

CHEMISTRY: MOLECULES TO MATERIALS

CIITS UU UNIVERSITÉa

Introduction to Quantum Computation

Part 2

Bruno Senjean
ICGM, Université de Montpellier, CNRS

Please connect to http://www.quizzoodle.com/session/join/

Table of contents

Quantum technology

The electronic structure problem

Second-quantized fermion encoding methods

Quantum algorithms
Quantum Phase Estimation (QPE)
Single-ancilla Quantum Phase Estimation (IQPE)
Variational Quantum Eigensolver (VQE)

Final Quizz

Four Pillars

Applications of Quantum Computing

Electronic Structure Problem

Electronic structure problem
The Hamiltonian of a molecule composed of M nuclei and N electrons reads

$$
\hat{H}=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}-\sum_{i, I} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\frac{1}{2} \sum_{I \neq J} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|}
$$

Electronic structure problem

The Hamiltonian of a molecule composed of M nuclei and N electrons reads

$$
\hat{H}=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}-\sum_{i, I} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\frac{1}{2} \sum_{I \neq J} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|}
$$

Born-Oppenheimer approximation $\left(M_{I}>1000 m_{e}\right)$, nuclei are treated as stationary and decoupled with the dynamics of the electrons. In atomic units:

$$
\hat{H}=-\sum_{i} \frac{\nabla_{i}^{2}}{2}-\sum_{i, I} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

We want to solve the time-dependent non-relativistic Schrödinger equation,

$$
\hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Second quantization

In practice, one works with N basis functions $\left\{\phi_{p}\left(\mathbf{x}_{i}\right)\right\}$ (spin-orbitals) where \mathbf{x}_{i} is the spatial and spin coordinate of the i-th electron, $\mathbf{x}_{i}=\left(\mathbf{r}_{i}, s_{i}\right)$. We project the Hamiltonian onto this basis such that

$$
\hat{H}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

Second quantization

In practice, one works with N basis functions $\left\{\phi_{p}\left(\mathbf{x}_{i}\right)\right\}$ (spin-orbitals) where \mathbf{x}_{i} is the spatial and spin coordinate of the i-th electron, $\mathbf{x}_{i}=\left(\mathbf{r}_{i}, s_{i}\right)$. We project the Hamiltonian onto this basis such that

$$
\hat{H}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

where

$$
\begin{aligned}
h_{p q} & =\int \mathrm{d} \mathbf{x} \phi_{p}^{*}(\mathbf{x})\left(-\frac{\nabla^{2}}{2}-\sum_{I} \frac{Z_{I}}{\left|\mathbf{r}-\mathbf{R}_{I}\right|}\right) \phi_{q}(\mathbf{x}) \\
\langle p q \mid s r\rangle & =\iint \mathrm{d} \mathbf{x}_{1} \mathbf{x}_{2} \phi_{p}^{*}\left(\mathbf{x}_{1}\right) \phi_{q}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|} \phi_{s}\left(\mathbf{x}_{1}\right) \phi_{r}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Second quantization

In practice, one works with N basis functions $\left\{\phi_{p}\left(\mathbf{x}_{i}\right)\right\}$ (spin-orbitals) where \mathbf{x}_{i} is the spatial and spin coordinate of the i-th electron, $\mathbf{x}_{i}=\left(\mathbf{r}_{i}, s_{i}\right)$. We project the Hamiltonian onto this basis such that

$$
\hat{H}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

where

$$
\begin{aligned}
h_{p q} & =\int \mathrm{d} \mathbf{x} \phi_{p}^{*}(\mathbf{x})\left(-\frac{\nabla^{2}}{2}-\sum_{I} \frac{Z_{I}}{\left|\mathbf{r}-\mathbf{R}_{I}\right|}\right) \phi_{q}(\mathbf{x}) \\
\langle p q \mid s r\rangle & =\iint \mathrm{d} \mathbf{x}_{1} \mathbf{x}_{2} \phi_{p}^{*}\left(\mathbf{x}_{1}\right) \phi_{q}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|} \phi_{s}\left(\mathbf{x}_{1}\right) \phi_{r}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

and the creation and annihilation operators fulfill the fermionic anticommutation rules,

$$
\left\{\hat{a}_{p}, \hat{a}_{q}^{\dagger}\right\}=\hat{a}_{p} \hat{a}_{q}^{\dagger}+\hat{a}_{q}^{\dagger} \hat{a}_{p}=\delta_{p q}, \quad\left\{\hat{a}_{p}, \hat{a}_{q}\right\}=\left\{\hat{a}_{p}^{\dagger}, \hat{a}_{q}^{\dagger}\right\}=0 .
$$

Slater determinants

A Slater determinant is a many-body wavefunction written as an antisymmetrized product of single electron basis functions $\left\{\phi_{p}\left(\mathbf{x}_{i}\right)\right\}$,

$$
\Phi\left(\mathbf{x}_{1} \cdots \mathbf{x}_{N_{e}}\right)=\frac{1}{\sqrt{N_{e}}}\left|\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{2}\right) \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\phi_{1}\left(\mathbf{x}_{N_{e}}\right) & \phi_{2}\left(\mathbf{x}_{N_{e}}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{N_{e}}\right)
\end{array}\right| \equiv\left|f_{N}, f_{N-1}, \cdots, f_{2}, f_{1}\right\rangle \equiv|f\rangle, \quad f_{i} \in\{0,1\}
$$

Chimie Physique Théorique et Modélisation

Slater determinants

A Slater determinant is a many-body wavefunction written as an antisymmetrized product of single electron basis functions $\left\{\phi_{p}\left(\mathbf{x}_{i}\right)\right\}$,

$$
\Phi\left(\mathbf{x}_{1} \cdots \mathbf{x}_{N_{e}}\right)=\frac{1}{\sqrt{N_{e}}}\left|\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{2}\right) \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\phi_{1}\left(\mathbf{x}_{N_{e}}\right) & \phi_{2}\left(\mathbf{x}_{N_{e}}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{N_{e}}\right)
\end{array}\right| \equiv\left|f_{N}, f_{N-1}, \cdots, f_{2}, f_{1}\right\rangle \equiv|f\rangle, \quad f_{i} \in\{0,1\}
$$

The second quantized formalism consists in manipulating those occupation vectors (determinants) which form a complete many-body basis of the problem Hilbert space, i.e.

$$
\left|\Psi_{n}\right\rangle=\sum_{f} c_{f n}|f\rangle
$$

There are $\binom{N}{N_{e}}$ many Slater determinants !

Electronic Structure Problem on QC 2nd Quantized Fermion Encodings

Jordan-Wigner encoding

Direct mapping between the occupation of an orbital and the state of the qubit:

$$
\left|\psi_{\text {qubit }}\right\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|0\rangle \leftrightarrow \text { empty }, \quad|1\rangle \leftrightarrow \text { occupied }
$$

Jordan-Wigner encoding

Direct mapping between the occupation of an orbital and the state of the qubit:

$$
\left|\psi_{\text {qubit }}\right\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|0\rangle \leftrightarrow \text { empty }, \quad|1\rangle \leftrightarrow \text { occupied }
$$

N-qubit register can generate a quantum state superposition of $2^{N}>\binom{N}{N_{e}}$ bitstrings:

$$
\left|\Psi_{\text {qubit }}\right\rangle=\sum_{q=0}^{2^{N}-1} c_{q}|q\rangle \longleftrightarrow\left|\Psi_{n}\right\rangle=\sum_{f}^{\binom{N}{N_{e}}} c_{f n}|f\rangle
$$

where the integer value of q is associated to the bitstring corresponding to this integer.

Jordan-Wigner encoding

Direct mapping between the occupation of an orbital and the state of the qubit:

$$
\left|\psi_{\text {qubit }}\right\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|0\rangle \leftrightarrow \text { empty }, \quad|1\rangle \leftrightarrow \text { occupied }
$$

N-qubit register can generate a quantum state superposition of $2^{N}>\binom{N}{N_{e}}$ bitstrings:

$$
\left|\Psi_{\text {qubit }}\right\rangle=\sum_{q=0}^{2^{N}-1} c_{q}|q\rangle \longleftrightarrow\left|\Psi_{n}\right\rangle=\sum_{f}^{\left(N_{e}^{N}\right)} c_{f n}|f\rangle
$$

where the integer value of q is associated to the bitstring corresponding to this integer.
Obviously, one can map $\left|\Psi_{n}\right\rangle$ as a superposition of all the bitstrings that contains exactly N_{e} ones and $N-N_{e}$ zeros,

$$
\left|f_{N}, f_{N-1}, \cdots, f_{2}, f_{1}\right\rangle \rightarrow\left|q_{N}, q_{N-1}, \cdots, q_{2}, q_{1}\right\rangle, \quad q_{p}=f_{p} \in\{0,1\}
$$

Jordan-Wigner encoding

Qubit mappings of the creation and annihilation operators:

$$
\hat{a}_{p}^{\dagger}=\left(\bigotimes_{i=p+1}^{N} I_{i}\right) \otimes Q_{p}^{\dagger} \otimes\left(\bigotimes_{i=1}^{p-1} Z_{i}\right), \quad \hat{a}_{p}=\left(\bigotimes_{i=p+1}^{N} I_{i}\right) \otimes Q_{p} \otimes\left(\bigotimes_{i=1}^{p-1} Z_{i}\right)
$$

where $Q^{\dagger}=|1\rangle\langle 0|=\frac{X-i Y}{2}, Q=|0\rangle\langle 1|=\frac{X+i Y}{2}$, and the string of Z operators enforces the exchange anti-symmetry of fermions.

The string of Z operators means that it takes $\mathcal{O}(N)$ qubit operations to apply a fermionic operator.

Electronic Structure Problem on QC

Quantum Algorithms

Quantum Phase Estimation

Quantum Phase Estimation

- Phase estimation: $E_{j} t$ of $U=e^{i \hat{H} t}$ with $e^{i \hat{H} t}\left|\Psi_{j}\right\rangle=e^{i E_{j} t}\left|\Psi_{j}\right\rangle$
- Two qubit registers: one encoding the state and the other composed of ancilla qubits
- Initial state: non-zero overlap with the eigenstates, $|\Phi\rangle=\sum_{j} a_{j}\left|\Psi_{j}\right\rangle$

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

$\frac{1}{\sqrt{2^{n}}} \sum_{j} a_{j}\left(|0\rangle+e^{i E_{j} 2^{n-1} t}|1\rangle\right) \otimes\left(|0\rangle+e^{i E_{j} 2^{n-2} t}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{i E_{j} 2 t}|1\rangle\right) \otimes\left|\Psi_{j}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{j} a_{j} \sum_{k=0}^{2^{n}-1} e^{i E_{j} k t}\left|\Psi_{j}\right\rangle$

Quantum Phase Estimation

Quantum Phase Estimation

One measures the value of the phase $\tilde{E}_{j} t$ (as a binary fraction on the ancilla register), i.e. an approximation of $E_{j} t$ with n bits of accuracy, with probability $\left|a_{j}\right|^{2}=\left|\left\langle\Phi \mid \Psi_{j}\right\rangle\right|^{2}$. The system register collapses to the eigenstate $\left|\Psi_{j}\right\rangle$.

Single-ancilla Quantum Phase Estimation

Single-ancilla Quantum Phase Estimation

$$
\sum_{j} a_{j}\left|\Psi_{j}\right\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i k E_{j} t}|1\rangle\right)
$$

Single-ancilla Quantum Phase Estimation

$$
\sum_{j} a_{j}\left|\Psi_{j}\right\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i k E_{j} t}|1\rangle\right) \xrightarrow{\text { Tomography gate } M_{T}} g(k)=\sum_{j}\left|a_{j}\right|^{2} e^{i k E_{j} t}
$$

- Imprint multiple E_{j} as frequencies of an ancilla qubit ('phase kickback').
- Extract in postprocessing like identifying notes in a chord.

Variational Quantum Eigensolver

Variational Quantum Eigensolver

Classical Device

Variational principle:

$E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle$

Variational Quantum Eigensolver

Classical Device	
Mean-Field calculation	
Second quantized Hamiltonian	
Transformation to qubit Hamiltonian	
$\hat{H}=\sum_{i} h_{i} \hat{P}_{i}$	
Initialize parameters $\vec{\theta}$	

Variational principle:

$E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle$

Chimie Physique Théorique et Modélisation

Variational Quantum Eigensolver

Classical Device	
Mean-Field calculation	
Second quantized Hamiltonian	
Transformation to qubit Hamiltonian	
$\hat{H}=\sum_{i} h_{i} \hat{P}_{i}$	
Initialize parameters $\vec{\theta}$	

Variational principle:

$E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle$

State preparation:
$|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Phi_{0}\right\rangle$

Chimie Physique Théorique et Modélisation

Variational Quantum Eigensolver

Chimie Physique Théorique et Modélisation

Variational Quantum Eigensolver

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

State preparation:

$$
|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Phi_{0}\right\rangle
$$

Measurement:

$$
P\left(\sum_{i} m_{i}=1 \bmod 2 \mid R(\hat{P})\right)=\frac{1}{2}(1-\langle\hat{P}\rangle)
$$

$$
E(\vec{\theta})=\sum_{i} h_{i}\left\langle\hat{P}_{i}\right\rangle_{\vec{\theta}}
$$

VQE Ansatz

There are mainly two types of ansatz, physically-inspired and hardware efficient.

VQE Ansatz

There are mainly two types of ansatz, physically-inspired and hardware efficient.
Hardware efficient: R_{Y} ansatz (Kandala et al., Nature 2017)

$$
\hat{U}(\boldsymbol{\theta})=\prod_{m=1}^{M} R_{Y, m}\left(\theta_{m}^{0}\right) \prod_{n=1}^{N_{L}} \hat{U}_{n}^{\mathrm{ENT}}\left(\boldsymbol{\theta}^{n}\right)
$$

for a number of layers N_{L} and a number of qubits M. The entanglement unitary blocks read

$$
\hat{U}_{n}^{\mathrm{ENT}}\left(\boldsymbol{\theta}^{n}\right)=\prod_{m=1}^{M-1} \mathrm{CNOT}_{m(m+1)} \prod_{m=1}^{M} R_{Y, m}\left(\theta_{m}^{n}\right) .
$$

VQE Ansatz

There are mainly two types of ansatz, physically-inspired and hardware efficient.
Hardware efficient: R_{Y} ansatz (Kandala et al., Nature 2017)

$$
\hat{U}(\boldsymbol{\theta})=\prod_{m=1}^{M} R_{Y, m}\left(\theta_{m}^{0}\right) \prod_{n=1}^{N_{L}} \hat{U}_{n}^{\mathrm{ENT}}\left(\boldsymbol{\theta}^{n}\right)
$$

for a number of layers N_{L} and a number of qubits M. The entanglement unitary blocks read

$$
\hat{U}_{n}^{\mathrm{ENT}}\left(\boldsymbol{\theta}^{n}\right)=\prod_{m=1}^{M-1} \mathrm{CNOT}_{m(m+1)} \prod_{m=1}^{M} R_{Y, m}\left(\theta_{m}^{n}\right)
$$

VQE Ansatz

Physically-inspired: Unitary Coupled Cluster ansatz

$$
\hat{U}(\boldsymbol{\theta})=e^{\hat{T}-\hat{T}^{\dagger}}, \quad \hat{T}=\hat{T}_{1}+\hat{T}_{2}+\cdots, \quad \hat{T}_{1}=\sum_{p q} \theta_{q}^{p} \hat{a}_{p}^{\dagger} \hat{a}_{q}, \quad \hat{T}_{2}=\sum_{p q r s} \theta_{r s}^{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}
$$

VQE Ansatz

Physically-inspired: Unitary Coupled Cluster ansatz

$$
\hat{U}(\boldsymbol{\theta})=e^{\hat{T}-\hat{T}^{\dagger}}, \quad \hat{T}=\hat{T}_{1}+\hat{T}_{2}+\cdots, \quad \hat{T}_{1}=\sum_{p q} \theta_{q}^{p} \hat{a}_{p}^{\dagger} \hat{a}_{q}, \quad \hat{T}_{2}=\sum_{p q r s} \theta_{r s}^{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}
$$

Applying Jordan-Wigner (assuming $q>p>s>r$):

$$
\theta_{q}^{p}\left(\hat{a}_{p}^{\dagger} \hat{a}_{q}-\text { h.c. }\right)=\frac{i \theta_{q}^{p}}{2} \bigotimes_{k=q+1}^{p-1} Z_{k}\left(Y_{q} X_{p}-X_{q} Y_{p}\right)
$$

$$
\begin{array}{rll}
\theta_{r s}^{p q}\left(\hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}-\text { h.c. }\right)=\frac{i \theta_{r s}^{p q}}{8} \bigotimes_{k=r+1}^{s-1} Z_{k} \bigotimes_{l=p+1}^{q-1} Z_{l}(& X_{r} X_{s} Y_{q} X_{p}+Y_{r} X_{s} Y_{q} Y_{p}+X_{r} Y_{s} Y_{q} Y_{p}+X_{r} X_{s} X_{q} Y_{p} \\
& \left.-\quad Y_{r} X_{s} X_{q} X_{p}-X_{r} Y_{s} X_{q} X_{p}-Y_{r} Y_{s} Y_{q} X_{p}-Y_{r} Y_{s} X_{q} Y_{p}\right)
\end{array}
$$

Circuit for the exponential of Pauli string

The exponential of sum of Pauli strings $e^{\sum_{j} \theta_{j} \hat{P}_{j}}$ appears in many algorithms, but there is no trivial way to implement it on quantum computers.

Chimie Physique Théorique et Modélisation

Circuit for the exponential of Pauli string

The exponential of sum of Pauli strings $e^{\sum_{j} \theta_{j} \hat{P}_{j}}$ appears in many algorithms, but there is no trivial way to implement it on quantum computers.

However, we know how to implement the exponential of a single Pauli string, so we can use (first-order) Trotter-Suzuki approximation:

Chimie Physique Théorique et Modélisation

VQE Ansatz

Ry (4 qubits, 4 layers, 19 parameters) $\mathcal{O}\left(N^{2}\right)$

VQE Ansatz

GUCCSD (4 qubits, 2 electrons, 9 parameters) $\mathcal{O}\left(N^{4}\right)$

Measuring the expectation value of a Hermitian operator $15 / 18$
Measurements are usually supported in the computational basis $\{|j\rangle\}$ (measurement of the observable Z).

Measuring the expectation value of a Hermitian operator

Measurements are usually supported in the computational basis $\{|j\rangle\}$ (measurement of the observable Z).

Consider the expectation value of $\langle\hat{P}\rangle_{\Psi}=\langle\Psi| \hat{P}|\Psi\rangle=\sum_{j} \lambda_{j}\left|\left\langle\Psi \mid \Phi_{j}\right\rangle\right|^{2}$, with $\hat{P}=\sum_{j} \lambda_{j}\left|\Phi_{j}\right\rangle\left\langle\Phi_{j}\right|$.
Repeating measurement in the computational basis gives us access to $\left\{|\langle\Psi \mid j\rangle|^{2}\right\}$!

Measuring the expectation value of a Hermitian operator

Measurements are usually supported in the computational basis $\{|j\rangle\}$ (measurement of the observable Z).

Consider the expectation value of $\langle\hat{P}\rangle_{\Psi}=\langle\Psi| \hat{P}|\Psi\rangle=\sum_{j} \lambda_{j}\left|\left\langle\Psi \mid \Phi_{j}\right\rangle\right|^{2}$, with $\hat{P}=\sum_{j} \lambda_{j}\left|\Phi_{j}\right\rangle\left\langle\Phi_{j}\right|$.
Repeating measurement in the computational basis gives us access to $\left\{|\langle\Psi \mid j\rangle|^{2}\right\}$!

The idea is to find the unitary which diagonalizes the Hermitian operator $\hat{P}=\hat{U}^{\dagger} \hat{\Lambda} \hat{U}$ with $\hat{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Since $\hat{\Lambda}$ is diagonal, we have transformed the problem from one where we must perform a measurement in an arbitrary basis, to one where we simply measure in the computational basis:

$$
\langle\Psi| \hat{P}|\Psi\rangle=\langle\Psi| \hat{U}^{\dagger} \hat{\Lambda} \hat{U}|\Psi\rangle=\langle\bar{\Psi}| \hat{\Lambda}|\bar{\Psi}\rangle=\sum_{j} \lambda_{j}|\langle\bar{\Psi} \mid j\rangle|^{2}, \quad \text { where }|\bar{\Psi}\rangle=\hat{U}|\Psi\rangle .
$$

Measuring the energy

Remember that

$$
\hat{H}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}=\sum_{j} h_{j} \hat{P}_{j}, \quad \text { with } \quad \hat{P}_{j} \in\{I, X, Y, Z\}^{\otimes N}
$$

Measuring the energy

Remember that

$$
\hat{H}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}=\sum_{j} h_{j} \hat{P}_{j}, \quad \text { with } \quad \hat{P}_{j} \in\{I, X, Y, Z\}^{\otimes N}
$$

The ground-state energy is determined by solving the Schrödinger equation $\hat{H}\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$, or equivalently:

$$
\begin{aligned}
E_{0}=\left\langle\Psi_{0}\right| \hat{H}\left|\Psi_{0}\right\rangle & =\sum_{p q} h_{p q} \underbrace{\left\langle\Psi_{0}\right| \hat{a}_{p}^{\dagger} \hat{a}_{q}\left|\Psi_{0}\right\rangle}_{\text {1-RDM elements }}+\frac{1}{2} \sum_{p q r s}\langle p q \mid s r\rangle \underbrace{\left\langle\Psi_{0}\right| \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}\left|\Psi_{0}\right\rangle}_{\text {2-RDM elements }} \\
& =\sum_{j} h_{j}\left\langle\Psi_{0}\right| \hat{P}_{j}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Hence, within VQE we measure the 1- and 2-RDM elements that are then multiplied by the electronic integrals to estimate the ground-state energy of the system.

ICGM Chine empmaw heroriue et Modélisation

Quizz

QUIZZ

Chimie Physique Théorique et Modélisation

Advertisement

PhD grant (3 years): "AMI-QT 2022" in the framework of the project "QuantEdu-France - Technologies quantiques".

Quantum implementation of a Functional-Free Density-Functional Theory

Coordinator: Emmanuel Fromager [fromagere@unistra.fr] (Strasbourg) Partner: Bruno Senjean [bruno.senjean@umontpellier.fr] (Montpellier)

Starting before October 1st 2023

Institut Charles Gerhardt Montpellier

