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’ Real-space quantum Monte Carlo methods

Stochastically solve interacting Schrodinger equation

Why (real-space) quantum Monte Carlo?

— Favorable scaling — Energy is m

— Flexibility in choice of functional form of wave function

— Easy parallelization

— Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto Ci3gHag (A|fé 2017)




’Simplest flavor: Variational Monte Carlo

Quantum observables — expectations values — integrals

Use Monte Carlo to compute expectation values
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Just a to compute integrals in many dimensions



’ Key role of many-body wave function ‘

Commonly employed compact Jastrow-Slater wave functions
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— Jastrow correlation factor

— Explicit dependence on electron-electron distances r;;
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Z ¢; D; | — Determinants of single-particle orbitals

- and not millions of determinants



Typical variational Monte Carlo run

Example: Local energy and average energy of acetone (C3HgO)

Oyme

Energy (Hartree)




’ Beyond variational Monte Carlo‘

What goes in, comes out! Can we remove wave function bias?

’ Projector Monte Carlo method ‘

> Construct an operator which inverts spectrum of H

Diffusion Monte Carlo — e "(H—Er)
> Apply operator to initial ¥
Vo = lim e "(H-Er)y
T—r 00

if we choose ET ~ Ep



How do we perform the projection stochastically?

Vo = lim e "H-Eny

T—00

Rewrite projection equation in integral form

V(R t+7) = /dR (R'|e "M=ET)|R) W(R, t)

Perform this integral by Monte Carlo integration

> Represent W(R, t) as an ensemble of walkers
R

T
A

Note: Projection with other basis, e.g. determinants — FCIQMC

> Generate random walk by iterating integral equation



Diffusion Monte Carlo and the fermionic sign problem

V is positive/negative = W is not a probability distribution

W(R)=0

— ’ Fixed-node approximation

b

Find best solution with same nodes as trial wave function ¥

Is fixed-node diffusion Monte Carlo variational?
— For the ground state and each lowest state in its symmetry class

— What about “real” excited states?

In general, exact excited state for exact nodal structure




’ Have we solved all our problems?

Results depend on the nodes of the trail wave function W

’ Diffusion Monte Carlo as a black-box approach?‘

enmap for atomization energy of the G2 set

DMC CCSD(T)/aug-cc-pVQZ
HF orb Optimized orb CAS
EMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on W, we can do rather well



Diffusion Monte Carlo as a black-box approach?‘

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP /aug-cc-pVTZ orbitals versus CCSD(T)/CBS

' ‘ Apniap = 0.058 kecal/mol ‘

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on W, we can do rather well



Diffusion Monte Carlo as a black-box approach?

Not really! Excitation energy and wave function dependence:
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Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on W pays off!



’Optimization in QMC‘

In QMC literature, a lot of total (ground state) energy calculations

... with "borrowed” geometries and/or wave functions

Why? What about energy derivatives?

Cost of forces is much larger than cost of E: ‘ O(N*) — O(N®) ‘

Recent developments

Formalism to compute many derivatives as efficiently as the energy

... also for multi-determinantal expansions

— Optimize the energy of ground and excited states!



’What do we need to perform an energy optimization?‘ (1)

’ Interatomic forces| — derivatives wrt nuclear coordinates

We employ low-variance estimators of forces

PRY
F = —0uf = ~(0uEL + 2(EL — E) )

"Pulay” term

(H — E|)9aV ’ ER%
=  F=(0H+ # +2(EL - E)5)
~—_——

zero expectation value

Why using such an expression?

Lower fluctuations| — 0 as ¥ — WY




What do we need to perform an energy optimization?‘

Low-variance estimator of interatomic forces
Va\II>
U

""Pulay’ term

F=—-V.E=—(VoE +2(EL — E)

We need the following quantities:

— in the sampling process
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Wave function optimization — — and a—L might be needed
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Efficient computation of derivatives of E

Simple formalism for the efficient computation of ¥, E;, OV, 0E;

for general multi-determinant Jastrow-Slater wave functions

— | Cost of derivatives is the same cost as computing E

C. Filippi, R. Assaraf and S. Moroni, JCP (2016)

R. Assaraf, S. Moroni, and C. Filippi, JCTC (2017)



Interatomic forces for multi-determinant wave functions |

Example: Polyenes C,H,1> — from C4Hg to

3.5 T T \

3.0 [

1.0 CaHe —@—
CgHio —@—
05 | CteHis —@—
CogHzo —@—
CeoHe2

PUvmc+forces / CPUvmc

0 L L L
1 10 100 1000

number of determinants

10000

Cost of forces is less than 4 times the cost of the energy



Wave function optimization

Example: Polyenes C,H,1> — from C4Hg to

Derivatives with respect to parameters in ¥ = 7 D

5

CPUvmc+derivs / CPUvmc
©w

0 1x10*  2x10*  3x10*  4x10* |5x1o4|

number of parameters

O(N?) derivatives of W and E; cost less than 4 times cost of £,



Origin of magic? (1)

Recall: We want efficient computation of W, E;, 0V, 0E;

Consider simple one-determinant wave functions

V=7 det(A)‘ where | Aj = ¢;(ri)

For the derivatives, use that

oudet(A) .
T(A)ftr(A 0, A)

Rewrite one-body operators acting on W in a similar manner!

For instance, the local energy — | E; = v tr(A~1B)

where B depends on orbitals, Jastrow, and their derivatives



Simple rewriting of one-body operators‘

PN

Consider a one-body operator | O = O(r1) + ... O(ry)

and |V =det(A)| with |A; = ¢;(r;)

O det(A) = Zo r;) det(A)
= Z Z 06;)(r))(A™1)i det(A)
= ZZBU 1);i det(A)

= tr(A lB)det( )

<|g

= tr(A7'B)| with | B = (0¢))(r))




’Simple example: the local kinetic energy‘

A 1 1 1
T:_EZAI = O(r,')—2A,'—<
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Let us compute the local kinetic energy of | W = det(A)

T det(A)
det(A)

where

= tr(A7'B*™)
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’Origin of the magic?‘ (2)

Given ‘\U =J det(A)‘ where  Aj = ¢;(r;)

E = = tr(A"!B)

Advantage in computing the derivatives?

OuEL = tr(A™10,B — X9,A)

— Compute and store X = A"1BA™1

— Compute each derivatives at a cost O(N?)

— Forces will cost O(N?) like the energy!



| What about multi-determinant wave functions?

Simple formulas to compute all derivatives of E

Ne

v Jdet(A)  — T cdet(A)
i



| What about multi-determinant wave functions?

Simple formulas to compute all derivatives of E

Ne
v Jdet(A)  — T cdet(A)
i

Matrix A — A (extension to virtual orbitals)

ol

B —



| What about multi-determinant wave functions?

Simple formulas to compute all derivatives of E

U

Matrix

J det(A)

A
B

tr(A"1B)

—

Ne
J Z Cy det(A/)
I

A (extension to virtual orbitals)

ol

tr(F'B)




’What about multi-determinant wave functions?

Simple formulas to compute all derivatives of E

Ne
v Jdet(A)  — T cdet(A)
/
Matrix A — A (extension to virtual orbitals)
B — B
E tr(A"'B) — tr(TB)

Similar expression for derivatives as in single-determinant case

OuEL = tr(r9,B —Q0,A)

Compute ' and Q, evaluate all derivatives at cost O(N3) + O(N,)



’ Full optimization of octatetraene‘

CgHio with a SDT(22,22) — [200000 determinants

’Optimize geometry and all 65000 parameters in wave function

-51.27

-51.29 |

CAS(8,8)
2,000 det

energy (Hartree)

-51.31 1
SDT(22,22)
200,000 det
AN,
-51.33 ‘ ‘ ‘
0 50 100 150 200

iteration



Wave function optimization: stochastic reconfiguration

Efficient computation of 9,V and 9, E;,

but we are typically optimizing many parameters, 50k-100k

— | Energy minimization | with which approach?

We have been using the SR method to optimize parameters, p

where the “poor-man” Hessian is

5= () — (W) ()



Stochastic reconfiguration

We use low-memory implementation of the SR method

In conjugate-gradient method, we compute SAp

Np
j;s,-jépj = Z w 5pj,

Store W; /W along the run — cost O(NcgMN,)

Myc w

k=1



Alternative optimization approaches ‘

Linear method (Toulouse, Umrigar, 2007)

0
OV(p") o .
opi

W(p) = W(p) +

]

Solution of generalized eigenvalue problem
HAp=ESAp

v (p°)

in the basis of {W(p?),
(W) =52

}

— Low-memory implementation with Davidson

In principle, faster converging but SR much more robust to noise



’Variance minimization (1)

Method of choice is energy minimization !
State-specific variance minimization also for excited states?

s (VR - w)|v)
: (v[w)

where w is modified to follow average energy

Often, optimization escapes target state, finding little or no barrier
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Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC (2020)



Variance minimization‘ (2)

Toy problem: W = 3". ¢;JD; with 13 linear parameters/eigenstates

Eig13 —— Eig 2
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Variance (a.u.)
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Optimization iteration

Lowest-variance state is not lowest-energy state



Treating excited states

For multiple states of same symmetry — vk = Z c,K J D
I

Common parameters in 7 and D; but different coefficients c,K

Optimize parameters in 7 and D; by minimizing state-average Ega

(WKIH WK
Z WK ~———o o WKWK with EK:WKI

and preserve orthogonality through coefficients C,K




Ready to explore new territories‘

Efficient derivatives of E for parameters and determinants

+ Toolbox of optimization tools

— QMC “internally consistent” (geometry and wave function)

— ‘ Explore sensitivity of QMC to choice of Slater expansion‘

— Answer some open questions:
Do we really need a multi-determinant expansion in QMC?

How do we choose the expansion in V = jz cD;?
!
What do we gain from a DMC calculation?



Determinantal expansion in QMC wave functions‘

Example: Polyenes

<
V=7 Z,’ ¢iDi| — ¥ ot S LUMO+1 LUMO
HOMO-1 HOMO

Possible choice: Correlate electrons in active orbitals — CAS(4,4)

Active
Space
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’A quickly unmanageble wave function‘

Example: Polyenes

V=J|)chi|—= :)H;HC — *ﬁ

LUMO+1 LUMO

- & a®

HOMO-1 HOMO
C4He CeHsg CgHio CioH12 B CioHis
CAS (44) (6,6) (8,8) (10,10) (12,12)
Det. 36 400 4900 63504 853776

We are only correlating a subset of electrons/orbitals!

... and some sort of truncation of expansion is clearly needed



’ Example: Geometry optimization of butadiene‘

’Optimal bond length alternation ‘ with ‘\U =J x CAS‘

0.128

0.124

0.120

Bond Length Alternation (A)

0.116

0.132
q

BLA

(4.4)

(4,16)

(4,20) b

10

100 1000
Number of determinants

Surprisingly large number of determinants!

10000

100000

46,000 det



’A better scheme to build the wave function‘

Butadiene: significant variations in QMC geometry/energy with W

Selected Cl | — Automated approach for wave function generation

Verpsi = Y | ciDi
D;eS

SO SN Sl N Sn Full space

(D H|vcrps) [?
E(CI) — (D;|H|Dj)

(2 _
OE;” =

Can this lead to optimal QMC geometries with few determinants?



’A better scheme to build the wave function‘

Butadiene: significant variations in QMC geometry/energy with W

Selected Cl | — Automated approach for wave function generation

Verpsi = Y | ciDi

D;eS
So—>S1---— S, I
SE® _ (D H|vcrps) [? ‘;’; Y Exact
/ E(CI) - <D]|H|DJ> —26:3

-09 -08 -0.7 -06 -05 -04 -03 -02 -0.1 0
E(PT2) (a.u)

Can this lead to optimal QMC geometries with few determinants?



Optimal geometries and energies with Jastrow-CIPSI

Revisit geometry optimization of butadiene

Jastrow-CIPSI: Great energies both in VMC and in DMC!

-26.230 R
g VMC
-26.250 cas  (4,16) (4,20) |
E 26.270
3 -2 | ,
s (10,10)
E CIPSI (10,22)
¢ -26.290 r 1
w
-26.310 - 1
-26.330 |
1 10 100 1000 10000 100000

Number of determinants



Optimal geometries and energies with Jastrow-CIPSI

Revisit geometry optimization of butadiene

Jastrow-CIPSI: Great energies both in VMC and in DMC!

Energy (a.u)

-26.230 |
d vMC
26250 cas (416) (420) |
-26.270 | (10.10)
CIPSI
-26.290 |

-26.310

—-26.330

DMC

m

‘N\__ CAS N

(10,22)|

1 10 100 1000 10000
Number of determinants

100000



Jastrow-CIPSI: QMC geometries with few determinants‘

Convergence with about 5000 determinants to better than 0.5 mA

0.132 ¢ ¢ ¢ BLA i
VW 4mAI

0.128 1

J x CIPSI 1

(10,10)

Bond Length Alternation (A)
o
o
N

(4,4)

J x CAS (4,16)  (4,20) 1
1 10 100 1000 10000 100000
Number of determinants

Dash, Moroni, Scemama, Filippi, JCTC (2018)



More demanding application: excited states

— Often stronger electronic correlations than in the ground states

— One needs uniformely good descrition of multiple energy surfaces

Absorption

Fluorescence
Phosphorescence

Difficult ... already describing absorption

Structural relaxation? Not many methods suitable for this purpuse!
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With this in mind, what do we have so far?

Sy

Absorption

luorescence
Phosphorescence

So far, we achieved
v Cheap VMC forces
v" Automatic generation of compact wave functions

v" Accurate ground-state geometries

— Test our scheme for excited states on “problematic” cases



Photo-excitations with QMC and CIPSI wave functions

Formaldehyde: Vertical excitation energy

Literature: DMC with CIPSI — 300,000 dets for error < 0.1 eV !
“z\“ 4.05
Z 403}

4.01 -

110.06 eV

3.99 -

l -
Vertical excitation energy (eV)

3.97

2500 10000 17500 25000 32500 40000
Number of determinants

We have nearly exact values with handful of determinants!



Photo-excitations with QMC and CIPSI wave functions

Formaldehyde: Vertical excitation energy

Literature: DMC with CIPSI — 300,000 dets for error < 0.1 eV !
‘}\" 4.05 -
4.03 |

4.01

110.06 eV

3.99 |
L FCl _

sgrLCC3_ . L. ... ]

l “
Vertical excitation energy (eV)

2500 10000 17500 25000 32500 40000
Number of determinants

We have nearly exact values with handful of determinants!



Another example: Thioformaldehyde

Thioformaldehyde: Vertical excitation energy

Literature: VMC with CIPSI — error of 0.2 eV !

2.28

" VMC ——

227 r

2.26

2.25

2.24

2.23

Vertical excitation energy (eV)

2.22

3500 11000 18500 26000 33500 41000
Number of determinants

Again, we are within 0.04 eV of reference value

0.05 eV



Another example: Thioformaldehyde

Thioformaldehyde: Vertical excitation energy

Literature: VMC with CIPSI — error of 0.2 eV !

2.28

: : : : S
DMC —6—
* 227 | ]
[

2.26 ¢

225 |
224 | 0.05 eV

2.23

Vertical excitation energy (eV)

2.22

3500 11000 18500 26000 33500 41000
Number of determinants

Again, we are within 0.04 eV of reference value



’Computation of excitation energies

Two ingredients for a robust protocol:
1) Balanced determinantal expansions for multiple states
— CIPSI selection targets similar  Eppo or ocy for all states

2) Fully optimize the Jastrow-Slater wave function

With ’ balanced generation + VMC optimization‘

— Chemically accurate excitations (error < 0.04 eV)

and with very few determinants

— No need to perform a DMC calculation!



Next step: Relax excited-state geometries‘

F g \ ! O
AEveﬂ;ical

>

Eadiabatic

>®

Need of consistent wave functions for different geometries/states!
Generate CIPSI expansions targeting

— Similar §Epy for all geometries/states

— Similar oy for all geometries/states

DHa



Excited-state relaxation: some examples

Optimal excited-state geometries: MAD on bond lengths

0.06 . CC2 mmmm
z n—n CC3 ===
< ADC(2) ——
§ VMC
2 004
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Promising ... more work in progress for larger systems

Dash, Feldt, Moroni, Scemama, Filippi, JCTC (2020)



Efficient computation of derivatives 4+ optimization toolbox

— QMC “internally consistent” method

with geometries and wave functions determined in QMC

With some work on wave functions — DMC just not “needed”

Searching for robust QMC protocol for modeling photo-excitations

— Automated generation of accurate/compact wave functions
— Balanced description of multiple states

— Accurate vertical excitations and excited-state geometries

Larger systems?



Larger systems pose new problems

Many-body methods

1. CCSD(T)
41.0 Coupled Cluster Theory
2. DMC
Diffusion Monte-Carlo
31.1p= —

A > 10 kcal mol?

/

«
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r &
e oF
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interaction energy (kcal mol?)
L

3.1k A < 0.1 kcal mol?!
1 / L 1
15 7/ 132

system size / number of explicit atoms

Y.S. Al-Hamdani et al. arXiv:2009.08927v1 (2020)



To

conclude: ongoing research in QMC‘

v

v

v

v

Search for different forms of trial wave function
Push optimization techniques to larger systems
More work on transition metals

Alternatives to fixed-node diffusion Monte Carlo
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