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Workshop Program

Today
I. General background
II. Preparation and brief connection to days 2,3,5
III. Ab initio expansion methods for mid-mass nuclei

Leave entirely
I. CI and selected CI to Robert (wednesday)
II. Monte-Carlo to Denis&Lorenzo (thursday)
III. EDF, reaction theory to another meeting…

+ I benefit from Titou’s talk regarding HF, MBPT, CC…
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� Self-bound (or resonant) state of Z protons and N neutrons

Sketch of an atom

electron

nucleus

proton neutron

�Residual strong force between color-less objects

4-fermions system (spin up/down ⊗ isospin up/down)

Nuclear chart

Courtesy of A. Tichai



○How many nuclei are bound by the strong force; 6000-9000? 

○What is the heaviest possible element? 

118Og added to Mendeleïev table in 2016

○What are the various radioactive decay modes?

2p decay identified  beyond the proton dripline in 45Fe in 2002  

○How have heavier elements than Fe been produced?

Gravitational wave + kilonova from neutron stars merger in 2017 
Extended from Z=8 ( 24O) to Z=10 (34Ne) in 2019

○Where is the neutron drip-line?

○Where are magic numbers over the nuclear chart?

N=20/28 shown to disappear away from stability in 1975/1 993

Less than 50% known (>10 -22s)  � Discovery of ~15 per year in the years 2010s
� Several 100s from next generation facilities

Nuclear chart



Radioactive decays
β, 2β, 0ν2β, α, p, 2p, (≠)fission, …

Ground state
Mass, size, superfluidity, e.m. moments…

Reaction processes
Fusion, transfer, knockout, …

Spectroscopy
Excitation modes

Exotic structures
Clusters, halos, …

Nucleus : bound (or resonant) state of Z protons and N neutrons

p & n momenta ~ 108 eV

Separation energies ~ 107 eV

Vibrational excitations~ 106 eV

Rotational excitations ~ 104 eV

Several scales at play:

“Ab initio”, i.e. Chiral-EFT in A-body sector, long-term endeavor

Can nuclear systems be described

1) Consistently (from a single theoretical rationale?)
2) Systematically (complete phenomenology?)
3) Accurately enough (relevant to experimental uncertainty?)
4) From inter-nucleon interactions (right balance between reductionism/emergence?)
5) Rooted in QCD (sound connection to underlying EFT?)
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Ab initio (i.e. In medias res) quantum many-body problem

1) A structure-less nucleons as degrees of freedom at low energy
2) Interactions mediated by pions and contact operators based on, e.g., Weinberg, power counting
3) Solve A-body Schrödinger equation to relevant accurac y

Modeling SE Data

Feedback

Ab initio nuclear many-body theory = Chiral Effective Field Theory ( χEFT) in A-nucleon sector

1 2 3

4

A-body Schrödinger Equation

QCD

“Ab initio”

Chiral EFT
1) H

2) SE

H. Hergert, Front. in Phys. 8 (2020) 379

Rapidly evolving field in the last 15 years
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The nuclear Hamiltonian

⦿ Non-trivial formal task whose difficulty increases with order (e.g. 3N at N2LO, 4N at N 3LO…)
⦿ Fit LECs of mode-2k tensor to experimental data (or lattice QCD) in A = k-body systems

Build H (and other operators) with χEFT at various orders

A-body Schrödinger Equation

Effective description = A-body operator in principle

At least 3N necessary = major difficulty to solve SE n ext

For the actual construction of V kN operators via χEFT

� See my talk at the GDR NBODY kickoff meeting, Lille, January 2020

� Not recalled here

Organization = power counting
Importance of interaction terms



Symmetries of the nuclear Hamiltonian

Nuclear systems are

� Translationally invariant: T(1)

[H,Pi] = 0 � | ΦP
cm > | Ψim >

� Rotationally invariant: SU(2)

[H,J2] = [H,Jz] = 0 � | ΨJM >

� Carry fixed neutrons/protons numbers : U(1)

[H,N] = [H,Z] = 0 � | ΨJMNZ >

� + additional symmetries (time reversal, parity, ~isospin)

Symmetries

� Strongly constrain the mathematical form of H

� Dictates quantum numbers of its eigenstates

e.g. factorization of cm hard to ensure in practice

Total center-of-mass  momentum

Total (internal) angular momentum



Phenomenology of inter-nucleon interactions

1. Complex operator structure in r ⊗σ⊗τ spaces (constrained by symmetries)

Interactions between effective 4-components point fermions

� nucleons = ±½ isospin & ±½ spin projections

⌦AV18 model local but generally nuclear interactions are non-local in space

4 two-body spin-isospin channels

AV18 2N interaction

[Wiringa et al. 1995]

�Central operator
~Lennard-Jones
Short-range repulsion

�Tensor operator
�Spin-orbit
�Spin-orbit2

[See talks by A. Tichai & R. Roth for further discussions]

Courtesy of R. Roth



Phenomenology of inter-nucleon interactions

Interactions between effective 4-components point fermions

� nucleons = ±½ isospin & ±½ spin projections

2. Dominant 2-nucleon + sub-leading (but mandatory) 3-n ucleon and (minor?) 4-nucleon forces 

« Integrating out » DOFs lead to multi-nucleon forces

2π-exchange diagram

Example 3N

Spin-orbit-like operator
ME in plane-wave basis of H3

Low-Energy Constants (LECs)

Fixed on π-nucleon scatt. exp. 

First contributions to 3N interaction in chiral-EFT (N2LO)
Example of analytical expression

Tensor operator
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Nuclear many-body problem

A-body Schrödinger Equation

Ex: + ∅ because of the truncation of χEFT expansion of the operator
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Specificities of atomic nuclei: mean field

Filling of nuclear shells

2

8

20

28

50

« Magic » numbers
Protons

Neutrons
Overstable systems

2

8

20
28

50

16O

40Ca 48Ca

56Ni 68Ni

4He

132Sn

Average potential

Doubly closed-shell (DCS) (+/-1) nuclei
Singly open-shell (SOS) (+/-1) nuclei
Doubly open-shell (DOS) nuclei

100Sn

78Ni

28O

1) Self-bound system 
2) Neutrons & protons
3) SU(2) sym. + strong L.S

RHF mean-field
1) Self created/centered
2) One for each species
3) j=l+s → 2j+1 degeneracy

Specificities

Mostly open-shell ground-states

Strong (« static ») correlations

approximation
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Pre-processing of short-range correlations

Residual interaction

1) Short-r repulsion
2) Bound np/Virtual nn

Beyond mean-field
1) Dynamic corr. in UV
2) Strong static corr. in IR
2a) Pairing in SOS
2b) Collect. Quad. in DOSexpansion

Many-body

1) Taming down the short-range/coupling to UV in the H amiltonian

correlations

Unitary Similarity Renormalization Group (SRG) transformation

♦ Paramaterize the change of the Hamiltonian

specifies the transformation

when

Trivial fixed point H(s) diagonal

♦ To tame short-range choose = diagonal in momentum space basis 

♦ Do not go all the way to fixed point because induces multi-body operators in H(s)

Run until appropriate sfinal = pre-diagonalization

Anti-hermitian generator



1) Short-r repulsion
2) Bound np/Virtual nn

Beyond mean-field
1) Dynamic corr. in UV
2) Strong static corr. in IR
2a) Pairing in SOS
2b) Collect. Quad. in DOSexpansion

Many-body

correlations

Unitary Similarity Renormalization Group (SRG) transformation

[Roth, Reinhardt, Hergert 2008]

Remaining dynamical/static correlations
� Still ~2000 basis states needed in mid mass 

Drastically accelerated convergence
More perturbative behavior in the UV

Low-to-high off-diagonal matrix elements suppressedLimit to DCS&SOS to utilize AMC → 200 states [See talk by A. Tichai] 
Limit to « low » orders (CCSD(T), IMSRG(2), MBPT(3))
Limit to mid mass (A~100)

2N

� Similar SRG procedure and achievement for 3N in H3 [See talks by A. Tichai & R. Roth for further details] 

Relative momentum basis of H2

Pre-processing of short-range correlations

1) Taming down the short-range/coupling to UV in the H amiltonian



A-body Schrödinger Equation

Ex: + ∅ because of the truncation of chiral-EFT expansion of the operator

SRG 

Rather strong coupling to UV  

Pre-processed nuclear many-body problem



A-body Schrödinger Equation

Ex: to be tractable

A-body observables independent of s 

Choose truncation & s

« Soft » Hamiltonian
= 

much reduced coupling to UV

Induced k-body forces (k ≤ A) 

violate unitarity

SRG transformation is a compromised between

� Reduction of coupling to UV

� Size of induced k-body interactions that cannot be handled

Pre-processed nuclear many-body problem
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Expansion many-body methods

2) Include remaining dynamical and static correlations

Cost of solving SE scales as N A = limited to A < 12

Design expansion methods scaling as Np

Introduce importance sampling/selection
Wednesday/Thursday

Today /Tuesday/FridayI. Mean-field reference state

such that

Exactly solvable

II. Many-body expansion

Wave operator Reference state

►Expand in terms of elementary (np-nh) excitations of  | Φ0 >
►Accounts for « weak/dynamical » correlations
►Expand as a series (MBPT, CC…) + truncate = Np cost

Spherical Slater determinant (« RHF »)

Closed-shell

Non-degenerate
Good starting point for expansion

Stands for N&Z

Symmetry-conserving partitioning

MBPT

CC

Self-Consistent Green’s Function [ADC(2,3)]SCGF

IM-SRG

Many-Body Perturbation theory [(2,3)]

Coupled Cluster [Λ-CCSD(T), CR-CC(2,3)]

In-Medium Similarity Renormalization Group

III. Examples in nuclear physics



In-medium similarity renormalization group method

Goal: Solve SRG flow equation in HA such that | Φ0 > is the GS of H( ∞) 

1. Normal order H with respect to | Φ0 > (instead of | 0 > for standard SRG)

[Hergert et. al, Phys. Rep. 2016]

Standard Wick’s theorem

Hamiltonian

Reference state (« RHF ») with
holes

particles

Normal-ordered (NO) with respect to | Φ0 >

Working basis of H1 & MEs calculation [see Talk by A. Tichai] 

HF basis & MEs transformation [see Talk by A. Tichai] 



In-medium similarity renormalization group method

Matrix elements of nomal-ordered operators

�Large part of the original 3N transfered into effective lower-rank tensors/NO operators

⌦Neglect residual NO 3N operator = NO2B approx

⌦Many-body machinery with 2N operators only (1-3% error benchmarked up 16O via IT-NCSM)
[Roth et al., PRL (2012)]



In-medium similarity renormalization group method

2. Flow equation for normal-ordered form of H(s)

Induced k-body terms

⌦Neglect flowing k-body operators with n ≤ k ≤ A = IMSRG(n) approx � violates unitarity (small?)  

⌦IMSRG(2) workhorse of current ab initio calculations

Initial condition

Flow equation

n m

up to n+m-1

Pursued decoupling Associated « off-diagonal » Hamiltonian defining η(s) 

ph&pphh matrix elements with

Basis of HA= elementary (npnh) excitations of | Φ0 >

each step



In-medium similarity renormalization group method

2. Agebraic form of the coupled flow equations in the I MSRG(2) approximation
Evaluate through Wick’s theorem

Size extensive
Connected diagrams only

pp-hh ladders

p-h rings

+ interferences as s � ∞

Scale as N6 ⇔ CCSD



In-medium similarity renormalization group method

N3LO chiral-EFT (no 3N here) SRG evolved λ = 2 fm-1

Decoupling

Convergence

	Well under way after 20 steps (s=2.0) 

	MBPT(2)/CCSD/Λ-CCSD(T) with evolving H(s)

	Numerically achieved at s=18.3 

[Hergert et. al, Phys. Rep. 2016]

	Beyond s=2.0                                                  ⇔ full decoupling achieved

	 ⇔ understood from MBPT(n) analysis

� Current challenge is to go to IMSRG(3) truncation order



Expansion many-body methods

2) Include remaining dynamical correlations and static c orrelations in the IR

Cost of solving SE scales as N A = limited to A < 12

Design expansion methods scaling as Np

Introduce importance sampling
Wednesday/Thursday

Today/Tuesday/FridayI. Mean-field reference state

such that

Exactly solvable

II. Many-body expansion

Wave operator Reference state

►Expand in terms of elementary (np-nh) excitations of  | Φ0 >
►Accounts for « weak/dynamical » correlations
►Expand as a specific series (MBPT, CC…) + truncate = Np cost

Spherical Slater determinant (« RHF »)

Closed-shell

Non-degenerate
Good starting point for expansion

Open-shell

Degenerate
Improper starting point for expansion
Most of nuclear GS are open-shell…

Stands for N&Z

Symmetry-conserving partitioning
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Static correlations and (near) degenerate systems

Closed-shell RHF reference vacuum

I. The basic facts

Gap-full elementary excitation (EE) spectrum

Controlled expansions
Ex:

Open-shell RHF reference vacuum

Gap-less EE spectrum

Singular expansions
Ex:

Ignite static correlations
Nature&Strength

� h(2) in IR

Vacuum
Gap to first excited state

Vacuum No gap



Static correlations and (near) degenerate systems

Multi-reference (MR) state from orthonormal EE in IR 

II. Possible remedies

Controlled expansions on top of MR state

Typical of QC

Spontaneous symmetry-breaking (SSB)

Gap-full SSB-EE spectrum

Controlled expansions on top of single-reference SSB state

Breaking of U(1)
MR-MBPT, MR-CC…

1) Break SU(2)
UHF state

2) Break U(1)
HFB state

3) Break both or others
UHFB state

Depends on SOS vs DOS

Typical of NP

GSCGF, BMBPT, BCC, GSCGF,…

[See talk by B. Bally]

Re-opens a gap in EE spectrum

« IR »
Space

« UV »
Space

Ex: SU(2)

Opens a gap

with

Capture static correlations

Ex:
�Truncated series breaks symmetry
�Symmetry must eventually be restored
� PBMBPT, PCC [Duguet 2015, Qiu et al. 2017, 2020]

From diago



Ex. Bogoliubov many-body perturbation theory

⦿ Perturbative reduction of BCC

Chiral NN+3N Hamiltonian
SRG α = 0.08 fm4

13 major shells (1820 s.p. states)
Canonical HFB reference

[Tichai et al. 2018]

Runtime 
NCSM:    20.000 hours
MCPT:      2.000 hours
IMSRG(2): 1.500 hours
SCGF(2):        400 hours 
BMBPT(2):      < 1min !

Calculation details

� 2-3% agreement of all methods with exact results (IT-NCSM) 
� Consistent with non-perturbative methods for basic ground-state properties

� Code for automated generation&evaluation of many-body diagrams to arbitrary order [Arthuis et al. 2018]

[Duguet, Signoracci 2016]

⦿ Validation of BMBPT(2,3) in mid-mass SOS nuclei

� Convergence properties at high orders and resummation methods [Demol et al. 2020]

� Optimal for first (i) test of novel χEFT Hamiltonians (ii) exploration of large A
� Refined observables require non-perturbative methods (at high order)

[Tichai et al. 2020]



Static correlations and (near) degenerate systems

II. Towards an optimal combination of SSB and MR

�Mean-field energy as a function of broken symmetry(ies)

�Use of symmetry-breaking operator Q to constrain symmetry breaking to |q|

Order parameter of broken symmetry

�Ex: SU(2) (q=ρ20) and U(1) (q=∆pairing ) � doubled-constrained UHFB calculations

« Closed-shell » = symmetry-conserving minimum « Open-shell » = symmetry-breaking minimum

Vacuum total energy surface (TES)

�Symmetry conserving = just one particular point when viewed from general perspective of vacuum TES

�Vacuum TES contains physics beyond the minimum (symmetry conserving or not)
� softness around it indicates further collective/static correlations even for “closed-shell” system 

[E
bran, D

uguet, unpublished]

|ρ20| |ρ20|

|∆pairing |

EUHFB (MeV)
EUHFB (MeV)

|∆pairing |

22C

32Ne



|q|
�Symmetry-projected state
�Capture collective static correlations

Static correlations and (near) degenerate systems

Order parameter of broken symmetry

�1D projection along ρ20 (≥ 0) at ∆pairing = 0

« Closed-shell » = symmetry-conserving minimum « Open-shell » = symmetry-breaking minimum

Vacuum total energy curve (TEC)

[E
bran, D

uguet, unpublished]

Add Arg(q)

EUHFB (q)  (MeV)

|q|

EUHFB (q)  (MeV)

Arg(q)

Arg(q)

E
U

H
F
( ρ

20
) 

(M
eV

)

|ρ20||ρ20|

32Ne22C
∆pairing =0∆pairing =0

E
U

H
F
( ρ

20
) 

(M
eV

)

MR state from non-orthogonal vacua (NOV) in IR 

From (small) diago

1) PGCM in NP
2) NOCI in QC

[see talk by B. Bally]
1) Change  of |q| = quadrupole fluctuations
2) Change of Arg(q) = angular rotation

II. Towards an optimal combination of SSB and MR



2N only

Breaks parity

2N+3N

Ex. 2D-PGCM (i.e. NOCI) of 20Ne

[Frosini et al. unpublished (2021)]

⦿ Significative impact of 3N force

Minima pushed towards larger |ρ20|-|ρ30|
Softer PES

1) RHFB -82 MeV
2) UHFB -93 MeV
3a) PGCM -100 MeV 
3b) UBMBPT(3) -153 MeV 
4) Exp -160 MeV

⦿ Significant impact of 3N force

Improved moment of inertia of rotational bands
Very improved 1- band-head position

⦿ Good reproduction of collective spectroscopy

⦿ Dynamical correlations missing

Absolute binding energy entirely missed
Elementary excitations not accessed

�2D TES: SU(2) breaking constrained along both q = ρ20 and ρ30 (free U(1) breaking) 
� doubled-constrained UHFB calculations

�: PGCM mix along a) |q| with q = ρ20 and ρ30
b) Arg(q) = projections on J, π, N and Z

Static collective correlations captured

11MeV
7MeV
60MeV

RHFB
Correlations

Static
Dynamical

23%
77%

|ρ20| |ρ20|

|ρ30|

54%
46%



Static correlations and (near) degenerate systems

« Closed-shell » = symmetry-conserving minimum 

�Elementary excitations on top of NOV:

Expansions on top of MR-NOV state

�This idea to consistently capture static and dynamical correlations should be pushed in the future

�Two recent examples/proposals

♦MR-IMSRG in NP [Hergert et al. (2013); Yao et al. (2020)]

♦NOCI-PT in QC [Burton, Thom (2020)]

[E
bran, D

uguet, unpublished]

32Ne

∆pairing =0

E
U

H
F
( ρ

20
) 

(M
eV

)

E
U

H
F
( ρ

20
) 

(M
eV

)

ρ20

22C

∆pairing =0

♦NOV mixing pertinent even in closed-shell

♦Dynamical correlations through EEq

« Open-shell » = symmetry-breaking minimum

♦Dynamical correlations minimized via SSB

II. Towards an optimal combination of SSB and MR
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Many-body tensor networks and basis representation

⦿ Many-body calculations employ mode-n tensors and compu te tensor networks

1) Input 2) Output

k-body force
↕

Mode-2k tensor
↕

Basis representation dim N
↕

Storage cost N 2k

Evaluated quantities (here energy)
↕

Tensor network of N p cost (here p=4) 
↕

Unknown tensors evaluation N q cost (e.g. q=6)

⦿ Basis to represent operators/associated tensors

○ Spherical harmonic oscillator (sHO) basis of H1

Generalized Laguerre polynomials

Oscillator frequency

Finite basis set by maximum excitation

○ Tensor-product basis of Hn used to represent

Maximum excitation of the n-body basis state set by  



⦿ Many-body calculations employ mode-n tensors and compu te tensor networks

1) Input 2) Output

k-body force
↕

Mode-2k tensor
↕

Basis representation dim N
↕

Storage cost N 2k

Evaluated quantities (here energy)
↕

Tensor network of N p cost (here p=4) 
↕

Unknown tensors evaluation N q cost (e.g. q=6)

⦿ Challenge to store mode-6 tensors, e.g. 3N force, i n large enough basis
M-scheme 

J-scheme

JT-scheme

Jacobi basis

[Roth et al. 2014]

○ Storage/handling of full tensor impossible in Hilbert space initially considered

○ 3N matrix elements files can easily be 100Gb in size  

○ CI benchmarks : 4N force quite small (~100keV in 4He)  

� Size of 4N forces in medium-mass systems unknown!

� Need e1max ~ 13 (N~2000)/ e3max = 3*E1max ~ 40 in mid-mass systems

� Impossible! → Further truncation on e3max mandatory

Many-body tensor networks and basis representation



⦿ Push ab initio calculations to (i) doubly open-shell (i i) heavier (A>130) (iii) better accuracy (<1%)

� Systematic data compression techniques

� Storage/CPU of ab initio calculations scale as Nn

� N = 1-body basis dimension

� n = characteristic of accuracy/AN force

� Tensor Factorization (TF) = acts on n

� Importance Truncation (IT) = acts on N

[Tichai et al. 2018] [see Talk by A. Tichai]

[Tichai, Ripoche, Duguet 2019]

105 compression
1% error on ∆E(4)

IT on ∆E(4) in 18O  

Realistic basis dimension

⦿ Many-body calculations employ mode-n tensors and compu te tensor networks

1) Input 2) Output

k-body force
↕

Mode-2k tensor
↕

Basis representation dim N
↕

Storage cost N 2k

Evaluated quantities (here energy)
↕

Tensor network of N p cost (here p=4) 
↕

Unknown tensors evaluation N q cost (e.g. q=6)

Ex. Pre-processing tools: TF and IT

[Porro et al. unpublished 2021]
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Conclusions


