# Quantum stochastic methods for the N-body nuclear problem

P1:

Quantum Monte Carlo



Lorenzo Contessi

ESNT, IRFU, CEA, Université Paris Saclay, F-91191 Gif-sur-Yvette, France

## Introduction



- Variational Monte Carlo
- Diffusion Monte Carlo
  - Fermions, sign problem, and auxiliary fields
- Towards a density functional description
- Dynamical systems and in medium dynamics
- Phase-space approaches



http://physicsopenlab.org/2016/02/11/alpha-%CE%B1-radioactivity/ Contessi Lorenzo - Monte Carlo Henning, Greg. (2012). Stability of Transfermium Elements at High Spin: Measuring the Fission Barrier of 254

**Problem:** find the ground state energy of a many-body quantum mechanical system.

**Possible solution:** find the wave function that minimizes the energy of a system.

 $H \Psi_{GS} = E \Psi_{GS}$ 



In both cases the choice of the wavefunction is crucial

**Quantum Monte Carlo** is a class of ab initio, numerical, stochastic many-body methods able to solve a quantum problem (the non-relativistic Schrödinger equation in my case) with improvable uncertainties.



#### Towards more particle sector: Variational Monte Carlo

#### The idea: minimize the energy over a **set of parameters**

(instead of expanding the groundstate)

$$E_T = \langle \psi_T | H | \psi_T \rangle = \int \psi_T^*(\mathbf{X}) H \psi_T(\mathbf{X}) d\mathbf{X} = \int |\psi_T(\mathbf{X})|^2 \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})} d\mathbf{X}$$

**Monte Carlo allows** to calculate this integral efficiently!

Using the **Central Limit Theorem**!

 $E_{gs} = \min\langle \psi_T^a | H | \psi_T^a \rangle$ 

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

W.K. Hastings, Biometrika 57

(1970) 97-109

#### Central limit theorem



## Sampling procedure: Markov Chains



• Independent from the initial choice of  $x_0$ 

\* (a part for the convergence speed, the simulation is independent from the Step)

we want to sample.

#### Hastings, W.K<u>.</u> Biometrika 57 (1970) 97-109

#### Quantum VMC

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

#### Variational Monte Carlo:

$$E_T = \langle \psi_T | H | \psi_T \rangle = \int \psi_T^*(\mathbf{X}) H \psi_T(\mathbf{X}) d\mathbf{X} = \int |\psi_T(\mathbf{X})|^2 \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})} d\mathbf{X} \qquad E_T^n = \frac{1}{n} \sum_{\mathbf{X} \in |\psi_T|^2} \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})}$$



#### Hastings, W.K<u>.</u> Biometrika 57 (1970) 97-109

#### Quantum VMC

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

#### Variational Monte Carlo:

$$E_T = \langle \psi_T | H | \psi_T \rangle = \int \psi_T^*(\mathbf{X}) H \psi_T(\mathbf{X}) d\mathbf{X} = \int |\psi_T(\mathbf{X})|^2 \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})} d\mathbf{X} \qquad E_T^n = \frac{1}{n} \sum_{\mathbf{X} \in |\psi_T|^2} \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})}$$





# Trial wave function:



# Trial wave function:

V.R. Pandharipande (1971)

Trial wave function:

$$\psi_T = \left[\prod_{i=2}^n U_i(\mathbf{X})\right] \phi^A(\mathbf{X})$$

2b/3b correlations (Jastrow function):

$$U_{2b}(r_{ij}) = S\left(\prod_{i,j} \left(\sum_{p} f^{p}(r_{ij}) \ \widehat{O}_{ij}^{p}\right)\right)$$

- Symmetric under particle exchange
- Accounts for the **two-body short-range behavior** of the wave function
- $\hat{O}^p$  are **spin- / isospin-projections** operators.

#### Hastings, W.K<u>.</u> Biometrika 57 (1970) 97-109

#### Quantum VMC

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

#### Variational Monte Carlo:

$$E_T = \langle \psi_T | H | \psi_T \rangle = \int \psi_T^*(\mathbf{X}) H \psi_T(\mathbf{X}) d\mathbf{X} = \int |\psi_T(\mathbf{X})|^2 \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})} d\mathbf{X} \qquad E_T^n = \frac{1}{n} \sum_{\mathbf{X} \in |\psi_T|^2} \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})}$$





#### **Parallelization:**

How to parallelize variational Monte Carlo?

Easy! Each processor takes care of a **different Marcov chain**. **No comunication** is required untill you have to sum the expectation values! It is **trivially** and almost perfectly **parallelizable**!



| Processor 1 | Collect all the statistic<br>and process the data |
|-------------|---------------------------------------------------|
| Processor 2 |                                                   |
|             |                                                   |
|             |                                                   |
| Processor 3 |                                                   |
|             |                                                   |

## "Linear Method" Optimization

J. Toulouse and C. J. Umrigar, J. Chem. Phys. **126**, 084102 (2007)

Considering a  $\psi_T$  dependent from a set of parameters  $\{p_1, \ldots, p_k\}$ :

$$\left| \bar{\psi}_{\mathrm{T}}(\boldsymbol{p}) \right\rangle = rac{\left| \psi_{T}(\boldsymbol{p}) \right\rangle}{\sqrt{\langle \psi(\boldsymbol{p}) | \psi(\boldsymbol{p}) \rangle}}$$

It can be **expanded** 

$$\left|\bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p})\right\rangle = \left|\bar{\psi}_{T}(\boldsymbol{p}^{0})\right\rangle = \sum_{i=1}^{N_{p}} \Delta p_{i} \left|\bar{\psi}_{T}^{i}(\boldsymbol{p}^{0})\right\rangle$$

The first variation  $\Delta p$  that minimizes the energy

$$E_{lin}(\boldsymbol{p}) = \frac{\left\langle \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) | H | \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) \right\rangle}{\left\langle \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) | \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) \right\rangle}$$

Can be found solving the linear equation

$$\overline{H}\,\Delta \boldsymbol{p} = \Delta E\,\,\overline{S}\,\Delta \boldsymbol{p}$$

$$\{\overline{H}\}_{ij} = \left\langle \overline{\psi}_{\mathrm{T}}^{i}(\boldsymbol{p}) | H | \overline{\psi}_{\mathrm{T}}^{j}(\boldsymbol{p}) \right\rangle$$
$$\{\overline{S}\}_{ij} = \left\langle \overline{\psi}_{\mathrm{T}}^{i}(\boldsymbol{p}) | \overline{\psi}_{\mathrm{T}}^{j}(\boldsymbol{p}) \right\rangle$$



## VMC : Pro and contra

## Pro

- Access to the groundstate of large systems;
- **Optimization** can be used to find very **general states**;
- Easily parallelizable;
- Improvable numerical uncertainty.



## Cons

• Sensible to the **parametrization** of the wavefunction

(If the wavefunction is too correlated and complicated, it is difficult to find the correct parametrization);

- Variational (Best for groundstates);
- Stochastic uncertainty;
- Not the cheapest method for few-particles.

#### Diffusion and importance sampling

#### The integral to be calculated is:

$$E_{gs} = \frac{\langle \psi_{gs} | H | \psi_g \rangle}{\langle \psi_{gs} | \psi_g \rangle} = \frac{\int (\psi_{gs}^* \psi_g) \left(\frac{H \psi_g}{\psi_g}\right) dX}{\int \psi_{gs}^* \psi_g} = \frac{1}{N} \lim_{n \to +\infty} \frac{1}{n} \sum_{X \in \psi_{gs}^* \psi_g} \frac{H \psi_g(X)}{\psi_g(X)}$$
  
Estimator

Why not using 
$$E_{gs} = \frac{\int \psi_{gs}^* H \psi_g}{\int \psi_{gs}^* \psi_g}$$
?

It will work but the algorithm would be very unstable.

http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

$$H\,\psi_{gs}=(T+V)\psi_{gs}=E_0\,\psi_{gs}$$

To sample the groundstate we **diffuse in imaginary time** an arbitrary wave function:

$$|\psi_{gs}\rangle = e^{-(H-E_0)\tau}|\psi\rangle = c_0|\psi_{gs}\rangle + \sum_{n=1}^{\infty} c_n e^{-(E_n - E_0)\tau}|\psi_n\rangle \to^{\tau \to \infty} |\psi_0\rangle$$

$$\psi_{gs}^* \psi_g = \lim_{\tau \to \infty} e^{-(H - E_0)\tau} \psi_g \psi \to \sum_n e^{-(H - E_0)\Delta\tau} \psi_g \psi \sim \sum_n e^{-T \Delta\tau} e^{-(V - E_0)\Delta\tau} \psi_g \psi$$

The idea is to do a chain of samples.

- Evolve a configuration of points for each  $\Delta \tau$  until it samples the groundstate

Contessi Lorenzo - Monte Carlo

#### Diffusion and importance sampling

The integral to be calculated is:

$$E_{gs} = \frac{\langle \psi_{gs} | H | \psi_g \rangle}{\langle \psi_{gs} | \psi_g \rangle} = \frac{\int (\psi_{gs}^* \psi_g) \left(\frac{H \psi_g}{\psi_g}\right) dX}{\int \psi_{gs}^* \psi_g} = \frac{1}{N} \lim_{n \to +\infty} \frac{1}{n} \sum_{X \in \psi_{gs}^* \psi_g} \frac{H \psi_g(X)}{\psi_g(X)}$$
  
Estimator

Why not using 
$$E_{gs} = \frac{\int \psi_{gs}^* H \psi_g}{\int \psi_{gs}^* \psi_g}$$
?

It will work but the algorithm would be very unstable.

http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

$$H\,\psi_{gs} = (T+V)\psi_{gs} = E_0\,\psi_{gs}$$

To sample the groundstate we diffuse in imaginary time an arbitrary wave function:

$$\left|\psi_{gs}\right\rangle = e^{-(H-E_0)\tau} \left|\psi\right\rangle = c_0 \left|\psi_{gs}\right\rangle + \sum_{n=1}^{\infty} c_n \; e^{-(E_n - E_0)\tau} \left|\psi_n\right\rangle \to^{\tau \to \infty} \left|\psi_0\right\rangle$$

$$\psi_{gs}^* \psi_g = \lim_{\tau \to \infty} e^{-(H - E_0)\tau} \psi_g \psi \to \sum_n e^{-(H - E_0)\Delta\tau} \psi_g \psi \sim \sum_n e^{-T \Delta\tau} e^{-(V - E_0)\Delta\tau} \psi_g \psi$$

The idea is to do a **chain of samples:** 

- Evolve a configuration of points for each  $\Delta \tau$  until it samples the groundstate

Contessi Lorenzo - Monte Carlo

Propagation

In continuous coordinate space:

$$\psi_{\{\tau+\Delta\tau\}}(\boldsymbol{r}) = \int \langle \boldsymbol{r} | e^{-(H-E_0)\Delta\tau} | \boldsymbol{r}' \rangle \ \langle \boldsymbol{r}' | \psi_{\{\tau\}} \rangle \ d\boldsymbol{r}' = \int G(\boldsymbol{r}' \to \boldsymbol{r}) \ \psi_{\{\tau\}}(\boldsymbol{r}') \ d\boldsymbol{r}'$$
$$G(\boldsymbol{r}' \to \boldsymbol{r}) = \langle \boldsymbol{r} | e^{-(H-E_0)\Delta\tau} | \boldsymbol{r}' \rangle = \langle \boldsymbol{r} | e^{-(T+V-E_0)\Delta\tau} | \boldsymbol{r}' \rangle =$$

-- Trotter expansion ( $\Delta \tau$  is small) --

$$\langle \boldsymbol{r}|e^{-(T+V-E_0)\Delta\tau}|\boldsymbol{r}'\rangle = \langle \boldsymbol{r}|e^{-T\,\Delta\tau}|\boldsymbol{r}'\rangle\langle \boldsymbol{r}|e^{(E_0-V)\Delta\tau}|\boldsymbol{r}'\rangle \cdot O(\Delta\tau^2)$$



#### The green function is :

 $G(x' \rightarrow x, \Delta \tau) = \begin{bmatrix} \text{few algebraic passages described in } & \text{http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf} \\ M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008) \end{bmatrix}$ 



**Weighting:** attach to each sampling  $e^{\Delta \tau \left(\frac{1}{2} \left(\frac{H\psi_g(x)}{\psi_g(x)} + \frac{H\psi_g(x')}{\psi_g(x')}\right) - E_T\right)}$  Weighting and branching **Branching**: each configuration is cloned  $\left[e^{\Delta \tau \left(\frac{1}{2} \left(\frac{H\psi_g(x)}{\psi_g(x)} + \frac{H\psi_g(x')}{\psi_g(x')}\right) - E_T\right)} + \mu\right]$  times from one step to the other.



Contessi Lorenzo - Monte Carlo

For three particles the number of (spin / isospin) components **increases exponentially**!

$$(\overrightarrow{\sigma_{2}} \cdot \overrightarrow{\sigma_{3}}) \begin{pmatrix} a_{\uparrow\uparrow\uparrow} \\ a_{\uparrow\uparrow\downarrow} \\ a_{\uparrow\downarrow\uparrow} \\ a_{\uparrow\downarrow\uparrow} \\ a_{\downarrow\uparrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} a_{\uparrow\uparrow\uparrow} \\ 2a_{\uparrow\downarrow\uparrow} - a_{\uparrow\uparrow\downarrow} \\ a_{\uparrow\downarrow\downarrow} \\ a_{\downarrow\uparrow\uparrow} \\ 2a_{\downarrow\uparrow\uparrow} - a_{\downarrow\uparrow\downarrow} \\ 2a_{\downarrow\uparrow\uparrow} - a_{\downarrow\downarrow\uparrow} \\ 2a_{\downarrow\uparrow\uparrow} - a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\downarrow} \end{pmatrix} \neq \begin{pmatrix} a_{\uparrow\uparrow\uparrow} \\ a_{\uparrow\uparrow\downarrow} \\ a_{\uparrow\uparrow\downarrow} \\ a_{\downarrow\uparrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\downarrow} \end{pmatrix}$$
 Limited to ~ 12 particles

**Single particle spin base** is not closed with respect to non-quadratic spin operators:

 $\sigma_i \cdot \sigma_j$  operators mix the coefficients of the states.

#### Auxiliary field quantum Monte Carlo

D. Ceperley, G.V. Chester, M.H. Kalos (1977)

Using the Hubbard-Stratonovich transformation:

$$e^{-\frac{1}{2}\lambda O^2} = \frac{1}{\sqrt{2\pi}} \int dx \ e^{-\frac{x^2}{2} + \sqrt{-\lambda}x \ O}$$

AFDMC introduces a **new integral** for each operator transformation.

#### A quadratic operator can be transformed into a linear one, at the price of an integral (per operator).

$$\vec{\sigma_{i}} \left( \begin{pmatrix} \alpha_{1}a_{\uparrow} \\ \beta_{1}a_{\downarrow} \end{pmatrix}_{1} \otimes \dots \otimes \begin{pmatrix} \alpha_{i}a_{\uparrow} \\ \beta_{i}a_{\downarrow} \end{pmatrix}_{i} \otimes \dots \otimes \begin{pmatrix} \alpha_{A}a_{\uparrow} \\ \beta_{A}a_{\downarrow} \end{pmatrix}_{A} \right)$$
$$= \left( \begin{pmatrix} \alpha_{1}a_{\uparrow} \\ \beta_{1}a_{\downarrow} \end{pmatrix}_{1} \otimes \dots \otimes \begin{pmatrix} \alpha_{i}'a_{\uparrow} \\ \beta_{i}'a_{\downarrow} \end{pmatrix}_{i} \otimes \dots \otimes \begin{pmatrix} \alpha_{A}a_{\uparrow} \\ \beta_{A}a_{\downarrow} \end{pmatrix}_{A} \right)$$

New scaling is 2N instead of  $2^N$ 

#### Sign problem

A classic quantum mechanical fermionic problem:

Harmonic oscillator without interparticle interaction. The ground state is the Hartree-Fock wavefunction.

However, the **diffusion algorithm** is the same for **bosons and fermions**!

$$|\psi_0\rangle = e^{-(H-E_0)\tau}|\psi\rangle = c_0|\psi_0\rangle + \sum_{n=1}^{\infty} c_n \ e^{-(E_n-E_0)\tau}|\psi_n\rangle \to^{\tau\to\infty} |\psi_0\rangle$$

DMC will diffuse the walkers to the **bosonic groundstate**!



#### Sign problem

A classic quantum mechanical fermionic problem:

Harmonic oscillator without interparticle interaction. The ground state is the Hartree-Fock wavefunction.

However, the **diffusion algorithm** is the same for **bosons and fermions**!

$$|\psi_0\rangle = e^{-(H-E_0)\tau}|\psi\rangle = c_0|\psi_0\rangle + \sum_{n=1}^{\infty} c_n \ e^{-(E_n-E_0)\tau}|\psi_n\rangle \to^{\tau\to\infty} |\psi_0\rangle$$

DMC will diffuse the walkers to the **bosonic groundstate**!



However the (energy) estimator is

$$E_{gs} = \frac{\langle \psi_{gs} | H | \psi_g \rangle}{\langle \psi_{gs} | \psi_g \rangle}$$

And

 $\langle \psi_{as} | \psi_{a} \rangle \to 0$ 

Since **bosonic and fermion wave functions are orthogonal**.

- The **mean estimator** is still correct
- The error on the estimator blows up by the  $\frac{\rightarrow 0}{\rightarrow 0}$  ratio. -





#### Sign problem



**Fix the zeros** of the diffused wave function to be the same as the guide wave function:

Any walker that try to pass from a positive to a negative area of the guide wave function is removed.

It introduces a bias, but it will make the sampled wave function orthogonal to the bosonic one.

$$E_{gs} = \frac{\int (\psi_{gs}^* \psi_g) \left(\frac{H\psi_g}{\psi_g}\right)}{\int \psi_{gs}^* \psi_g}$$

With fixed node:  $(\psi_{gs}^*\psi_g) > 0$ is a well defined probability!



**Fixed phase:** for complex wave functions  $(\psi_{gs}^*\psi_g) \in \Re^+$ 

**Constrained path:** an alternative is to sample only the real part  $\operatorname{Re}(\psi_{gs}^*\psi_g)$ 

F. Bolton (1996) S. Zhang (1997)

M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. Rev. E55, 6210 (1997)

**Not constraining the phase** will make the variance explode.

Signal to noise spoiling **can be delayed** tuning the guide wavefunction ( $\epsilon$  parameter), but we should start with an almost correct groundstate.

$$\tilde{\psi}_g = \sqrt{Re(\psi_g)^2 + \epsilon Im(\psi_g)^2}$$

with  $\epsilon$  tuned to reduce the variance (e.g.  $\epsilon \sim 0.20$  )

$$E_{gs} = \frac{\int (\psi_{gs}^* \widetilde{\psi}_g) \frac{\psi_g}{\widetilde{\psi}_g} \left(\frac{H\psi_g}{\psi_g}\right)}{\int \psi_{gs}^* \psi_g}$$

gives enough time to see how far our **fixed-node energy is far from the true solution.** 

### A physical exemple

#### <sup>16</sup>O using Contact Effective Field theory at LO:

$$\begin{split} V^{LO} &= \sum_{i < j} [C_0(\Lambda) + C_1(\Lambda) \left( \overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \right)] e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} \\ &+ D_0(\Lambda) \sum_{(i < j) \neq k} \left[ e^{-\frac{\Lambda^2}{2} \left( |r_{ij}|^2 + |r_{ik}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left( |r_{ij}|^2 + |r_{jk}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left( |r_{jk}|^2 + |r_{ik}|^2 \right)} \right] \end{split}$$

From

L. C., A. Lovato, F. Pederiva, A. Roggero, J. Kirscher and U. van Kolck, Phys.Lett.B 772 (2017), 839-848

In particular for large cutoffs (e.g.  $\Lambda = 8 \text{ fm}^{-1}$ )

- Performs well in few-body
- Do not stabilize larger nuclei at LO (corrections are needed) Es. <sup>16</sup>O



# <sup>16</sup>O Phenomenological orbitals



# <sup>16</sup>O Spline orbitals and correlations

 $m_{\pi} = 140 \text{ MeV}$ 

| Λ<br>[fm <sup>-1</sup> ] | <sup>16</sup> 0<br>Energy<br>[MeV]    | 4α<br>treshold<br>[MeV]              |
|--------------------------|---------------------------------------|--------------------------------------|
| 2<br>4<br>6              | -97.19(6)<br>-92.23(14)<br>-97.51(14) | -92.68(8)<br>-94.52(9)<br>-100.24(8) |
| 8                        | -100.97(20)                           | -104.2(2)                            |
| 8                        | $-115^{1(sys)}_{8(stat)}$ -           | $-120^{1(sys)}_{8(stat)}$            |

- All the errors shown are statistical errors from Monte Carlo method.

# <sup>16</sup>O Spline orbitals and correlations



# Oxygen density ( $m_{\pi} = 140 \text{ MeV}$ )



Quantum Monte Carlo can solve high dimensional quantum problems.

Variational QMC is fast and precise, but relays on a good parametrization of the wavefunction Green function QMC allows to extract the groundstate of the system using a diffusion in imaginary time Auxiliary field QMC permits to find the groundstate energy of many-fermions

- Not positive wave functions (e.g. for many-fermions) will introduce the Sign Problem
- The Sign Problem can be tamed but not removed (fixed node, fixed phase, constraint path)