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Introduction
Perspectives on heavy nuclei




The quest for heavy nuclei

138X e: exploratory study
Arthuis et al., Phys. Rev. Lett. 125, 182501 (2020) 208pPp

82

s0 | PO - i

proton number Z

100Sn: studied in detail
Morris et al., Phys. Rev. Lett. 120, 152503 (2018)

50 82 126
neutron number N
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The setting

e Goal: solve quantum many-body problem over the entire nuclear chart (A > 100)

H|wn) =En|wn)

* Converged calculations require very large single-particle model spaces

Z WpgrstuClhctcleycecs

2 r
(3|) pqrstu b

* Three-body forces: introduction of additional cut on quantum numbers

ep+eq+erSE3maX eu+et+e_5£E3max

e Current capabilities are insufficient to reach convergence beyond A=/00

sizeable dependence on E3zmax
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E3max in practice

IMSRG(2) calculations in A=100/120 systems
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(the best we can do!)

A. Tichai — GDR workshop 6 February 2021



Dimensionalities

Roth et al, PRC 90, 024325
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Low-rank properties
of nuclear interactions




What is the origin of the complexity?

—_— O(100) topologies

momentum
discretization

Momentum basis |
(matrix/tensor)

—_—> O(10%) matrix elements

Talmi-Moshinsky
=+

HO transformation

o=

| Single-particle basis |
(matrix/tensor)

—l 0(10?) matrix elements
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Concepts of data compression

Complex object

... but lower
resources required

loss of detailed
information ...

Simpler object
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Concepts of data compression

Original picture

Example from |
~ image processing {4

791 - 640 pixels

data compression algorithm
(singular value decomposition)

30 % 9 %
(of initial size)

A. Tichai — GDR workshop 11 February 2021



Basics of tensor decomposition

* Mode-N tensors are multi-variate data arrays depending on N indices

Tiqeiy

* Storage requirements depends on index ranges of individual indices

I1---Iy
* Tensor factorization: rewrite tensor as sum of products that is ‘close’ in some sense
Tiqeiy = Tigeiy

* Relative approximation error typically accessed via Frobenius norm

17—l Z .
T = ”T” — Til"'iNTil---iN
il'"iN

Il

* |Important: tensor norms measure quality of non-observable object (e.g. potential)

What matters is performance
on observables!
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Basics of tensor decomposition

* Tensor format: specification of its factors and contraction scheme

rank
\ factors .
: i
) R | é)
Tij= ZXiO(YO(j = | a
a

- ,. ?

auxiliary index
Feynman-style notation
* Rank controls both complexity and accuracy of the decomposition

* In the limit of an infinite rank the tensor decomposition becomes exact

F Ao r

* There is a finite format-specific critical rank at beyond which no error occurs

AT = O VYR 2 Rcrit

A. Tichai — GDR workshop February 2021



Example: reconsider tensor format with index range: i,j = [,...100

R
Tj= ZX iaYaj
a
Make an educated guess for the decomposition factors: Xij=Tj

R

Ti=> Tiaboj =T
o

\ Rcrit = 100

(upper bound)

General alternative: count the degrees of freedom on both sides

R
T = XiYori
__— ij ; ialoj <+— 5.100- R
100 - 100

Again: the critical rank will be different if the tensor format is different!
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Reshaping operations

* Most tensors appearing in quantum many-body theory have mode greater than two

* |t is often useful (and necessary) to interpret them as matrices (mode-2 tensors)

Tpars Ty

* Reshaping imposes no approximation but is rather data rearrangement

* Very natural since computationally the data is a vector either way

=TT D

Tr
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Overview of tensor formats

one-body line

two-body line

The ‘spectrum’ of tensor formats
‘rank’ line

simple
tSVD
truncated singular value decomposition
() () ( =—
\/ S \/
aggressive
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Matrix decompositions

* Prototype of a matrix factorization: singular value decomposition (SVD)

singular values (non-negative)

/
M=UzZV' with = =diag(s1,...,5n)

/N

left/right singular vectors

* Truncated singular valued decomposition: keep only largest singular values

~N

M=U%ZV" with S=diag(s1,...,SReyp, 0, ..., 0)
* Versatility: can be applied to non-square and non-Hermitian matrices

* Eckart-Young theorem: tSVD provides best rank-R approximation to matrix

* Practical advantage: fast algorithms implemented in any good library
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How to approximate SVD

| — <

R

l l compression

| ' H

truncated
. 2 .
SVD R R-N
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Why is SVD so natural?

* Size of singular values is a natural measure for importance of information

* Standard reshaping operation respects Fermionic permutation symmetries

» oo

* Historically nuclear physicists extensively studied separable potentials

V(. a)=9-f(q")-f(q)
* A rank-1 tSVD yields a separable representation of a potential ...

* ... and higher ranks in the decomposition correct for the non-separable character
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Results on SVD

singular values of HF matrix elements

* Singular values are rapidly suppressed L L B
in standard ordering (‘1234’) a1
G0
!
=
. o0
* For unnatural grouping (‘1423’) 9
almost no compression
B
>
n
<
P r k=
S
s q
‘1423’ grouping /.Q\
7
o)
o
e Strong dependence on coupled @ %
two-bOdyangUIarmomentum] h -3_| [ N N R N NN NN M M N T T T |‘I L1 |;
0 25 50 75 100
(ﬁf]] |H|FS) ) percentage of singular values

Tichai, Schutski, Scuseria, Duguet, PRC 99, 034320
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Overview of tensor formats

one-body line

two-body line

The ‘spectrum’ of tensor formats
‘rank’ line

simple CPD

canonical polyadic decomposition

aggressive
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Canonical polyadic decomposition

critical rank
Rcrit — Nd_l

* More aggressive factorization that decouples all external indices

RcpD

Tiikoksks = ZX X2 X3 x4

kia” ko k30( kaox
* CPD tensor format naturally extends to arbitrary higher modes ...

* ... but numerical computation is quite challenging for larger dimensions
O(Nd_l * Rcpp - Niter)
* Example: two-body interaction (d=4) with target rank R=N2>

O(NS'S * Niter)

* Decomposition factors obtained from least-square minimisation of norm difference

min ||T—TJ?

XL... XN

lllll

A. Tichai — GDR workshop 22 February 2021



Results on CPD

CPD decomposition of HO matrix elements
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Overview of tensor formats

one-body line

two-body line

The ‘spectrum’ of tensor formats
‘rank’ line

simple THC

tensor hypercontraction

aggressive \
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Tensor hypercontraction

Hohenstein, Parrish, Martinez, Schutski, Scuseria, ...

* Decoupling of external indices only among bra and ket indices
critical rank

N2
R Rcrit =N
THC ———

- _ 1 42 3 4
Tkikaksks = Z,BI XklanzaWaBXk3ﬁXk4ﬁ
o

1

core tensor

* Hybrid tensor format merging central ideas from tSVD and CPD

e Storage requirements scale quadratically with respect to tensor rank

2
4-N-Rrhc + R2,,.

* Very successfully applied in various quantum chemistry applications
RtHc = O(N)

* Practically obtained from a multi-step procedure involving CPD and tSVD
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How to obtain the THC format

one-body line
two-body line
CPD rank line

SVD rank line
Reshaping

l tSVD
Reshaping

— =00 0O—

()

S
implicitly depends

CPD l

on tSVD rank
SvD coIIapse Y)\

final THC format
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THC results

* Fast convergence for most channels

(k1k2J|Hintr.|k3K4))

* |ntermediate values of two-body
angular moment converge slower

* Rapid decrease of decomposition
error near critical rank

e Computationally cheaper than CPD

* Less good than in quantum chemistry

Rruc = O(N1-4-18)
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THC decomposition of HF matrix elements
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Perspectives on three-body operators

* Low-mode tensors are part of extensive investigations in applied mathematics

..« but structured mode=-6 tensors are exotic!

* Naive approach: application of truncated SVD in three-body space

==

* Design of more aggressive factorizations is less straightforward

A. Tichai — GDR workshop
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Idea: THC for mode-6 tensor
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Main theorem of tensor calculus

“Employ factorization techniques as early as possible
in your workflow. Once your tensors are decomposed
you should NEVER (!!!) reconstruct them!”
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Factorization of matrix elements

Talmi-Moshinsky + ¢

see talk on Tuesday!

HO transformation

Harmonic oscillator

(system independent) J \

isospin decoupling + ¢

s.p. basis transformation applied hel"e!
[ Hartree-Fock ] /

currently factorization

(system dependent)

s.p. basis transformation ¢

Natural orbitals
(system dependent)
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Factorization of matrix elements

| Future:
— apply factorization here!

Talmi-Moshinsky + ¢

HO transformation

Harmonic oscillator
(system independent)

isospin decoupling +
s.p. basis transformation

Hartree-Fock
(system dependent)

s.p. basis transformation ¢

Natural orbitals
(system dependent)
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Factorization of basis transformation

* Many-body theory requires extensive use of single-particle basis transformation

B’ _ Z B
T,<1,<2,<3,<4 = CtlklC12/<2C13/<3C14/<4T,1,2,3,4
Lblzlg

e THC decomposition enables transforming factor matrices only (same for CPD)
Ylt<10{ — Z ClikiX;l-a

* Core tensor remains unchanged since it only depends on auxiliary indices

RTHC

B’ _ 1 2 3 4
TI<1I<2/<3/<4 _ Z,B YI<10{Y/<20{WO{'8Y/<3BY/<4B
(04

* Reduced computational complexity when operating on decomposition factors

THC
O(N°) — O(N*RTHC)
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Tensor-structured
many-body theory




The general problem

Internal summation

: ‘ External indices
(contraction)

Output tensor
(Cluster amplitudes)

Input tensor
(Hamiltonian)

Ab initio many-body theory is (to a large extent)
the theory of efficiently processing tensor contractions!
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Why is many-body theory so hard?

Task: Problem:

contract the red line various blue lines

A contraction needs to be done
for every combination of external indices!
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Why is many-body theory so hard?

Now with
tensor decomposition!

rotesern N\
AN

Ultimately the many-body approach
is expressed in terms of one-body operators only!
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Why tensor decomposition?

e Decompositions enable for flexible contractions schemes for tensor networks

n n R
MM =) MMk, = D >, (UkyaLap) (V] Upy)(EysVy, )
p P apyé

/ ~_1_—

n3 operations nR2 operations

* Tensor contractions can be performed within different complexity class

/

NP — NP’ p'<p
* Example: tSVD of matrix with dimension N=/00 and SVD rank R=20
(R — NO'65)
N3 s N2.3

* Problem: not all tensor contractions are simple matrix products!
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Energy denominators

* Perturbation theory expressions naturally involve energy denominators

1
€Eq+ Ep—E[—Ej

Dapbij =

* Analytical CPD factorization can be obtained via inverse Laplace transform

o0
Dabij — f e—t(€a+€b—€[—€j)dt
0

* Decomposition factors are obtained via numerical quadrature

Braess, Hackbusch,

Dapij = Z MasThsWsTisTljs IMA J. Numer. Anal. 25, 685 (2005)
S
* |Integration with very high precision using constant (system-independent) mesh size

* Extension to higher-mode tensors can be done in the same way
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THC-factorized MP2

3 tensors

14 tensors

e Simple MP2 tensor network replaced by more complicated factorized topology

* Factorization leaves more freedom in optimising the contraction order

* General feature: many-body frameworks becomes more involved
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THC-MP2 results

Tichai, Schutski, Scuseria, Duguet, PRC 99, 034320

Error of MP2 as function of THC rank

1 [m@ o] 0 A : e ® 'Y .
Y . _
R e ssmerens
¢
E 1072 |, 160 + : —
10-3 | + 0Ca i

| | | | | | | | |
02 04 06 08 10 1.2 14 16 1.8

log nr (rTHC)

* |Improved accuracy of correlation energy for higher decomposition ranks
* Monotonic behaviour sometimes broken and 4He involves jumps

e Correlation error vanishes when approaching the critical THC rank of Rthc = N2
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Compression rates

Modelspace:
5 oscillator shells
140 basis functions

Correlation between MP2 error and compression rate

~ ] T T TTTIT] T T TTTIT] T T TTTIT] | —
: ?[ZN—I—SNJ "D mo °© F 7 E ‘physical’ accuracy
[ B -
1071 E ¢ =
S : -0 é
Lﬂ 10_2 = H u * =
< = Bi a F E
103 = - B + 0Ca =
10_4 B | L1 vl L1 1l L1 1l L
1 10 100 1000
Rc

* General trend: higher precision corresponds to lower compression rates

full storage
Rc =

compressed storage

e Significant compression rates obtained in high-precision regime (AE < | %)

* Much larger compression rates expected in large model spaces
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Factorization vs. Selection

Modelspace:
5 oscillator shells
140 basis functions

Comparison of IT and THC for BMBPT2 error

- T I T TTTIT] T T TTTTT] T T TTTTT] L —
1 {2N+3N) e e e e e e
; o © ..,.0 §
— 10—1 :_ .‘.. l..-‘. —:
DR g o -' 1 _— ‘physical’ accuracy
S —2 L i 4/
S S I ((0) ) -
4 C L, oK m
103 . s D) |2
C : o THC |-
10_4 I S L1 1yl L1y rul L1 1l L
1 10 102 103
Rc

* Efficiency of IT and tensor factorization is very similar in schematic applications
* Advantage of THC: pre-processing enables for lower-scaling many-body methods

* Advantage of IT: conceptually simpler since no (expensive) decomposition needed
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Tensor-structured coupled cluster theory

THC-RCCSD calculations

Hartree

A\ij 10k : . < chemical accuracy
= 10'5i Acetic acid /\ _
< § ?
_b: B2F4 |
10 “{ 3
| ——— Methylformate ] :
1o . . , , , : , Schutski et al.,
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 J. Chem. Phys. 147, 184113 (2017)
lOgN (RTHC)

 Chemical accuracy in THC-RCCSD application with (almost) linear rank

* Non-monotonic dependence of error as function of decomposition rank

* Generation of source code cannot be implemented manually anymore

> 10.000 equations!
(>500 pages of appendices)
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e e _ e R

.

Tensor decompositions

R

* Novel exciting tool to lower computational resources in many-body theory

* Tensor formats can easily adapt to various situations/symmetries

* First applications show promising performance in nuclear physics theory

R e e R e — e

e e _ e R

|
4

Future work

* Development of new tensor formats specific to nuclear theory applications

R

* Implementation of large-scale codes to reach larger model spaces

* Adaption of many-body toolchain to factorized tensor representations

S — e —

R e e R

L
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Further reading

e General introduction to tensor calculus

Tensor review: Kolda, Bader, SIAM Rev., 51(3), 455-500.
* (Selected!) Applications in quantum chemistry

SVYD-CCSD: Kinoshita, Hino, Bartlett, . Chem. Phys. 119, 7756 (2003)

SVD-CCSD-T I: Hino, Kinoshita, Bartlett, J. Chem. Phys. 121, 1206 (2004)

THC: Parrish, Hohenstein, Schunck, Sherill, Martinez, Phys. Rev. Lett. | 11, 132505 (2013)
Rank-reduced CCSD: Parrish et al., . Chem. Phys. 150, 164118 (2019)

Rank-reduced EOM-CCSD: Hohenstein et al., J. Chem. Phys. 151, 164121 (2019)

THC series: Hohenstein/Parrish/Martinez/Kokkila/Sherrill (2013-2017)

THC-CCSD: Schutski et al., ). Chem. Phys. 147, 184113 (2017)

* Applications in nuclear physics

DMRG in shell model: Papenbrock, Dean, J. Phys. G 31, 1377 (2005)
CPD/THC & MP2: Tichai, Schutski, Scuseria, Duguet, Phys. Rev. C 99, 034320 (2019)
THC & BMBPT: Tichai, Ripoche, Duguet, Eur. Phys. Jour. A 55: 90 (2019)

e Software:

Tensorlab 3.0 [Matlab]: Vervliet, Debals, Sorber, Van Barel, De Lathauwer, https://www.tensorlab.net/

A. Tichai — GDR workshop 15

February 2021


https://www.tensorlab.net/

