1[i1]A2[i2] · · ·Ak[ik]

)
∈ Cn1···nk×rk and

(
Ak+1[ik+1] · · · AL[iL]

)
∈ Crk×nk+1···nL .

By construction and by the property of the SVD, both matrices are full rank, hence
rk = RankC

ik+1...iL
i1...ik

.

These normalisations have the advantage of reducing the gauge freedom in the TT
representation.

Proposition 2.2.8 (Gauge freedom of left-orthogonal TT decompositions [HRS12b]). A
left-orthogonal TT representation of minimal TT rank (r1, . . . , rL−1) is unique up to the
insertion of unitary matrices, i.e. if (A1, . . . , AL) and (B1, . . . , BL) are left-orthogonal
TT representations of the same tensor C, then there are unitary matrices (Qk)1≤k≤L−1,
Qk ∈ Crk×rk such that for all 1 ≤ ik ≤ nk we have

A1[i1]Q1 = B1[i1], Q∗
L−1AL[iL] = BL[iL]

Q∗
k−1Ak[ik]Qk = Bk[ik], for k = 2, . . . , L− 1.

(2.2.8)

Proof. The proof relies on the following observation: let M1, N1 ∈ Cp×r and M2, N2 ∈ Cr×q

be matrices of rank r such that

M1M2 = N1N2 and M∗
1M1 = N∗

1N1 = idr,

there is a unitary matrix Q ∈ Cr×r such that

M1 = N1Q and M2 = Q∗N2.

The proof of this lemma is straightforward:

N2 = N∗
1M1M2 = N∗

1M1M
∗
1N1N2,

which shows that N∗
1M1 is a unitary matrix. Denote this matrix Q. Hence N2 = QM2

and M1N
∗
1N1 = M1 thus, N1 = M1Q

∗.
The proof then goes by iteration. We have(

A1[i1]
)(
A2[i2] · · ·AL[iL]

)
=

(
B1[i1]

)(
B2[i2] · · ·BL[iL]

)
n1∑

i1=1

A1[i1]
∗A1[i1] =

n1∑
i1=1

B1[i1]
∗B1[i1] = idr1 .
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Since
(
A1[i1]

)
,
(
A2[i2] · · ·AL[iL]

)
,
(
B1[i1]

)
and

(
B2[i2] · · ·BL[iL]

)
have rank r1, by the

lemma there is a unitary matrix Q1 ∈ Cr1×r1 such that

A1[i1]Q1 = B1[i1]

Q∗
1

(
A2[i2] · · ·AL[iL]

)
=

(
B2[i2] · · ·BL[iL]

)
.

For the next iteration, we have(
Q∗

1A2[i2]
)(
A3[i3] · · ·AL[iL]

)
=

(
B2[i2]

)(
B3[i3] · · ·BL[iL]

)
n2∑

i2=1

A2[i2]
∗Q1Q

∗
1A2[i2] =

n2∑
i2=1

B2[i2]
∗B2[i2] = idr1 .

Applying again the lemma, we have

Q∗
1A2[i2]Q2 = B2[i2]

Q∗
2

(
A3[i3] · · ·AL[iL]

)
=

(
B3[i3] · · ·BL[iL]

)
.

By iteration, we prove the proposition.

The Vidal representation

A convenient - albeit numerically unstable - way to convert easily between left-orthogonal
and right-orthogonal TT representations is to use the Vidal representation [Vid03].

Definition 2.2.9 (Vidal representation [Vid03]). Let C ∈ Cn1×···×nL be a tensor. We say
that (Γk)1≤k≤L, (Σk)1≤k≤L−1 is a Vidal representation if Σk are diagonal matrices with
positive entries,

Ci1,...,iL = Γ1[i1]Σ1Γ2[i2]Σ2 · · ·ΣL−1ΓL[iL], (2.2.9)

and the matrices Γk[ik] ∈ Crk−1×rk satisfy

n1∑
i1=1

Γ1[i1]
∗Γ1[i1] = idr1 ,

nL∑
iL=1

ΓL[iL]ΓL[iL]
∗ = idrL−1

(2.2.10)

∀ k = 2, . . . , L− 1,

nk∑
ik=1

Γk[ik]
∗Σ2

k−1Γk[ik] = idrk ,

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

∗ = idrk−1
. (2.2.11)

The Vidal representation directly gives left and right orthogonal TT decompositions:

(i). (A1, . . . , AL) left-orthogonal TT representation

A1[i1] = Γ1[i1], AL[iL] = ΣL−1ΓL[iL]

Ak[ik] = Σk−1Γk[ik], k = 2, . . . , L− 1;
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(ii). (B1, . . . , BL) right-orthogonal TT representation

B1[i1] = Γ1[i1]Σ1, BL[iL] = ΓL[iL]

Bk[ik] = Γk[ik]Σk, k = 2, . . . , L− 1.

The conversion from left (or right) orthogonal decomposition to a Vidal representation
is more involved [Sch11, Section 4.6]. Let Ak be the TT components of a left-orthogonal
TT representation. Notice that for all k, let Σk be the singular values of the tensor reshape
C

ik+1...id
i1...ik

. Then we have

C
ik+1...iL
i1...ik

=

 A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


︸ ︷︷ ︸

=:Mk∈Rn1···nk×rk

[
Ak+1[ik+1] · · · AL[iL]

]︸ ︷︷ ︸
∈Rrk×nk+1...nL

Because Ak are left-orthogonal, then M∗
kMk = idrk , hence the singular values of the

reshaped tensor is exactly the singular values of the right matrix.
With this remark, we can now write the iterative algorithm to get the Vidal represen-

tation of the tensor.

Algorithm 1 Left-orthogonal to Vidal representation
Input: (A1, . . . , AL) left-orthogonal TT representation
Output: (Γ1, . . . ,ΓL), (Σ1, . . . ,ΣL−1) Vidal representation

function LeftToVidal((A1, ..., AL))
UL−1,ΣL−1, V

∗
L = svd

( [
AL[1] AL[2] · · · AL[nL]

] )[
ΓL[1] · · · ΓL[nL]

]
= V ∗

L

for k = L− 1, . . . , 1 do
Uk−1,Σk−1, V

∗
k = svd

( [
Ak[1]UkΣk · · · Ak[nk]UkΣk

] )
.

Γk solution to V ∗
k =

[
Γk[1]Σk · · · Γk[nk]Σk

]
end for
return (Γ1, . . . ,ΓL), (Σ1, . . . ,ΣL−1).

end function

By induction, one can show that the singular values of the successive SVD in the
previous algorithm are indeed the singular values of the tensor reshape.

Proposition 2.2.10. Let (Γk)1≤k≤L, (Σk)1≤k≤L−1 be a Vidal representation of C ∈ Cn1×···×nL.
Then Σk is the matrix of the singular values of the reshape C

ik+1...iL
i1...ik

∈ Cn1···nk×nk+1···nL.
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Proof. By definition of the SVD, the Vidal TT components Γk satisfy

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

∗ = idrk−1
.

We also have[
Ak[1]Uk · · ·Ak[nk]Uk

]
=

[
Uk−1Σk−1Γk[1] · · · Uk−1Σk−1Γk[nk]

]
.

Thus
nk∑
ik

Γk[ik]
∗Σ2

k−1Γk[ik] =

nk∑
ik

Γk[ik]
∗Σk−1U

∗
k−1Uk−1Σk−1Γk[ik]

=

nk∑
ik

U∗
kAk[ik]

∗Ak[ik]Uk

= idrk .

2.3 Approximation by tensor trains

A natural way to reduce the TT ranks of the TT representation of a tensor is to truncate
the SVD at each step of the HSVD algorithm to a tolerance ε:

Ci1...iL = Ci2...iL
i1

(reshape of C to n1 × n2 · · ·nL)

≃
(
U1

)α1

i1

(
Σε

1V
∗
1

)i2...iL
α1

(truncated SVD)

≃
(
U1

)α1

i1

(
Σε

1V
∗
1

)i3...iL
α1i2

(reshape of Σε
1V

∗
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
∗
2

)i3...iL
α2

(truncated SVD of Σε
1V

∗
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
∗
2

)i4...iL
α2i3

(reshape of Σε
2V

∗
2 ),

we repeat the process until we get

Ci1...iL ≃
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
Σε

L−1VL−1

)iL
αL−1

.

This algorithm is often called a TT rounding [Ose11] or TT compression. Truncating the
successive SVDs gives an estimate on the best approximation by a tensor train of fixed
TT ranks.
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Theorem 2.3.1 ([Gra10, Ose11, Hac12, Hac14]). Let C ∈ Cn1×···×nL, (r̃1, . . . , r̃L−1) ∈
NL−1 and Mr̃ be the space of tensor trains of ranks bounded by (r̃1, . . . , r̃L−1). Then we
have

min
V ∈Mr̃

∥C − V ∥ ≤

√√√√L−1∑
k=1

∑
j>r̃k

σ
(k)
j

2 ≤
√
L− 1 min

V ∈Mr̃

∥C − V ∥,

where for 1 ≤ k ≤ L− 1, (σ(k)
j )1≤j≤rk are the singular values of the reshape (Ψµ1...µk

µk+1...µL
).

Proof. The proof of the left-hand side inequality follows from the HSVD algorithm. Let
Πk : Cn1···nk×nk+1···nL → Cn1···nk×nk+1···nL be the SVD truncation of rank r̃k. This operator is
an orthogonal projection in the Hilbert space Cn1···nk×nk+1···nL equipped with the Frobenius
norm. The HSVD algorithm with truncation at each step is the tensor ΠL−1 · · ·Π1C. We
thus have using the property of the SVD truncation:

∥C − ΠL−1 · · ·Π1C∥2F ≤ ∥Π⊥
L−1C∥2 + ∥ΠL−1C − ΠL−1 · · ·Π1C∥2F

≤
∑
j>r̃k

σ
(k)
j

2
+ ∥C − ΠL−2 · · ·Π1C∥2F ,

hence by iteration

∥C − ΠL−1 · · ·Π1C∥2F ≤
L−1∑
k=1

∑
j>r̃k

σ
(k)
j

2
.

This provides a bound on the best approximation by a tensor train inMr̃.
For the lower bound on the best approximation Cbest, we have for each k by definition

of the SVD truncation

∥C − ΠkC∥2F =
∑
j>r̃k

σ
(k)
j

2 ≤ ∥C − Cbest∥2F ,

hence by summing over k we get the lower bound.

A drawback of the HSVD algorithm or its truncated version is that it requires to
handle the full tensor. If the tensor is already in a TT format, it is possible to reduce the
cost of this truncation. Let (A1, . . . , AL) be a right-orthogonal TT representation of the
tensor C ∈ Cn1×···×nL . The first reshape is

Ci2...iL
i1

=

 A1[1]
...

A1[n1]

 [
A2[1] · · ·AL[1] · · · A2[n2] · · ·AL[nL]

]
,

and since the TT cores (A2, . . . , AL) are right-orthogonal, the matrix
V2 =

[
A2[1] · · ·AL[1] · · · A2[n2] · · ·AL[nk]

]
satisfies V2V

∗
2 = idr1 . Hence the first step
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of the HSVD truncation can be reduced to the SVD of the reshape of A1. The same
would hold for the next step of the HSVD truncation, hence the total cost of the TT
compression of C in a TT format is reduced to O(Lr3) where r = max(rk).

The algorithm is summarised in Algorithm 2.

Algorithm 2 TT rounding algorithm
Input: (A1, . . . , AL) right-orthogonal TT representation, ε > 0 tolerance
Output: (Aε

1, . . . , A
ε
L) TT representation such that ∥TT(Aε

i )− TT(Ai)∥F ≤
√
L− 1 ε

function HSVD((A1, . . . , AL), ε)
for k = 1, . . . , L− 1 do

Uk,Σk, V
∗
k = svd

( Ak[1]
...

Ak[nk]

)
rk = argmax

r
∥Σk[1 : r]− Σk∥ ≤ ε

(Aε
k)

αk
ikαk−1

= (Uk)
αk
ikαk−1

, ik = 1, . . . , nk, αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk
Ak+1[ik+1] = Σk[1 : r]V ∗

k [1 : r, :]Ak+1[ik+1], ik+1 = 1, . . . , nk+1

end for
Aε

L = AL

return (Aε
1, . . . , A

ε
L)

end function

2.4 Manifold of tensor trains

Even in finite-dimensions, the example exhibited in eq. (2.1.7) shows that the set

MCP≤r
=

{
C =

r∑
i=1

v
(i)
1 ⊗ · · · ⊗ v

(i)
L ,∀ 1 ≤ i ≤ r, 1 ≤ j ≤ L, v

(i)
j ∈ Cnj

}
,

is not closed if L ≥ 3.
For tensor trains, the question of the closedness has a clear answer, as the characteri-

sation of the TT rank relies on the matricisation of the tensor.

Proposition 2.4.1. The set of tensor trains with TT rank less that r

MTT≤r
=

{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Crk−1×rk , rk ≤ r

}
,

is a closed set.



2.4. MANIFOLD OF TENSOR TRAINS 29

Proof. The proof follows from the characterisation of the TT ranks given by Theo-
rem 2.2.7: given a tensor C, for 1 ≤ k ≤ L − 1, the minimal TT rank rk is equal to
the rank of the matrix C

ik+1...iL
i1...ik

. We conclude by recalling that the set of matrices with
rank less than r is a closed set.

Proposition 2.4.2. The set of tensor trains with TT rank r = (r1, . . . , rL−1)

MTTr =
{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Crk−1×rk

}
,

is of dimension

dimMTTr =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i . (2.4.1)

Proof. Two TT representations (A1, . . . , AL) and (Ã1, . . . , ÃL) of a same tensor are related
by a gauge (G1, . . . , GL−1) ∈ GLr1(C)× · · ·GLrL−1

(C)

∀ 1 ≤ ik ≤ nk, Ak[ik] = Gk−1Ãk[ik]Gk, k = 1, . . . , L, (G0 = GL = 1).

The dimension of GLrk(C) is r2k, hence the dimension ofMTTr is

dimMTTr =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i .

Proposition 2.4.3 (Tangent space ofMTTr [HRS12b]). Let A ∈MTTr and (A1, . . . , AL)
be a left-orthogonal TT representation of A. Let δA ∈ TAMTTr.

There are unique components (Wk)1≤k≤L ∈
⊗L

k=1 Crk−1×nk×rk such that

δA =
L∑

k=1

δA(k), (2.4.2)

with
δA

(k)
i1...iL

= A1[i1] · · ·Ak−1[ik−1]Wk[ik]Ak+1[ik+1] · · ·AL[iL], (2.4.3)

and where for k = 1, . . . , L− 1 we have

nk∑
ik=1

Ak[ik]
∗Wk[ik] = 0rk×rk . (2.4.4)

Proof. By definition of the tangent space TAMTTr , the tangent vectors are given by the
derivatives Γ̇ of the differentiable curves Γ : R→MTTr such that Γ(0) = A.
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For all t ∈ R, since Γ(t) ∈ MTTr , we can choose a left-orthogonal TT representation
of Γ(t) such that

Γ(t)i1...iL = Γ
(t)
1 [i1] · · ·Γ(t)

L [iL],

where for all 1 ≤ k ≤ L, t 7→ Γ
(t)
k ∈ Cnk×rk−1×rk is differentiable and Γ

(0)
k = Ak.

Since for 1 ≤ k ≤ L− 1,
∑nk

ik=1 Γ
(t)
k [ik]

∗Γ(t)
k [ik] = idrk , there is a differentiable function

t 7→ Uk(t) ∈ Onkrk−1
(C) such that Γ

(t)
k [1]
...

Γ
(t)
k [nk]

 = Uk(t)

 Ak[1]
...

Ak[nk]

 .

This implies that

 Γ̇
(0)
k [1]
...

Γ̇
(0)
k [nk]

 = Sk

 Ak[1]
...

Ak[nk]

 for some antisymmetric matrix Sk ∈ Cnkrk−1×nkrk−1 .

Let  Wk[1]
...

Wk[nk]

 = Sk

 Ak[1]
...

Ak[nk]

 .

Then
nk∑

ik=1

Ak[ik]
∗Wk[ik] =

[
Ak[1]

∗ . . . Ak[nk]
∗]Sk

 Ak[1]
...

Ak[nk]

 ,

which is a symmetric and an antisymmetric matrix, hence it is zero.
The tangent vectors are hence necessarily of the form given by eq. (2.4.2)-(2.4.4).

Dimension counting and invoking Proposition 2.4.2 show the uniqueness of the represen-
tation.



Chapter 3

Reduced density matrix, block entropy
and tensor trains

3.1 Reduced density matrix and the quantum entropy
The main idea of the Fiedler order is to minimise a proxy of the decay of the singular
values, which is the block entropy. There are several possible choices of the entropy that
can be minimised. In the litterature, the two main choices have been the von Neumann
entropy and the Rényi entropy. We will first shortly review both concepts of entropy. A
good reference on this topic is Carlen’s notes [CL14] and for other discussions on matrix
identities and inequalities, refer to Tropp’s book [T+15].

3.1.1 Reduced density matrix

For a given normalised tensor Ψ ∈ C2L×2L , we define the k-orbital reduced density matrix
(k-RDM) ρ1:k ∈ C2k×2k the matrix(

ρ1:k
)ν1...νk
µ1...µk

=
∑

µk+1...µL

(
Ψµk+1...µL

µ1...µk

)∗
Ψν1...νk

µk+1...µL
. (3.1.1)

Note that the eigenvalues of the k-RDM are squares of the singular values of the reshaped
tensor (Ψ

µk+1...µL
µ1...µk ) which monitor the approximability of Ψ by TT.

More generally, for a subset A ⊂ {1, . . . , L}, we define the RDM ρA ∈ C2|A|×2|A| by(
ρA

)νi,i∈A
µi,i∈A =

∑
µj ,j /∈A

(
Ψµj

µi

)∗
Ψνi

µj
. (3.1.2)

Note that since Ψ is normalised, we have

Tr ρA = 1. (3.1.3)

By definition, RDM are Hermitian and semi-positive definite matrices.

31
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3.1.2 Quantum entropy

Definition 3.1.1 (Von Neumann and Rényi entropies). Let ρ ∈ Cn×n be a Hermitian,
semi-positive definite matrix such that Tr ρ = 1. The von Neumann entropy is defined by

S(ρ) = −Tr(ρ log ρ). (3.1.4)

The Rényi entropy of parameter α ∈ (0,∞), α ̸= 1 is defined by

Sα(ρ) =
1

1− α
log(Tr(ρα)). (3.1.5)

For pure states, i.e. when ρ is up to a scalar factor a projector, one can check that the
entropy of ρ is 0. As pure states can be written as TT of TT rank 1, this motivates the
further investigation of the entropy as a proxy for the approximability of Ψ by TT. This
suggests that states with a low quantum entropy are easily approximable by TT. As we
are going to highlight, although in practice the quantum entropy is a fair indicator for the
approximation problem, there are counter-examples of states that have an exponentially
complex TT representation but a low quantum entropy [SWVC08].

Another desirable property of the entropy is the additivity - also sometimes called the
extensivity - and the subadditivity:

• additivity: we say that an entropy S is additive if for all RDM ρA and ρB we have

S(ρA ⊗ ρB) = S(ρA) + S(ρB); (3.1.6)

• subadditivity: we say that an entropy S is subadditive if for all RDM ρAB defined
on a tensor space HA ⊗HB, ρA = TrHB

ρAB and ρB = TrHA
ρAB, we have

S(ρAB) ≤ S(ρA) + S(ρB). (3.1.7)

We are going to review few important properties of the von Neumann and Rényi
entropies.

Remark 3.1.2. The Rényi and von Neumann entropies are closely related as

lim
α→1

Sα(ρ) = S(ρ). (3.1.8)

Proposition 3.1.3 (Schur concavity). The von Neumann and the Rényi entropies are
Schur concave, i.e. if ρα and ρβ are RDM with respective eigenvalues (αi)1≤i≤n and
(βi)1≤i≤n such that for all 1 ≤ k ≤ n

k∑
i=1

αi ≤
k∑

i=1

βi, (3.1.9)

then S(ρα) ≥ S(ρβ).
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From the Schur concavity, we deduce that

• a pure state ρ with eigenvalues (1, 0, . . . , 0) majorises any sequence, hence for any
ρ̃, S(ρ̃) ≥ S(ρ) = 0;

• a state with maximal entanglement i.e. with eigenvalues ( 1
n
, . . . , 1

n
) is majorised by

any sequence, hence it is the state with maximal entropy.

Proof. We simply need to use the concavity of the map g : x 7→ −x log x or g : x 7→ xα

1−α
.

Let us prove the result for n = 2. By assumption on the eigenvalues of ρ1 and ρ2, we have{
α1 ≥ β1

α1 + α2 = β1 + β2,
(3.1.10)

hence there exists λ ∈ [0, 1] such that{
β1 = λα1 + (1− λ)α2

β2 = (1− λ)α1 + λα2.
(3.1.11)

We have then

S(ρβ) = g(β1) + g(β2)

= g(λα1 + (1− λ)α2) + g((1− λ)α1 + λα2)

≥ λg(α1) + (1− λ)g(α2) + (1− λ)g(α1) + λg(α2) = g(α1) + g(α2) = S(ρα).

It turns out that additivity holds for the von Neumann and the Rényi entropies but
subadditivity - and strong subadditivity that is introduced further down - only holds for
the von Neumann entropy [LMW13].

Proposition 3.1.4 (Additivity of the Rényi and von Neumann entropies). The von Neu-
mann and the Rényi entropies are additive, i.e. for all RDM ρA, ρB respectively defined
on HA and HB, then we have

S(ρA ⊗ ρB) = S(ρA) + S(ρB). (3.1.12)

Proof. The proof follows from a direct calculation of S(ρA ⊗ ρB). Let (λi) and (µj) be
the eigenvalues of ρA and ρB, then we have

Sα(ρA ⊗ ρB) =
1

1− α
log

(
Tr(ρα)

)
=

1

1− α
log

(∑
ij

λα
i µ

α
j

)
=

1

1− α
log

(∑
i

λα
i

∑
j

µα
j

)
= Sα(ρA) + Sα(ρB).
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The proof is the same with the von Neumann entropy.

Proposition 3.1.5 (Subadditivity of the von Neumann entropy). The von Neumann
entropy is subadditive, i.e.for all RDM ρAB defined on a tensor space HA ⊗ HB, ρA =
TrHB

ρAB and ρB = TrHA
ρAB, we have

S(ρAB) ≤ S(ρA) + S(ρB). (3.1.13)

Before giving the proof, we state the Klein’s inequality.

Lemma 3.1.6 (Klein’s inequality). Let f be a convex function, A and B be Hermitian
matrices such that f(A) and f(B) are well-defined. Then the following inequality holds

Tr(f(A)− f(B)− (A−B)f ′(B)) ≥ 0. (3.1.14)

If f is strictly convex, we have equality if and only if A = B.

Proof. We first write the spectral decomposition of A and B
A =

n∑
i=1

αi|ai⟩⟨ai|

B =
n∑

i=1

βi|bi⟩⟨bi|.
(3.1.15)

Then we have

Tr(f(A)− f(B)− (A−B)f ′(B)) =
n∑

i=1

f(αi)− f(βi)−
n∑

j=1

|⟨ai, βj⟩|2αif
′(βj)

=
n∑

i,j=1

|⟨ai, βj⟩|2
(
f(αi)− f(βj) + (βj − αi)f

′(βj)
)
,

where we have used that
∑n

i=1 |⟨ai, βj⟩|2 =
∑n

j=1 |⟨ai, βj⟩|2 = 1. We conclude using the
convexity of f .

The equality case follows from the strict convexity and the properties of the scalar
product.

We can now prove the subadditivity of the von Neumann entropy.

Proof of Proposition 3.1.5. By additivity, we have

S(ρA) + S(ρB)− S(ρAB) = Tr(ρAB log(ρAB))− Tr(ρA ⊗ idB log(ρA ⊗ idB))

− Tr(idA⊗ρB log(idA⊗ρB))
= Tr(ρAB(log(ρAB)− log(ρA ⊗ idB)− log(idA⊗ρB)))
= Tr(ρAB(log(ρAB)− log(ρA ⊗ idB + idA⊗ρB)))
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where we have used that Tr(ρAB log(ρA ⊗ idB)) = Tr(ρA ⊗ idB log(ρA ⊗ idB)). It remains
to show that for positive semi-definite matrices M,N such that TrM = TrN , we have

Tr(M(log(M)− log(N))) ≥ 0. (3.1.16)

The map x 7→ x log x is convex hence by Klein’s inequality 3.1.6, we have

Tr(M log(M)−N logN) ≥ Tr(M −N + (M −N) log(N)) ≥ Tr((M −N) log(N)),

by simplifying Tr(N logN) on both sides, we get (3.1.16) and this finishes the proof.

Remark 3.1.7. Note that we have proved that the relative entropy - also called the
Kullback-Leibler divergence -

d(ρ1, ρ2) = Tr(ρ1(log(ρ1)− log(ρ2))), (3.1.17)

is always non negative for RDM.

The von Neumann has an additional property that is useful to have better bounds of
the entropy of a larger blocks. This property is the strong subadditivity.

Proposition 3.1.8 (Strong subadditivity of the von Neumann entropy). The von Neu-
mann entropy is strongly subadditive, i.e. for all RDM ρABC on the tensor space HA ⊗
HB ⊗HC, ρAB, ρBC and ρB the corresponding partial traces, we have

S(ρABC) ≤ S(ρAB) + S(ρBC)− S(ρB). (3.1.18)

The proof of the strong subadditivity follows the line of the subadditivity of the von
Neumann entropy [AL70].

A summary of the properties satisfied by the Von Neumann and the Rényi entropies
is provided in Table 3.1.

Additivity Schur concavity Subadditivity Strong subadditivity

Von Neumann entropy YES YES YES YES
Rényi entropy YES YES NO NO

Table 3.1: Properties of the Von Neumann and Rényi entropies

3.1.3 Relationship between TT approximability and entropy scal-
ing

For the Rényi entropy, for α < 1 a bound on the entropy is sufficient to bound the TT
error.
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Proposition 3.1.9 ([VC06]). Let Ψ ∈ C2L be a normalised state and ϵj(r) the L2 local
error by its TT approximation of TT rank r. Then the error is bounded by

log2(ϵj(r)
2) ≤ 1− α

α
(Sα(ρ1:j)− log2(

r
1−α

)). (3.1.19)

These results are tied to the concept of area laws that states that the entropy is
bounded regarless of the system size L. This is proved for 1D Hamiltonian with nearest
neighbour interaction [Has07] under the assumption that the system is gapped. Indeed, if
the entropy Sα(ρ1:j) for α < 1 is bounded independently of j and L, then the local error
is polynomial in the truncation rank r.

Numerous extensions of this result have been shown to include interactions with longer
interactions. For higher dimensions, area laws have not been proved although it is gen-
erally accepted that the same statements should be true, in which case, the best tensor
network to approximate the ground-state of such systems will not be TT but projected
entangled pair states (PEPS).

Proof. We use the Schur convexity of the entropy and find a sequence that majorises the
singular values of Ψ.

For α > 1, the Rényi entropy provides a lower bound of the TT error. This gives a
sufficient condition for nonapproximability results.

Proposition 3.1.10 ([SWVC08]). Let Ψ ∈ C2L be a normalised state and ϵj(r) the L2

local error by its TT approximation of TT rank r. Then the error is bounded by

Sα(ρ1:j) ≥
1− α

α
log2(1− ϵj(r)

2) + log2(r). (3.1.20)

Proof. We use the Schur convexity of the entropy and find a sequence that majorises the
singular values of Ψ.

For the von Neumann entropy, we have the same result in the nonapproximable case.
However, counterexamples of states exist where the von Neumann entropy is bounded

but the state is not approximable by TT.

Proposition 3.1.11 ([SWVC08]). Let Ψ2N ∈ C32N be the state defined by

Ψ2N =
√
1− pN |2⟩⊗2N +

√
pN
2N

∑
x∈{0,1}N

|x⟩ ⊗ |x⟩, (3.1.21)

with pN and
|χM⟩ = |Ψ2N⟩⊗N2

. (3.1.22)
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Proof. For the TT truncation error, for r < 2N the truncation error on Ψ2N is bounded
by

∥Ψ2N − TTrΨ2N∥ ≤ pN , (3.1.23)

thus the truncation error on χM is bounded by

∥χM − TTrχM∥ ≤ N2∥Ψ2N − TTrΨ2N∥ ≤ N2pN . (3.1.24)

For the entropy, let L ≤ 2N3 then the L-orbital RDM of χM is bounded by the
ℓ-orbital RDM of Ψ2N where ℓ = L mod 2N

S(ρL(|χM⟩)) ≤ S(ρℓ(Ψ2N))

≤ S(ρ
(ℓ)
2N) + pN ,

with ρℓ2N = (1−pN)|2⟩⊗ℓ⟨2|⊗ℓ+ pN
2ℓ

∑
x∈{0,1}ℓ . The von Neumann entropy of ρ(ℓ)2N is explicit

S(ρ
(ℓ)
2N) = −(1− pN) log(1− pN)− pN log

(
pN
2ℓ

)
= −(1− pN) log(1− pN)− pN log(pN) + ℓpN . (3.1.25)

We want the state to have a bounded entropy and not being approximable by a TT, hence
we need to pick pN such that

• ℓpN bounded ;

• N2pN →∞
thus pN = O( 1

Nβ ), with 1 ≤ β < 1 will do.

The different results regarding the boundedness of the entropy and the TT approx-
imability are gathered in Table 3.2.

Bounded entropy Unbounded entropy

Rényi α < 1 TT approximable ?
von Neumann ? Non TT approximable
Rényi α > 1 ? Non TT approximable

Table 3.2: TT approximability and entropy. Question marks mean that both can happen.

Although this counterexample seems to indicate that the von Neumann entropy is not
suited to assess the TT approximability of a state, results that are obtained using the
Fiedler order are generally satisfactory.

A heuristic argument relying on the strong subadditivity of the von Neumann entropy
suggests that the Fiedler order is a first order optimiser of the block entropy. However
as shown by the counterexample, it is not sufficient to argue that the state is easier to
approximate by a TT. This suggests that such counterexamples are scarce.
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3.2 Mutual information and the Fiedler order

The Fiedler order has been introduced in [LRH03] inspired by the notions of quantum
entanglement in quantum information theory. It is the default ordering method in the
major DMRG codes [LRH03, CHG02, RNW06, FKK+18].

For a quantum state Ψ ∈ C2L , we introduce the quantum mutual information matrix
(QMI) Iij ∈ RL×L by

Iij =

{
S(ρi) + S(ρj)− S(ρi,j), i ̸= j

0, i = j
(3.2.1)

The QMI is exactly the Kullback-Leibler divergence between ρij and ρi⊗ ρj. As such, by
Equation (3.1.17), the QMI has nonnegative entries.

The motivation of the Fiedler order scheme relies on the following proposition.

Proposition 3.2.1 ([Ali21]). Let Ψ ∈ C2L be a normalised state. Let 1 ≤ j ≤ L− 1 and
1 ≤ δ ≤ j

2
. Then we have

S(ρ1:j) ≤
j∑

k=1

S(ρk)− Ik,k+δ. (3.2.2)

To minimise the block entropy S(ρ1:j), assuming that the one-site entropies are all of
the same order, it is reasonable to maximise the QMI of neighbouring sites. This is the
main idea of the Fiedler order. Before sketching the algorithm, we will prove the previous
proposition.

Proof. By the strong subadditivity of the von Neumann entropy 3.1.8, for all 1 ≤ k ≤ j−δ
we have

S(ρk:j) + S(ρk+δ) ≤ S(ρk,k+δ) + S(ρk+1:j). (3.2.3)

Summing these equations, we obtain

S(ρ1:j) +

j−δ∑
k=1

S(ρk+δ) ≤
j−δ∑
k=1

S(ρk,k+δ) + S(ρj−δ+1:j)

S(ρ1:j) ≤
j−δ∑
k=1

S(ρk)−
j−δ∑
k=1

Ik,k+δ + S(ρj−δ+1:j)

≤
j∑

k=1

S(ρk)− Ik,k+δ,

where we have used the definition of the QMI and the additivity of the entropy.



3.3. AN EXAMPLE: MINIMAL-BASIS H2 39

For the Fiedler order [LRH03, BLMR11], the function that is minimised is the total
entanglement

Idist(π) =
L∑

i,j=1

Ii,j|π(i)− π(j)|2, (3.2.4)

over the set of permutations π ∈ PN .
As it is a combinatorial problem, it is necessary to resort to an approximation in

practice. In that case, the problem that is solved is the minimisation of

Ĩdist(x) =
L∑

i,j=1

Ii,j|xi − xj|2, (3.2.5)

with x ∈ RL under the constraint that
∑

i xi = 0 and ∥x∥2 = 1. Introducing the graph
Laplacian Lij = Dij − Iij where D is the diagonal matrix with diagonal entries Dii =∑L

j=1 Iij, we see that

xTLx =
L∑

i,j=1

Ii,j|xi − xj|2. (3.2.6)

The solution to this minimisation problem under the constraint that
∑

i xi = 0 and
∥x∥2 = 1 is given by the second eigenvector of L (the lowest eigenvalue is 0 by construction
of L), which is called the Fiedler vector . The Fiedler order consists in ordering the sites
according to the magnitude of the entries of the Fiedler vector.

Indeed the Fiedler vector is related to the problem of graph partitioning or in our case
the min-cut of the graph. The QMI matrix can be seen as a weight on the graph with L
vertices, for which we need to determine a partition of the vertices into two distinct sets
A and {1, . . . , L} \ A such that it minimises∑

i∈A,j /∈A
Iij. (3.2.7)

For simple cases, it can be proved that the Fiedler vector solves this problem by considering
A = {i | xi > 0}. It is generally believed that for weighted graphs, the Fiedler vector is a
good approximation to the min-cut problem.

3.3 An example: minimal-basis H2

To illustrate the different ordering methods, we now apply them to the minimal-basis H2

wavefunction
Ψ =

∣∣∣(cφA + sφB) ↑, (c′φA + s′φB) ↓
〉
, (3.3.1)
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where φA and φB are respectively the bonding and antibonding orbitals. In the occupation
representation, the state Ψ has the following form

Ψ = cc′Φ(1100) + cs′Φ(1001) − sc′Φ(0110) + ss′Φ(0011) ∈
4⊗

i=1

C2. (3.3.2)

We will compute the singular values of the matrix reshape Ψµ1µ2
µ3µ4
∈ R22×22 , for the different

orderings of the basis set delivered by all the above ordering schemes. To avoid degenerate
cases we assume that all coefficients c, s, c′, s′ in (3.3.1) are nonzero.
Canonical order. We abbreviate the single-particle basis states as {A ↑, A ↓, B ↑, B ↓}.
Directly from (3.3.2) we see that with respect to the canonical order in which the bonding
orbital with either spin comes first,

A ↑ A ↓ B ↑ B ↓, (3.3.3)

the reshape Ψµ1µ2
µ3µ4

is

µ1 µ2⧹µ3 µ4 00 01 10 11
0000 ss′

0100 −sc
1000 cs′

1100 cc′

The singular values are
(cc′)2, (cs′)2, (sc′)2, (ss′)2

and the rank of the matrix reshape is 4.
Fiedler order. We begin by working out the one- and two-orbital density matrices

and the corresponding entropies. The one-orbital quantities are elementary to compute,
they are

ρ
(1)
A↑ =

(
s2 0
0 c2

)
, ρ

(1)
A↓ =

(
s′2 0
0 c′2

)
, ρ

(1)
B↑ =

(
c2 0
0 s2

)
, ρ

(1)
B↑ =

(
c′2 0
0 s′2

)
.

It follows that

s
(1)
A↑ = s

(1)
B↑ = −c2 log c2 − s2 log s2 =: s↑ ∈ (0, 1],

s
(1)
A↓ = s

(1)
B↓ = −c′2 log c′2 − s′2 log s′2 =: s↓ ∈ (0, 1].

As regards the two-orbital density matrices, we find after some calculation that

ρ
(2)
A↑A↓ =


s2s′2

s2c′2

c2s′2

c2c′2

, ρ
(2)
B↑B↓ =


c2c′2

c2s′2

s2c′2

s2s′2

, ρ
(2)
A↑B↓ =


s2c′2

s2s′2

c2c′2

c2s′2

, ρ
(2)
A↓B↑ =


c2c′2

c2s′2

s2s′2

s2c′2

.



3.3. AN EXAMPLE: MINIMAL-BASIS H2 41

It follows that S(2) = −tr ρ(2) log ρ(2) =: S↑↓ is the same for all four matrices. Moreover
writing out the above trace and using c2 + s2 = c′2 + s′2 = 1 we find that

S↑↓ = s↑ + s↓. (3.3.4)

The two remaining two-orbital RDMs contain off-diagonal terms

ρ
(2)
A↑B↑ =


0

s2 −cs(c′2 − s′2)
−cs(c′2 − s′2) c2

0

, ρ
(2)
A↓B↓ =


0

s′2 c′s′(c2 − s2)
c′s′(c2 − s2) c′2

0

.

We denote the associated entropies by S
(2)
A↑B↑ =: S↑↑, S

(2)
A↓B↓ =: S↓↓. The mutual informa-

tion matrix and graph Laplacian are thus, using the vanishing of all nearest-neighbour
elements of I by (3.3.4) and denoting a := 2s↑ − S↑↑, b := 2s↓ − S↓↓,

I =

A ↑ A ↓ B ↑ B ↓
A ↑ 0 0 a 0
A ↓ 0 0 0 b
B ↑ a 0 0 0
B ↓ 0 b 0 0

, L =

A ↑ A ↓ B ↑ B ↓
A ↑ a 0 -a 0
A ↓ 0 b 0 -b
B ↑ -a 0 a 0
B ↓ 0 -b 0 b

.

To determine the Fiedler ordering we need to find the second eigenvector of the graph
Laplacian, alias Fiedler vector. The first eigenvector is always, by construction, the con-
stant vector, with eigenvalue 0. For the above L, by inspection the remaining eigenvalues
are 0, 2a > 0, 2b > 0, with eigenvectors (1,−1, 1,−1), (1, 0,−1, 0), (0, 1, 0,−1). The
second eigenvector is thus (1,−1, 1,−1). It follows that the Fiedler ordering is

A ↑ B ↑ A ↓ B ↓ (3.3.5)

(up to re-ordering the orbitals in the left block, re-ordering the orbitals in the right block,
and flipping the two blocks; none of this affects the singular values). The matrix reshape
Ψµ1µ2

µ3µ4
with respect to this ordering is

µ1 µ2⧹µ3 µ4 00 01 10 11
0000 0
0100 ss′ sc′

1000 cs′ cc′

1100 0

Since the middle block is the rank-1 matrix
(
c
s

)(
c′ s′

)
, the singular values are

1, 0, 0, 0

and the rank of the matrix reshape is 1. We see that the Fiedler order has dramatically
improved the decay of the singular values.
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Chapter 4

Area laws for one-dimensional systems

Area laws have first been stated rigorously for ground-state of one-dimensional gapped
systems with nearest neighbour interactions (NNI) by Hastings [Has07]. Later on, an-
other proof using approximate ground-state projector has been discovered yielding better
bounds [AKLV13]. For both proofs, the goal is to bound the Rényi entropy of the RDM
ρj:j+ℓ−1 by a constant S independent of ℓ and of the size of the system

Sα(ρj:j+ℓ−1) ≤ S. (4.0.1)

By Proposition 3.1.9, this implies that there is a TT approximation of the ground-state
with TT ranks bounded by 2

1−α
α

S.

4.1 Hamiltonian with nearest neighbour interactions
The NNI Hamiltonian considered is of the form

H =
d−1∑
j=1

hj, (4.1.1)

where H is an operator acting on
⊗d

j=1Hj, with dimHj = n and hj is a two-body
operator of the form id1:j−1⊗h̃j ⊗ idj+2:d.

Assumption 4.1.1. We are going to make the following assumptions on H

• the operators h̃j are uniformly bounded, i.e. there is a constant C such that for all
1 ≤ j ≤ d− 1, ∥h̃j∥ ≤ ∥h∥;

• the commutators are uniformly bounded, i.e. there is a constant J such that for all
1 ≤ j ≤ d− 2, ∥[h̃j, h̃j+1]∥ ≤ J ;

43
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• the many-body Hamiltonian H has a unique ground-state Ψ0 with eigenvalue 0 and
a spectral gap γ > 0 independent of d.

The first assumption can actually be lifted and is taken for simplicity. As long as the
commutators [h̃j, h̃j+1] are uniformly bounded, the proof can be adapted to unbounded
operators (see [Ali21]). If the gap closes not too fast, it is possible to still get a polynomial
bound on the TT approximation of the ground-state instead of an exponential one.

4.2 Hastings area law

4.2.1 Lieb-Robinson bounds

An essential ingredient of the area law by Hastings is the repeated use of the Lieb-Robinson
bound for NNI Hamiltonians. This bound describes how the correlation evolves for local
operators.

Proposition 4.2.1 (Lieb-Robinson bound [NS06]). Let A ∈ L(HX) and B ∈ L(HY ) be
two operators with X ∩ Y = ∅. Let A(t) = eiHtA ⊗ idY e−iHt with H given by (4.1.1).
Then there are constants c, a, v > 0 independent of A, B or d such that

∥[A(t), idX ⊗B]∥ ≤ c|X||Y |∥A∥∥B∥ exp(−a(d(X, Y )− v|t|)), (4.2.1)

where d(X, Y ) = minx∈X,y∈Y |x− y|.

The Lieb-Robinson bound is stated here in the special case of a one-dimensional NNI
Hamiltonian but it holds for more general local interactions types [NS06]. In that case,
the distance d is replaced by the natural distance of the interaction picture.

The Lieb-Robinson bound enables to state that the evolution of a local operator re-
mains local by the next lemma.

Lemma 4.2.2. Let A ∈ L(H1 ⊗H2). We assume that H2 is finite-dimensional. Suppose
there is ε > 0 such that for all B ∈ H2, we have

∥[A, id⊗B]∥ ≤ ε∥B∥. (4.2.2)

Then there is an operator A1 ∈ L(H1) such that

∥A− A1 ⊗ id ∥ ≤ ε. (4.2.3)

Moreover, if A is self-adjoint, then A1 can also be chosen self-adjoint.
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Proof of Lemma 4.2.2. The operator A1 is explicitely constructed: take A1 =
1

dimH2
TrH2 A =∫

U(H2)
id⊗U∗A id⊗U dU where dU is the uniform Haar measure on the unitary matrices

of H2. Then we have

∥A− A1 ⊗ id ∥ =
∥∥∥∫

U(H2)

id⊗U∗[A, id⊗U ] dU
∥∥∥ ≤ ε.

Corollary 4.2.3. Let A ∈ L(HX), ℓ > 0 and X̃ = {x̃ | ∃x ∈ X, |x − x̃| ≤ ℓ}. Let
A(t) = eiHtA ⊗ idXc e−iHt with H given by (4.1.1). Then for all t ∈ R, there is an
operator Aℓ(t) ∈ L(HX̃) such that

∥A(t)− Aℓ(t)⊗ idX̃c ∥ ≤ d|X|∥A∥ exp(−a(ℓ− v|t|)). (4.2.4)

If A is self-adjoint, then Aℓ(t) is self-adjoint for all t.

Proof. Combining Lemma 4.2.2 with the Lieb-Robinson bonud (4.2.1), we directly get
the result.

4.2.2 Main theorem and Hastings area law

The main result in Hastings seminal paper states that the ground-state projector can
be exponentially well approximated using an almost tensor product of operators with an
overlapping domain of size ℓ independent of the size of the system.

Theorem 4.2.4. Let H be the Hamiltonian defined in (4.1.1) satisfying the assump-
tions 4.1.1. For any 1 ≤ j ≤ d and any ℓ ≥ 0, there are operators OL ∈ L(H1:j),
OM ∈ L(Hj−ℓ:j+ℓ) and OR ∈ L(Hj+1:d) with ∥OM∥, ∥OL∥, ∥OR∥ ≤ 1 and there is β > 0
independent of ℓ and d and C > 0 depending polynomially on d such that∥∥(id1:j−ℓ−1⊗OM ⊗ idj+ℓ+1:d)(OL⊗ idj+1:d)(id1:j ⊗OR)−|Ψ0⟩⟨Ψ0|∥ ≤ C exp(−βℓ). (4.2.5)

From eq. (4.2.5), the area law and the TT approximation of the ground-state follows.

Corollary 4.2.5. Let Ψ0 be the ground-state projection of H given by (4.1.1). Then the
following assertions are true:

(i). there is a constant S independent of L such that Sα(|Ψ0⟩⟨Ψ0|) ≤ S;

(ii). for any ε > 0, there is a TT approximation TTrΨ0 with TT rank r independent of
d of Ψ0 such that

∥TTrΨ0 −Ψ0∥ ≤ ε.

Remark 4.2.6. It is possible to choose the operators OL, OM and OR to be nonnegative.
By construction, OL and OR are nonnegative and by a little trick, OM can also be chosen
nonnegative [Has07].
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Sketch of an almost-proof of Theorem 4.2.4 The proof of the theorem relies on
the following approximation of the ground-state projection

ρq =
1√
2πq

∫
R
eiHte

− t2

2q dt, (4.2.6)

where q > 0 is fixed later on. Using the spectral gap assumption, we see that

∥ρq − |Ψ0⟩⟨Ψ0|∥ ≤ e−
1
2
γ2q, (4.2.7)

where γ is the spectral gap.
Using the NNI structure of the Hamiltonian, we can write

H = HL+R +HM ,

with HM =
∑j+

ℓ
2

k=j− ℓ
2

hk and HL+R =
∑

k<j− ℓ
2

hk +
∑

k>j+
ℓ
2

hk. The evolution eiHt can be

written
eiHt = eiHL+Rt+iHM te−iHL+RteiHL+Rt.

The trick is to realise that eiHL+Rt+iHM te−iHL+Rt is the solution to{
iU ′(t) = U(t)eiHL+RtHMe−iHL+Rt

U(0) = id .

Since HM = id
1:j− ℓ

2

⊗H̃M ⊗ id
j+

ℓ
2
+1:d

, using Corollary 4.2.3, then for all t ∈ R, there is

H
(ℓ)
M (t) ∈ L(Hj−ℓ:j+ℓ) such that∥∥eiHL+RtHMe−iHL+Rt − id1:j−ℓ−1⊗H(ℓ)

M (t)⊗ idj+ℓ+1:d

∥∥ ≤ 2dℓ∥HM∥ exp
(
−a( ℓ

2
− v|t|)

)
.

Thus the operator eiHL+Rt+iHM te−iHL+Rt can be approximated by

eiHL+Rt+iHM te−iHL+Rt = T exp
(∫ t

0

id1:j−ℓ−1⊗H(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
,

where for an operator A(t), T exp
( ∫ t

0
A(τ) dτ

)
is the time-ordered exponential defined

by [RS75, Chapter X.12]

T exp
(∫ t

0

A(τ) dτ
)
= lim

N→∞
eA(tN )∆teA(tN−1)∆t · · · eA(t1)∆t, tk = k∆t, ∆t =

t

N
.
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Using a Duhamel formula, the approximation of the ground-state projector is

|Ψ0⟩⟨Ψ0| =
1√
2πq

∫
R
eiHte

− t2

2q dt+O(e−
1
2
γ2q)

=
1√
2πq

∫
R
T exp

(∫ t

0

id1:j−ℓ−1⊗H(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
eiHL+Rte

− t2

2q dt

+O(e−
1
2
γ2q + q3/2e−aℓ).

We would be done if it were possible to write eiHL+Rt ≃ OL ⊗ idj+1:d id1:j ⊗OR for OL ∈
L(H1:j) and OR ∈ L(Hj+1:d) that are independent of t. In order to do so, another
transformation is applied to HM and HL+R to guarantee that such a step is justified.

Proof of Theorem 4.2.4

Lemma 4.2.7. Let q > 0 and ρq be defined by

ρq =
1√
2πq

∫
R
eiHte

− t2

2q dt. (4.2.8)

Then we have
∥ρq − |Ψ0⟩⟨Ψ0|∥ ≤ e−

1
2
γ2q, (4.2.9)

where γ is the spectral gap.

Proof. This follows from the spectral gap assumption 4.1.1 and the fact that the Fourier

transform of t 7→ 1√
2πq

e
− t2

2q is ω 7→ e−
1
2
ω2

.

Lemma 4.2.8. For 1 ≤ j ≤ d and ℓ > 0, let

HM =

j+
ℓ
3∑

k=j− ℓ
3

hk, HL =
∑

k<j− ℓ
3

hk, HR

∑
k>j+

ℓ
3

hk.

For q > 0, let

HM(q) =
1√
2πq

∫
R
e−iHtHMeiHte

− t2

2q dt− ⟨Ψ0, HMΨ0⟩ (4.2.10)

HL(q) =
1√
2πq

∫
R
e−iHtHLe

iHte
− t2

2q dt− ⟨Ψ0, HLΨ0⟩ (4.2.11)

HR(q) =
1√
2πq

∫
R
e−iHtHRe

iHte
− t2

2q dt− ⟨Ψ0, HRΨ0⟩. (4.2.12)
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Then for all q > 0, we have

H = HL(q) +HM(q) +HR(q), (4.2.13)

and
∥HM(q)Ψ0∥, ∥HL(q)Ψ0∥, ∥HR(q)Ψ0∥ ≤ γJe−

1
2
γ2q. (4.2.14)

Proof. Since H = HL +HM +HR, eq. (4.2.13) is clear. For eq. (4.2.14), we have

HM(q)Ψ0 =
1√
2πq

∫
R
e−iHtHMeiHtΨ0e

− t2

2q dt− ⟨Ψ0, HMΨ0⟩Ψ0

=
1√
2πq

∫
R
e−iHtP⊥

0 HMΨ0e
− t2

2q dt,

where P⊥
0 = id−|Ψ0⟩⟨Ψ0|. We have

∥P⊥
0 HMΨ0∥ ≤ γ∥HHMΨ0∥ ≤ γ∥[H,HM ]Ψ0∥ ≤ γJ.

Hence using again the spectral gap of H, we obtain

∥HM(q)Ψ0∥ ≤ γJe−
1
2
γ2q. (4.2.15)

The same proof applies to HL and HR.

The operators HL(q), HM(q) and HR(q) do not have the same support as HL, HM

and HR. In fact, their support is now the full Hilbert space H1:d. However, this can be
solved by truncating the operators using Corollary 4.2.3.

Lemma 4.2.9. There are self-adjoint operators H̃L(q), H̃M(q) and H̃R(q) with respective
support in H1:j, Hj−2ℓ/3:j+2ℓ/3 and Hj+1:d such that

∥HM(q)− H̃M(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2,

∥HL(q)− H̃L(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2,

∥HR(q)− H̃R(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2.

Proof. We only give the proof for H̃M(q) as it is identical for the other truncations. By
Corollary 4.2.3, there is an operator H

(ℓ)
M (t) with support in Hj−2ℓ/3:j+2ℓ/3 such that

∥e−iHtHMeiHt −H
(ℓ)
M (t)∥ ≤ ∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

Using that for p, q > 0,
∫∞
0

epte
− t2

2q dt ≲ q1/2ep
2q/2.We deduce that there is an operator

H̃M(q) such that

∥HM(q)− H̃M(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2.
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Lemma 4.2.10. Let q > 0 and ρ̃q be given by

ρ̃q =
1√
2πq

∫
R
ei(H̃L(q)+H̃M (q)+H̃R(q))te

− t2

2q dt,

where H̃L(q), H̃M(q) and H̃R(q) are defined in Lemma 4.2.9. Then we have∥∥ρ̃q − |Ψ0⟩⟨Ψ0|
∥∥ ≲ ∥h∥ℓ2dq1/2e−aℓ/3eqa

2v2/2 + e−
1
2
γ2q. (4.2.16)

Proof. The proof relies on a Duhamel formula:

∥ρ̃q − |Ψ0⟩⟨Ψ0|∥ ≤ ∥ρ̃q − ρq∥+ ∥ρq − |Ψ0⟩⟨Ψ0|∥,

≤ 1√
2πq

∫
R
∥ei(H̃L(q)+H̃M (q)+H̃R(q))t − eiHt∥e−

t2

2q dt+ e−
1
2
γ2q,

≲ ∥h∥ℓ2dq1/2e−aℓ/3eqa
2v2/2 + e−

1
2
γ2q,

where we have used Lemma 4.2.9.
Lemma 4.2.11. Let H̃L(q) and H̃R(q) be the operators defined in Lemma 4.2.9. Let
α > 0 and OR(q) and OL(q) be the following spectral projections

OL(q) =
∑
|λ|≤α

|Φ(L)
λ ⟩⟨Φ

(L)
λ |, OR(q) =

∑
|λ|≤α

|Φ(R)
λ ⟩⟨Φ

(R)
λ |, (4.2.17)

where (Φ
(L)
λ ) and (Φ

(R)
λ ) are the normalised eigenvectors of H̃L(q) and H̃R(q). Then we

have

∥OROLΨ0−Ψ0∥ ≤
1

α

(
∥H̃L(q)−HL(q)∥+∥H̃R(q)−HR(q)∥+∥HLΨ0∥+∥HRΨ0∥

)
, (4.2.18)

and
∥(ei(H̃L(q)+H̃R(q))t − id)OLOR∥ ≤ 2α|t|. (4.2.19)

Proof. We first prove the estimate (4.2.18). Since OL(q) and OR(q) commute and are
bounded operators by 1, we have

∥OLORΨ0 −Ψ0∥ ≤ ∥OLΨ0 −Ψ0∥+ ∥ORΨ0 −Ψ0∥. (4.2.20)

We have

∥OLΨ0 −Ψ0∥ ≤
∥∥∥∫

|λ|≥α

dP
H̃L(q)
λ (Ψ0)

∥∥∥
≤ 1

α

∥∥∥∫
|λ|≥α

λdP
H̃L(q)
λ (Ψ0)

∥∥∥
≤ 1

α
∥H̃L(q)Ψ0∥

≤ 1

α

(
∥H̃L(q)−HL(q)∥+ ∥HLΨ0∥

)
.

Estimate (4.2.19) follows from the definition of OL and OR.
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A final lemma is needed before completing the proof of Theorem 4.2.4 about the
splitting of the evolution ei(H̃L(q)+H̃M (q)+H̃R(q))t.

Lemma 4.2.12. With the notation in Lemma 4.2.9, there is a family of operators H̃(ℓ)
M (t) ∈

L(Hj−ℓ:j+ℓ) such that

∥∥∥ei(H̃L(q)+H̃M (q)+H̃R(q))t − T exp
(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
ei(H̃L(q)+H̃R(q))t

∥∥∥
≤ t∥h∥ℓ2d exp(−a(ℓ/3− v|t|)), (4.2.21)

where for a family of operators A(t), T exp
( ∫ t

0
A(τ) dτ

)
is the time-ordered exponential.

Proof. We can write

ei(H̃L(q)+H̃M (q)+H̃R(q))t = ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))tei(H̃L(q)+H̃R(q))t.

By differentiating we notice that ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))t is the solution to{
iU ′(t) = U(t)ei(H̃L(q)+H̃R(q))tHMe−i(H̃L(q)+H̃R(q))t

U(0) = id .

Alternatively, the solution to the equation above can be written

ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))t = T exp
(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)∗
.

Using a Lieb-Robinson bound and Corollary 4.2.3, there is a family of operators H̃
(ℓ)
M (t)

such that for all t ∈ R, H̃(ℓ)
M (t) ∈ L(Hj−ℓ:j+ℓ) and∥∥∥ei(H̃L(q)+H̃R(q))tHMe−i(H̃L(q)+H̃R(q))t − id1:j−ℓ−1⊗H̃(ℓ)

M (t)⊗ idj+ℓ+1:d

∥∥∥
≤ ∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

It remains to bound the difference between T exp
( ∫ t

0
ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ

)
and T exp

( ∫ t

0
id1:j−ℓ−1⊗H̃(ℓ)

M (τ) ⊗ idj+ℓ+1:d dτ
)
. Recall that for a family of operators

A(t), the time-ordered exponential is defined by

T exp
(∫ t

0

A(τ) dτ
)
= lim

N→∞
eA(tN )∆teA(tN−1)∆t · · · eA(t1)∆t, tk = k∆t, ∆t =

t

N
.
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By a Duhamel formula, the difference of the time-ordered exponentials can be bounded
by∥∥∥T exp

(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)

− T exp
(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∥∥∥
≤ t∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

This finishes the proof of the lemma.

We have now all the ingredients to prove Hastings area law 4.2.4.

Proof of Theorem 4.2.4. Let OL and OR be the operators defined in Lemma 4.2.11. Then
we have

|Ψ0⟩⟨Ψ0| = |Ψ0⟩⟨Ψ0|OLOR+
1

α
O(∥H̃L(q)−HL(q)∥+∥H̃R(q)−HR(q)∥+∥HLΨ0∥+∥HRΨ0∥).

Thus with Lemma 4.2.8 and Lemma 4.2.9, we obtain

|Ψ0⟩⟨Ψ0| = |Ψ0⟩⟨Ψ0|OLOR +
1

α
O
(
γJe−

1
2
γ2q + ∥h∥ℓ2dq1/2e−aℓ/3eqa

2v2
)
.

Using that OL and OR are bounded operators by 1, in combination with Lemma 4.2.10,
we get

|Ψ0⟩⟨Ψ0| =
1√
2πq

∫
R
ei(H̃L(q)+H̃M (q)+H̃R(q))te

− t2

2qOLOR dt+O
(∥h∥ℓ2d

α
q1/2e−aℓ/3eqa

2v2 +
γJ

α
e−

1
2
γ2q

)
=

1√
2πq

∫
R
T exp

(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)∗

e
− t2

2q ei(H̃L(q)+H̃R(q))tOLOR dt

+O
(∥h∥ℓ2d

α
q1/2e−aℓ/3eqa

2v2 +
γJ

α
e−

1
2
γ2q

)
,

where we have used Lemma 4.2.12. By Lemma 4.2.11, we thus have

|Ψ0⟩⟨Ψ0| =
1√
2πq

∫
R
T exp

(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
e
− t2

2qOLOR dt

+O
(
αq1/2 +

∥h∥ℓ2d
α

q1/2e−aℓ/3eqa
2v2 +

γJ

α
e−

1
2
γ2q

)
.

All it remains to do is to set the parameters α and q to prove Theorem 4.2.4. Taking
q = q̃ℓ such that

(
γ2

2
+ av2

)
q̃ < a

3
and α < e−

1
2
γ2q̃ℓ give (4.2.5).
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Chapter 5

DMRG for the electronic Schrödinger
equation

Density matrix renormalisation group [Whi92] (DMRG) is an alternating scheme to solve
linear problems or eigenvalue problems in the tensor train format. In the mathematical
community, it is also referred to the alternating linear scheme (ALS) in its simplest version
or to the modified ALS (MALS) [HRS12a], which is the equivalent to the two-site DMRG.
In DMRG, given a hermitian matrix H ∈ Cn1···nL×n1···nL , we want to solve for x ∈ Cn1···nL

the linear problem
Hx = b, (5.0.1)

for a given b ∈ Cn1···nL , or for (λ, x) ∈ R× Cn1···nL the lowest eigenvalue problem

Hx = λx. (5.0.2)

For both problems, a tensor train representation of the operator H is needed in order to
efficiently implement the DMRG algorithm.

5.1 Tensor train operators

Tensor train operators are also called matrix product operators in physics.

5.1.1 Definition and graphical representation

Definition 5.1.1 (Tensor train operator). Let H ∈ Cn1···nL×n1···nL be a matrix. A ten-
sor train operator (TTO) representation of the matrix is any tuple of order 4 tensors
(H1, . . . , HL), Hk ∈ Cnk×nk×Rk−1×Rk (R0 = RL = 1) such that

Hj1...jL
i1...iL

= H1[i1, j1] · · ·HL[iL, jL],∀ ik, jk = 1, . . . , nk.

53
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j1 j2 j3 j4

H1

H2 H3
H4

i1 i2 i3 i4

Figure 5.1: Diagrammatic representation of a TTO

The diagrammatic representation of a TTO is similar to the diagrammatic of a TT as
illustrated in Figure 5.1.

A TTO representation of a matrix can be obtained by reordering the indices of the
matrix H and performing a TT-SVD of the resulting tensor. More precisely, by defining
the tensor H̃ ∈ Cn2

1×···×n2
L

H̃i1j1;...;iLjL = Hj1...jL
i1...iL

,

we realise that a TTO representation is simply a TT representation of H̃.

Proposition 5.1.2. Let H ∈ Cn1···nL×n1···nL be a hermitian matrix. Then there is a TTO
representation of H such that

∀ 1 ≤ ik, jk ≤ nk, Hk[ik, jk] = Hk[jk, ik], k = 1, . . . , L. (5.1.1)

Proof.

Example 5.1.3. Let us consider the following matrix H ∈ CnL×nL

H = h⊗ id⊗ · · · ⊗ id+ · · ·+ id⊗ id⊗ · · · ⊗ h, (5.1.2)

where h ∈ Cn×n is a hermitian matrix and id is the identity in Cn×n. The matrix
h ⊗ id⊗ · · · ⊗ id is in fact a TTO of rank 1. A naïve application of Proposition 5.1.4
yields a TTO representation of H of rank L. However it is possible to achieve a rank 2
representation with the following construction

H1[i1, j1] =
(
hi1j1 δi1j1

)
, HL[iL, jL] =

(
δiLjL
hiLjL

)
Hk[ik, jk] =

(
δikjk 0
hikjk δikjk

)
, k = 2, . . . , L− 1.

(5.1.3)

Note that this representation also satisfies the property stated in Proposition 5.1.2.
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5.1.2 Algebraic properties

Like the TT representation of vectors, the TTO format has some algebraic stability prop-
erty.

Proposition 5.1.4. Let G,H ∈ Cn1···nL×n1···nL be matrices and (G1, . . . , GL), Gk ∈
Cnk×nk×RG

k−1×RG
k and (H1, . . . , HL), Hk ∈ Cnk×nk×RH

k−1×RH
k be respectively TTO represen-

tations of G and H. Let A,B ∈ Cn1···nL be vectors with respcetive TT representations
(A1, . . . , AL), Ak ∈ Cnk×rAk−1×rAk , (B1, . . . , BL), Bk ∈ Cnk×rBk−1×rBk . Then

(i). the sum G+H has a TTO representation (S1, . . . , SL) given by

S1[i1, j1] =
(
G1[i1, j1] H1[i1, j1]

)
, SL[iL, jL] =

(
GL[iL, jL]
HL[iL, jL]

)
Sk[ik, jk] =

(
Gk[ik, jk] 0

0 Hk[ik, jk]

)
, k = 2, . . . , L− 1

(5.1.4)

(ii). the matrix-vector product C = HA has a TT representation (C1, . . . , CL) with
Ck[jk] ∈ CRH

k−1r
A
k−1×RH

k rAk

Ck[ik] =

nk∑
jk=1

Hk[ik, jk]⊗ Ak[jk], k = 1, . . . , L. (5.1.5)

(iii). the product GH has a TTO representation (P1, . . . , PL) given by

Pk[ik, jk] =

nk∑
ℓk=1

Gk[ik, ℓk]⊗Hk[ℓk, jk], k = 1, . . . , L. (5.1.6)

Proof. This is a direct computation.

Remark 5.1.5. The TTO representations of the sum and the product of the operators are
not optimal. This is clear in the case of the sum G+H when we consider G = H. A TT
rounding step is required in order to reduce the TTO ranks of the representation. This is
not innocuous as essential properties of the matrix can be lost in the rounding procedure
(symmetry for instance).

A diagrammatic proof of the formula for the product of two TTO representations is
given in Figure 5.2, avoiding cumbersome computations.
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j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

(a) Diagrammatic representation of
the product of two TTO

j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

P1 P4

P3P2

(b) Diagrammatic representation of
the product of two TTO

Figure 5.2: Diagrammatic proof of the product of two TTO. The left panel is the di-
agrammatic representation of the product of two TTO. On the right panel, the boxed
tensors Pk are the TTO cores of a TTO representation of the product GH, provided that
the double edges shared between neighbouring Pk are gathered into one edge.

5.1.3 The electronic Hamiltonian as a TTO

The electronic Hamiltonian operator in second quantisation is given by

H =
L∑

i,j=1

hijc
†
icj +

1

2

L∑
i,j,k,ℓ=1

Vijkℓc
†
ic

†
jcℓck, (5.1.7)

where hij (resp. Vijkℓ) correspond to the one-electron integrals and two-electron integrals
with Mulliken’s convention [HJO14]. The tensor representation of the creation c†i and
annihilation ci operators can be written as a tensor product of 2× 2 matrices

ci = Z ⊗ · · · ⊗ Z ⊗ C ⊗ id2⊗ · · · ⊗ id2 ∈ R2L×2L , (5.1.8)

c†i = Z ⊗ · · · ⊗ Z ⊗ C∗ ⊗ id2⊗ · · · ⊗ id2 ∈ R2L×2L , (5.1.9)

where C (resp. C∗) appears in the i-th position and

C =

[
0 1
0 0

]
, and Z =

[
1 0
0 −1

]
.

Since the creation and annihilation operators are written as Kronecker products, their
TTO rank is 1. Using the algebraic properties of TTOs in Proposition 5.1.4, a naïve
implementation of the TTO of an electronic Hamiltonian has TTO rank scaling as L4.

Noticing that the reshape of the two-body interaction at any cut is at most of rank
L2, we deduce that the TTO rank of the electronic Hamiltonian can be reduced to
O(L2) [CKN+16, BGP22]. The TT-SVD is useful to compress these ranks to the op-
timal ones. To preserve the particle and the Hermitian symmetries of the Hamiltonian,
this procedure has to done with great care.
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Remark 5.1.6. In popular implementations of QC-DMRG, it is usual to work in the
space orbital picture. Namely instead of having sites that can be either occupied or unoc-
cupied, sites can be unoccupied, occupied with spin up or down, or doubly occupied. The
expression of the electronic Hamiltonian is similar to the spin orbital case. The main
reason of using this representation is that it is more suited for an implementation that
preserves the SU(2) symmetry.

5.2 The DMRG algorithm
The DMRG algorithm is an algorithm to solve linear systems Hx∗ = b or the lowest
eigenvalue problem Hx∗ = λx∗ using the variational characterisation of the solution to
both problems. As such it is limited in the resolution of linear problems with hermitian
matrices. In the following, we assume that H is a hermitian, positive-definite matrix.

Assumption 5.2.1. The matrix H ∈ Cn1···nL×n1···nL is Hermitian and positive-definite.

The solution to the linear system Hx = b is also the minimiser of the functional

x∗ = argmin
x∈Cn1···nL

1

2
⟨x,Hx⟩ − ⟨b, x⟩. (5.2.1)

Using the Rayleigh-Ritz principle, the lowest eigenvalue of H is given by

x∗ = argmin
x∈Cn1···nL

⟨x,Hx⟩
⟨x, x⟩ . (5.2.2)

5.2.1 General algorithm

The DMRG algorithm, also known as alternating linear scheme (ALS) [HRS12a], is an
alternating optimisation over the TT manifold. The general idea is to perform a descent
step for each TT core separately. More precisely, the solution to the linear system Hx∗ = b
is approximated on the TT manifold

MTT≤r
=

{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Crk−1×rk , rk ≤ r

}
.

(5.2.3)
Denoting by j the map J ◦ TT where

TT :

{
Cn1×r0×r1 × · · · × CnL×rL−1×rL → Cn1···nL

(A1, . . . , AL) 7→ (A1[i1] · · ·AL[iL]),

and J(x) = 1
2
⟨x,Hx⟩ − ⟨b, x⟩.

Minimising J over the manifold MTT≤r
is the same as minimising the functional j.
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Algorithm 3 DMRG with sweeps

Input: (A
(0)
1 , . . . , A

(0)
L ) in right-orthogonal TT representation

Output: (A
(n)
1 , . . . , A

(n)
L ) ∈MTT≤r

approximation of the minimiser in of J

function DMRG((A(0)
1 , . . . , A

(0)
L ))

n = 0
while not converged do

for k = 1, 2, . . . , L− 1 do ▷ Forward half-sweep

B
(n+ 1

2
)

k = argmin
Vk∈Crk−1×nk×rk

j(A
(n+ 1

2
)

1 , . . . , A
(n+ 1

2
)

k−1 , Vk, A
(n)
k+1, . . . , A

(n)
L ) (5.2.4)

Q,R = qr(
(
B

(n+ 1
2
)

k

)βk

αk−1ik
) ▷ QR decomposition(

A
(n+ 1

2
)

k [ik]
)αk

αk−1
= Qαk

αk−1ik
▷ Keep Q(

A
(n)
k+1[ik+1]

)αk+1

αk
←

(
RA

(n)
k+1[ik+1]

)αk+1

αk
. ▷ Shift R to the right

end for
for k = d, d− 1, . . . , 2 do ▷ Backward half-sweep

B
(n+1)
k = argmin

Vk∈Crk−1×nk×rk

j(A
(n+ 1

2
)

1 , . . . , A
(n+ 1

2
)

k−1 , Vk, A
(n+1)
k+1 , . . . , A

(n+1)
L ) (5.2.5)

L,Q = lq
((

B
(n+1)
k

)βkik

αk−1

)
▷ LQ decomposition(

A
(n+1)
k [ik]

)αk

αk−1
=

(
Q
)αkik

αk−1
▷ Keep Q(

A
(n+ 1

2
)

k−1 [ik−1]
)αk−1

αk−2
←

(
A

(n+ 1
2
)

k−1 [ik−1]L
)αk−1

αk−2
▷ Shift L to the left

end for
n = n+ 1

end while
return (A

(n)
1 , . . . , A

(n)
L )

end function
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The optimisation steps (5.2.4) and (5.2.5) are called microsteps. An iteration over the
loop n is called a sweep. Notice that at each microstep (5.2.4) or (5.2.5) the left TT cores
are left-orthogonal and the right-TT cores are right-orthogonal.

The microsteps of the DMRG algorithm applied to the linear problem Hx∗ = b are
linear problems involving an operator Pk : Crk−1×nk×rk → Cn1×···×nL defined by

(PkV )i1...iL = A1[i1] · · ·Ak−1[ik−1]V [ik]Ak+1[ik+1] · · ·AL[iL], (5.2.6)

where (A1, . . . , AL) are TT cores that are left-orthogonal for j ≤ k−1 and right-orthogonal
for j ≥ k + 1. The tensor B

(n+ 1
2
)

k of the microstep problem (5.2.4) is the solution to the
linear system

P ∗
kKPkB

(n+ 1
2
)

k = P ∗
k b. (5.2.7)

Proposition 5.2.2. Assume that (A
(n+ 1

2
)

i )1≤i≤k−1 are left-orthogonal and (A
(n)
i )k+1≤i≤L

are right-orthogonal. Then the microstep (5.2.4) has a unique solution.

Proof. It is equivalent to check that eq. (5.2.7) has a unique solution, i.e. that the matrix
P ∗
kHPk is invertible. As H is hermitian and positive-definite, it is sufficient to prove that

Pk is an injective operator. Let V ∈ Crk−1×nk×rk such that ∥PkV ∥ = 0. Then we have

∥PkV ∥2 =
n1∑

i1=1

· · ·
nL∑

iL=1

Tr
(
AL[iL]

∗ · · ·Ak+1[ik+1]
∗V [ik]

∗Ak−1[ik−1]
∗ · · ·A1[i1]

∗

A1[i1] · · ·Ak−1[ik−1]V [ik]Ak+1[ik+1] · · ·AL[iL]
)

=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
V [ik]

∗Ak−1[ik−1]
∗ · · ·A1[i1]

∗A1[i1] · · ·Ak−1[ik−1]V [ik]

Ak+1[ik+1] · · ·AL[iL]AL[iL]
∗ · · ·Ak+1[ik+1]

∗)
=

nk∑
ik=1

Tr
(
V [ik]

∗V [ik]
)
,

where we have used the cyclicity of the trace and the orthogonality of the TT cores. Hence
PkV = 0 if and only if V = 0.

The condition number of the microstep (5.2.7) is bounded by the condition number of
the matrix H.

Proposition 5.2.3. The condition number of the linear system (5.2.7) is bounded by the
condition number of H, i.e.

cond2 P
∗
kHPk ≤ cond2A.

Proof. This follows from the inequalities λmin(P
∗
kAPk) ≥ λmin(A) and λmax(P

∗
kAPk) ≤

λmax(A).
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5.2.2 Implementation details

In this part, we give some details about the implementation of the DMRG algorithm
described in Algorithm 3, as well as the total computational cost of a sweep.

The matrix P ∗
kAPk A critical step in DMRG, we want an efficient way to implement

the effective matrix P ∗
kAPk (see Figure 5.3).

j1

β1 A2 A3
A4

H1

H2 H3
H4

i1 α1 A2 A3
A4

(a) Effective matrix (P ∗
1HP1)

β1j1
α1i1

∈
Rr1n1×r1n1

A1 A2 β2 β3
A4

j3

H1

H2 H3
H4

i3

A1
α2A2

α3
A4

(b) Effective matrix (P ∗
3HP3)

β2j3β3
α2i2α3

∈
Rr2n3r3×r2n3r3

Figure 5.3: Examples of P ∗
kHPk

As the TT ranks can be large (of the order of 103− 104), it is inefficient and useless to
build the effective matrix P ∗

kHPk. Instead, what is needed is the matrix-vector product
P ∗
kHPkAk where Ak ∈ Rrk−1nkrk . For this, a splitting of the effective Hamiltonian is used

and it is written (
P ∗
kHPk

)βk−1jkβk

αk−1ikαk
=

Rk∑
νk=1

(
Lk

)βk−1jkνk

αk−1ik

(
Rk

)βk

αkνk
. (5.2.8)

This splitting is illustrated in Figure 5.4.

A1 A2 β2

j3

H1

H2 H3

i3

A1
α2A2

β3
A4

H4

A4
α3L3 R3

Figure 5.4: Splitting of the effective Hamiltonian
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The computation of the matrix-vector multiplication goes as follows(
P ∗
kHPk

)βk−1jkβk

αk−1ikαk

(
Ak

)
βk−1jkβk

=
((
Lk

)βk−1jkνk

αk−1ik

(
Ak

)
βk−1jkβk

)(
Rk

)βk

αkνk
,

i.e.

(i). first, we compute for 1 ≤ ik ≤ nk, 1 ≤ νk ≤ Rk, 1 ≤ αk−1, 1 ≤ βk ≤ rk the sum
rk−1∑

βk−1=1

nk∑
jk=1

(
Lk

)βk−1jkνk

αk−1ik

(
Ak

)
βk−1jkβk

.

This scales as O(n2r2R).

(ii). in the second step, the previous tensor is contracted with Rk: for 1 ≤ αk−1 ≤
rk−1, 1 ≤ αk ≤ rk, 1 ≤ ik ≤ nk, we sum

Rk∑
νk=1

rk∑
βk=1

(
LkAk

)νk
αk−1ikβk

(
Rk

)βk

αkνk

This scales as O(nRr3).

So overall the matrix-vector multiplication costs O(n2r2R + nRr3).
The assembly of the left Lk and right Rk splitting of the effective Hamiltonian has a

similar cost.

The RHS P ∗
k b

5.3 Convergence of DMRG
The global convergence of DMRG is a difficult problem, as the TT manifold is not a
convex set. The convergence results on DMRG are local and assume that the Hessian of
the functional j is of full-rank.

Assumption 5.3.1. At the local minimiser A∗, the Hessian j′′ is of full rank

rank j′′(A∗) =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i , i.e. ker j′′(A∗) = TA∗MTT≤r
. (5.3.1)

5.3.1 Local convergence of DMRG

Assumption 5.3.1 ensures that the Hessian is invertible at the solution to the DMRG
equations.

Theorem 5.3.2 ([RU13, Theorem 2.7]). There exists a neighbourhood W of A∗ such that
Algorithm 3 initiated with A(0) ∈ W converges to the minimiser A∗.
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Figure 5.5: Convergence to the solution of Hx = b with H the discrete Laplacian in
R48×48 b a random tensor of TT rank 2. The reference solution has TT rank 10.

5.3.2 Half-sweep convergence

A more surprising result states that if the TT ranks in the DMRG algorithm are exactly
the TT ranks of the sought solution, then DMRG returns the exact solution in a half-sweep
(see Figure 5.5).

This result is shown in the case of H = id in [HRS12a].

Proposition 5.3.3 ([HRS12a, Lemma 4.2]). The DMRG algorithm applied with H = id
converges in a half-sweep for almost all initial guess with the same TT rank as the right
hand side.

The condition on the initial guess is related to a nondeficiency of the initialisation of
the DMRG algorithm.

Remark 5.3.4. A similar result holds for tensor rings, see [CLL20].

5.4 Two-site DMRG: how to dynamically adapt the TT
ranks
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