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Introduction

• Variational Monte Carlo

• Diffusion Monte Carlo

• Fermions, sign problem, and auxiliary fields

• Towards a density functional description

• Dynamical systems and in medium dynamics

• Phase-space approaches

Few Particles:
Exact diagonalization

More Particles (<12):
Green function DMC

More Particles (<40):
Auxiliary Field DMC

Large systems:
Density functional
methods

http://physicsopenlab.org/2016/02/11/alpha-%CE%B1-radioactivity/
Henning, Greg. (2012). Stability of Transfermium Elements at High Spin: Measuring the Fission Barrier of 254
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A key concept:  the variational principle

Problem: find the ground state energy of a many-body quantum mechanical system.

Possible solution: find the wave function that minimizes the energy of a system.

• 𝐸𝑔𝑠 = min
𝑎

Ψ𝑇
𝑎 𝐻 Ψ𝑇

𝑎

Expand the wave function in a base Ψ𝑇
𝑎 =  𝐴 𝑐𝐴 𝜙𝐴

i.e. the ground state energy is the lowest eigenvalue of H in a restricted H.S. 

Vary the parameters of the wave function to find the minimum
𝜕𝑎 Ψ𝑇

𝑎 𝐻 Ψ𝑇
𝑎 = 0

In both cases the choice of the wavefunction is crucial

𝐻 Ψ𝐺𝑠 = 𝐸 Ψ𝐺𝑠

See e.g. Stochastic variational method
Y. Suzuki and K. Varga, (1998)
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Variational Monte Carlo

- Exploits the variational principle to find 
the best parameterized wave function Diffusion in imaginary time 

- Excited states contributions exponentially  
suppressed
- Need some approximation to keep the sign 
problem under control
- Many-fermions accessible with the 
introduction of Auxiliary fieldsUnconstrained MC

- Unbiased estimators
- (results only affected by 

stochastic uncertainties)

Quantum Monte Carlo is a class of ab initio, numerical, stochastic many-body methods able 
to solve a quantum problem (the non-relativistic Schrödinger equation in my case) with improvable 
uncertainties. 

Quantum Monte Carlo
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Towards more particle sector: Variational Monte Carlo

The idea: minimize the energy over a set of parameters

(instead of expanding the groundstate)

𝐸𝑇 = 𝜓𝑇 𝐻 𝜓𝑇 =  𝜓𝑇
∗ 𝑿 𝐻𝜓𝑇 𝑿 𝑑𝑿 =  𝜓𝑇 𝑿 2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿
𝑑𝑿

Monte Carlo allows to calculate this integral efficiently!

Using the Central Limit Theorem!

W.K. Hastings, Biometrika 57
(1970) 97-109

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

𝐸𝑔𝑠 = min
𝑎

𝜓𝑇
𝑎 𝐻 𝜓𝑇

𝑎
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𝐸𝑎 =  𝜓𝑇 𝑿 2
𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿
𝑑𝑿 = lim

𝑛→+∞

1

𝑛
 

𝑿∈ 𝜓𝑇
2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

𝜎𝑛 =
𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

2

−
𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

2

∝
1

𝑛

How to sample 𝜓𝑇
2?

I know how to calculate this!

𝐼 =  𝑔 𝑿 𝑓(𝑿)𝑑𝑿 → 𝐼𝑛 = lim
𝑛→+∞

1

𝑛
 

𝑿∈𝑔 𝑿

𝑓 𝑿

𝑃 𝐼𝑛 =
1

2𝜋𝜎𝑛
2
𝑒
−

𝐼𝑁−𝐼
2

2𝜎𝑛
2

𝜎𝑛 ∝
1

𝑛

𝑿 fitted with distribution 𝑔(𝑿)

Central limit theorem
M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)
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Sampling procedure: Markov Chains

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5 𝑥6

𝑥7

𝑥8

Look at the reference 
for the derivation: 

Main idea:

Chain of points one derived from the other:

1) Move it with a random walk:
𝒙𝑛+1 𝑥 = 𝒙𝑛 + 𝜼 ⋅ 𝑆𝑡𝑒𝑝

2) Accept the move only if the new position is “favorable”:
extract a new ξ = Rand 0,1 and accept only if 

𝜓𝑇
2 𝒙𝑛+1

𝜓𝑇
2 𝒙𝑛

> 𝜉

𝜂 = 𝑅𝑎𝑛𝑑 0,1

Step is a parameter *

𝜓𝑇
2(𝒙) is the probability 

we want to sample.

* (a part for the convergence speed, the simulation is independent from the Step)

When the number of steps is large, the coordinates are:

• distributed as 𝜓𝑇
2 𝐱

• Independent from the initial choice of 𝒙0

Ensemble of points 
distributed as 𝜓𝑇

2 𝐱

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

Gagniuc, Paul A. (2017). Markov
Chains: From Theory to 
Implementation and 
Experimentation. USA, NJ: John 
Wiley & Sons. pp. 1–235.
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Hastings, W.K. Biometrika 57 
(1970) 97-109

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)Trial wave function:

2-body Schrödinger 
equation solution 𝑈3

𝑖𝑗𝑘
= 𝑈2

𝑖𝑗
+ 𝑈2

𝑖𝑘+𝑈2
𝑗𝑗 Skyrme wave functions 

Slater determinant
Physical 
guess

General
assumption

T. Skyrme
Nucl.Phys. 9 (1959) 615-634

J. Toulouse, C. J. Umrigar
Journal of Chemical Physics 126, 
084102 (2007)

Expansion of the wavefunction in a basis. 
e.g. Hermite polinomial, Spline functions.

Variational Monte Carlo:

𝐸𝑇 = 𝜓𝑇 𝐻 𝜓𝑇 =  𝜓𝑇
∗ 𝑿 𝐻𝜓𝑇 𝑿 𝑑𝑿 =  𝜓𝑇 𝑿 2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿
𝑑𝑿 𝐸𝑇

𝑛 =
1

𝑛
 

𝑿∈ 𝜓𝑇
2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

Quantum VMC
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Hastings, W.K. Biometrika 57 
(1970) 97-109

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)Trial wave function:

2-body Schrödinger 
equation solution 𝑈3

𝑖𝑗𝑘
= 𝑈2

𝑖𝑗
+ 𝑈2

𝑖𝑘 + 𝑈2
𝑗𝑗 Skyrme wave functions 

Slater determinant
Physical 
guess

General
assumption

T. Skyrme
Nucl.Phys. 9 (1959) 615-634

J. Toulouse, C. J. Umrigar
Journal of Chemical Physics 126, 
084102 (2007)

Expansion of the wavefunction in a basis. 
e.g. Hermite polinomial, Spline functions.

Variational Monte Carlo:

𝐸𝑇 = 𝜓𝑇 𝐻 𝜓𝑇 =  𝜓𝑇
∗ 𝑿 𝐻𝜓𝑇 𝑿 𝑑𝑿 =  𝜓𝑇 𝑿 2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿
𝑑𝑿 𝐸𝑇

𝑛 =
1

𝑛
 

𝑿∈ 𝜓𝑇
2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

Quantum VMC
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Hastings, W.K. Biometrika 57 
(1970) 97-109

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)Trial wave function:

2-body Schrödinger 
equation solution 𝑈3

𝑖𝑗𝑘
= 𝑈2

𝑖𝑗
+ 𝑈2

𝑖𝑘 + 𝑈2
𝑗𝑗 Skyrme wave functions 

Slater determinant
Physical 
guess

General
assumption

T. Skyrme
Nucl.Phys. 9 (1959) 615-634

J. Toulouse, C. J. Umrigar
Journal of Chemical Physics 126, 
084102 (2007)

Expansion of the wavefunction in a basis. 
e.g. Hermite polinomial, Spline functions.

Most of the energy in nuclear physics comes from (iso-)spinorial correlation:

Nuclear interaction include spin-isospin operators (𝜎1 ⋅ 𝜎2, 𝜏1 ⋅ 𝜏2, 𝜎1 ⋅ 𝑟𝑖𝑗 𝜎2 ⋅ 𝑟𝑖𝑗 , … )

and many-body interactions.
The nuclear Hamiltonian has intrinsic errors: we do not require chemical precision

Quantum VMC
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𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)Trial wave function:

T. Skyrme
Nucl.Phys. 9 (1959) 615-634

Trial wave function:

𝜙𝐴 = 𝑆𝐷 𝜓1
𝐴 𝒙1 , 𝜓2

𝐴 𝒙2 , . . , 𝜓𝑁
𝐴 𝒙𝑁 = 𝑑𝑒𝑡

𝜓1
𝐴 𝒙1 ⋯ 𝜓𝑁

𝐴 𝒙1
⋮ ⋱ ⋮

𝜓1
𝐴 𝒙𝑁 ⋯ 𝜓𝑁

𝐴 𝒙𝑁

E.g. 𝜓𝑖
𝐴 𝒙𝒋 = 𝑒

−
𝑟𝑗
2

𝐴𝑖
2

𝑌𝐿,𝑚 Σ𝑗 Τ𝑗

Spherical harmonics
Radial wave function (𝐴𝑖 is a variational parameter)
- Mean field
- Harmonic orbitals

Contessi Lorenzo - Monte Carlo 11
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Spinorial part (see Auxiliary field QMC)



𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)

Trial wave function:

2b/3b correlations (Jastrow function): 

𝑈2𝑏 𝑟𝑖𝑗 = 𝒮  

𝑖,𝑗

 

𝑝

𝑓𝑝 𝑟𝑖𝑗  𝑂𝑖𝑗
𝑝

• Symmetric under particle exchange
• Accounts for the two-body short-range behavior of the wave function
•  𝑂𝑝 are spin- / isospin-projections operators.

Trial wave function:

Contessi Lorenzo - Monte Carlo 12
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Hastings, W.K. Biometrika 57 
(1970) 97-109

M. Kalos and P. Whitlock, Monte 
Carlo methods (Wilei 2008)

𝜓𝑇 =  

𝑖=2

𝑛

𝑈𝑖 𝑿 𝜙𝐴(𝑿)Trial wave function:

2-body Schrödinger 
equation solution 𝑈3

𝑖𝑗𝑘
= 𝑈2

𝑖𝑗
+ 𝑈2

𝑖𝑘+𝑈2
𝑗𝑗 Skyrme wave functions 

Slater determinant
Physical 
guess

General
assumption

T. Skyrme
Nucl.Phys. 9 (1959) 615-634

J. Toulouse, C. J. Umrigar
Journal of Chemical Physics 126, 
084102 (2007)

Expansion of the wavefunction in a basis. 
e.g. Hermite polinomial, Spline functions

Variational Monte Carlo:

𝐸𝑇 = 𝜓𝑇 𝐻 𝜓𝑇 =  𝜓𝑇
∗ 𝑿 𝐻𝜓𝑇 𝑿 𝑑𝑿 =  𝜓𝑇 𝑿 2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿
𝑑𝑿 𝐸𝑇

𝑛 =
1

𝑛
 

𝑿∈ 𝜓𝑇
2

𝐻𝜓𝑇 𝑿

𝜓𝑇 𝑿

Quantum VMC
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Efficiency

Parallelization:

How to parallelize variational Monte Carlo?

Easy! Each processor takes care of a different Marcov chain.
No comunication is required untill you have to sum the expectation values!
It is trivially and almost perfectly parallelizable!

Processor 1

Processor 2

Processor 3

Collect all the statistic 
and process the data

Contessi Lorenzo - Monte Carlo 14



“Linear Method” Optimization

 𝐻 𝑖𝑗 =  𝜓T
𝑖 𝒑 𝐻  𝜓T

𝑗
𝒑

 𝑆 𝑖𝑗 =  𝜓T
𝑖 𝒑 |  𝜓T

𝑗
𝒑

J. Toulouse and C. J. Umrigar, J. 
Chem. Phys. 126, 084102 (2007) 

Considering a 𝜓𝑇 dependent from a set of parameters {𝑝1, . . . , 𝑝𝑘}:

 𝜓T 𝒑 =
𝜓𝑇 𝒑

𝜓 𝒑 𝜓 𝒑

It can be expanded

 𝜓T
𝑙𝑖𝑛 𝒑 =  𝜓𝑇 𝒑0 = 

𝑖=1

𝑁𝑝

∆𝑝𝑖  𝜓𝑇
𝑖 𝒑0

The first variation ∆𝒑 that minimizes the energy

𝐸𝑙𝑖𝑛 𝒑 =
 𝜓T
𝑙𝑖𝑛 𝒑 𝐻  𝜓T

𝑙𝑖𝑛 𝒑

 𝜓T
𝑙𝑖𝑛 𝒑  𝜓T

𝑙𝑖𝑛 𝒑

Can be found solving the linear equation

 𝐻 ∆𝒑 = ∆𝐸  𝑆 ∆𝒑

S. Sorella, Phys. Rev. B 71 (2005) 
241103 
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VMC : Pro and contra

Pro

• Access to the groundstate of large systems;
• Optimization can be used to find very general states;
• Easily parallelizable;
• Improvable numerical uncertainty.

Cons

• Sensible to the parametrization of the wavefunction 
(If the wavefunction is too correlated and complicated, it is difficult to find the correct parametrization);

• Variational (Best for groundstates);
• Stochastic uncertainty;
• Not the cheapest method for few-particles.
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Diffusion and importance sampling
The integral to be calculated is:

𝐸𝑔𝑠 =
𝜓𝑔𝑠 𝐻 𝜓𝑔

𝜓𝑔𝑠 𝜓𝑔

=
 𝜓𝑔𝑠

∗ 𝜓𝑔
𝐻𝜓𝑔

𝜓𝑔
𝑑𝑿

 𝜓𝑔𝑠
∗ 𝜓𝑔

=
1

𝑁
lim

𝑛→+∞

1

𝑛
 

𝑿∈𝜓𝑔𝑠
∗ 𝜓𝑔

𝐻𝜓𝑔 𝑿

𝜓𝑔 𝑿

To sample the groundstate we diffuse in imaginary time an arbitrary wave function:

𝜓𝑔𝑠 = 𝑒− 𝐻−𝐸0 𝜏 𝜓 = 𝑐0 𝜓𝑔𝑠 + 

𝑛=1

∞

𝑐𝑛 𝑒
− 𝐸𝑛−𝐸0 𝜏 𝜓𝑛 →𝜏→∞ 𝜓0

𝜓𝑔𝑠
∗ 𝜓𝑔 = 𝑙𝑖𝑚𝜏→∞ 𝑒− 𝐻−𝐸0 𝜏 𝜓𝑔𝜓 →  

𝑛

𝑒− 𝐻−𝐸0 Δ𝜏 𝜓𝑔𝜓 ∼ 

𝑛

𝑒−𝑇 Δ𝜏𝑒− 𝑉−𝐸0 Δ𝜏 𝜓𝑔𝜓

The idea is to do a chain of samples. 
- Evolve a configuration of points for each Δ𝜏 until it samples the groundstate

Function to be sampled

Estimator

Why not using Egs =
 ψgs

∗ Hψg

 ψgs
∗ ψg

?

It will work but the algorithm would be 
very unstable.
http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf
M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)
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Diffusion and importance sampling
The integral to be calculated is:

𝐸𝑔𝑠 =
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∗ 𝜓𝑔
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1

𝑁
lim

𝑛→+∞

1

𝑛
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∗ 𝜓𝑔

𝐻𝜓𝑔 𝑿
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∞
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∗ 𝜓𝑔 = 𝑙𝑖𝑚𝜏→∞ 𝑒− 𝐻−𝐸0 𝜏 𝜓𝑔𝜓 →  

𝑛

𝑒− 𝐻−𝐸0 Δ𝜏 𝜓𝑔𝜓 ∼ 

𝑛

𝑒−𝑇 Δ𝜏𝑒− 𝑉−𝐸0 Δ𝜏 𝜓𝑔𝜓

The idea is to do a chain of samples:
- Evolve a configuration of points for each Δ𝜏 until it samples the groundstate

Function to be sampled

Estimator

Why not using Egs =
 ψgs

∗ Hψg

 ψgs
∗ ψg

?

It will work but the algorithm would be 
very unstable.
http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf
M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)
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In continuous coordinate space:

𝜓 𝜏+Δ𝜏 𝒓 =  ⟨𝒓|𝑒− 𝐻−𝐸0 Δ𝜏 𝒓′ 𝒓′ 𝜓 𝜏 𝑑𝒓′ =  𝐺 𝒓′ → 𝒓 𝜓 𝜏 𝒓′ 𝑑𝒓′

𝐺 𝒓′ → 𝒓 = ⟨𝒓|𝑒− 𝐻−𝐸0 Δ𝜏 𝒓′ = ⟨𝒓|𝑒− 𝑇+𝑉−𝐸0 Δ𝜏 𝒓′ =

-- Trotter expansion (Δ𝜏 is small) --

⟨𝒓|𝑒− 𝑇+𝑉−𝐸0 Δ𝜏 𝒓′ = ⟨𝒓|𝑒−𝑇 Δ𝜏 𝒓′ ⟨𝒓|𝑒 𝐸0−𝑉 Δ𝜏 𝒓′ ⋅ 𝑂 Δ𝜏2

Propagation
W

ar
n

in
g:

 t
h

is
is

th
e 

ca
se

 o
f c

o
o

rd
in

at
e 

sp
ac

e
d

iff
u

si
o

n
!

Initial sampling

Δ𝜏 2 Δ𝜏𝜏 = 0 𝜏 → ∞
Contessi Lorenzo - Monte Carlo 19

Groundstate
sampling



The green function is :

𝐺 𝒙′ → 𝒙, Δ𝜏 =

= 4𝜋
ℏ2

2𝑚
Δ𝜏

3𝑁
2

𝑒−
𝒙−𝒙′−Δ𝜏

ℏ2

2𝑚 2
𝛻𝜓𝑔

𝜓𝑔

2

4 Δ𝜏 𝑒
Δ𝜏

1
2

𝐻𝜓𝑔 𝒙

𝜓𝑔 𝒙
+
𝐻𝜓𝑔 𝒙′

𝜓𝑔 𝒙′
−𝐸𝑇

+ 𝑂 𝜏3

Random walk: 𝑒−
𝒙−𝒙′−Δ𝜏

ℏ2

2𝑚
2
𝛻𝜓𝑔
𝜓𝑔

2

4 Δ𝜏 Weight: 𝑒
Δ𝜏

1

2

𝐻𝜓𝑔 𝒙

𝜓𝑔 𝒙
+

𝐻𝜓𝑔 𝒙′

𝜓𝑔 𝒙′
−𝐸𝑇

Sampling the groundstate: Imaginary time step diffusion
W

ar
n

in
g:

 t
h

is
is

th
e 

ca
se

 o
f c

o
o

rd
in

at
e 

sp
ac

e
d

iff
u

si
o

n
!

[few algebraic passages described in                                                                      ]

Move the walker 
with a gaussian walk

Weight of the configuration
 Multiply the estimator
 Branch the walkers 

http://users.jyu.fi/~veapaja/QMC/MC-lecture.pdf
M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)
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Notice that hard interactions 
and many-body terms are
not problematic 



Weighting: attach to each sampling 𝑒
Δ𝜏

1

2

𝐻𝜓𝑔 𝒙

𝜓𝑔 𝒙
+

𝐻𝜓𝑔 𝒙′

𝜓𝑔 𝒙′
−𝐸𝑇

Branching: each configuration is cloned 𝑒
Δ𝜏

1

2

𝐻𝜓𝑔 𝒙

𝜓𝑔 𝒙
+

𝐻𝜓𝑔 𝒙′

𝜓𝑔 𝒙′
−𝐸𝑇

+ 𝜇 times from one step to the other.   

Weighting and branching

−
𝑉
(𝑟)

𝑟

Random walk Branching

Many steps

Sampling of the 
groundstate

𝐸𝑔𝑠 =

lim
𝑛→+∞

1

𝑛
 

𝑿∈ 𝜓𝑔𝑠
∗ 𝜓𝑔

𝐻𝜓𝑔 𝑿

𝜓𝑔 𝑿

𝜏 + Δ𝜏𝜏 𝜏 + 𝑁 ⋅ Δ𝜏
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For three particles the number of (spin / isospin) components increases exponentially!

𝜎2 ⋅ 𝜎3

𝑎↑↑↑
𝑎↑↑↓
𝑎↑↓↑
𝑎↑↓↓
𝑎↓↑↑
𝑎↓↑↓
𝑎↓↓↑
𝑎↓↓↓

=

𝑎↑↑↑
2𝑎↑↓↑ − 𝑎↑↑↓
2𝑎↑↑↓ − 𝑎↑↓↑

𝑎↑↓↓
𝑎↓↑↑

2𝑎↓↓↑ − 𝑎↓↑↓
2𝑎↓↑↓ − 𝑎↓↓↑

𝑎↓↓↓

≠

𝑎↑↑↑
′

𝑎↑↑↓
′

𝑎↑↓↑
′

𝑎↑↓↓
′

𝑎↓↑↑
′

𝑎↓↑↓
′

𝑎↓↓↑
′

𝑎↓↓↓
′

n-body spinor →        𝟐𝑵 components

Single particle spin base is not closed with respect to non-quadratic spin operators:

𝜎𝑖 ⋅ 𝜎𝑗 operators mix the coefficients of the states.

GFDMC limits

Limited to ∼ 12 particles
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Using the Hubbard-Stratonovich transformation:

𝑒−
1
2𝜆𝑂

2
=

1

2𝜋
 𝑑𝑥 𝑒−

𝑥2

2 + −𝜆𝑥 𝑂

A quadratic operator can be transformed into a linear one,
at the price of an integral (per operator).

𝜎𝑖
𝛼1𝑎↑
𝛽1 𝑎↓ 1

⨂…⨂
𝛼𝑖𝑎↑
𝛽𝑖 𝑎↓ 𝑖

⨂…⨂
𝛼𝐴𝑎↑
𝛽𝐴 𝑎↓ 𝐴

=
𝛼1𝑎↑
𝛽1 𝑎↓ 1

⨂…⨂
𝛼𝑖
′𝑎↑

𝛽𝑖
′ 𝑎↓ 𝑖

⨂…⨂
𝛼𝐴𝑎↑
𝛽𝐴 𝑎↓ 𝐴

New scaling is 2𝐍 instead of 𝟐𝐍

AFDMC introduces a 
new integral for each 
operator transformation.

Auxiliary field quantum Monte Carlo
D. Ceperley, G.V. Chester, M.H. Kalos (1977) 
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Sign problem

A classic quantum mechanical fermionic problem:

Harmonic oscillator without interparticle interaction.
The ground state is the Hartree-Fock wavefunction.

However, the diffusion algorithm is the same for 
bosons and fermions! 

𝜓0 = 𝑒− 𝐻−𝐸0 𝜏 𝜓 = 𝑐0 𝜓0 + 

𝑛=1

∞

𝑐𝑛 𝑒
− 𝐸𝑛−𝐸0 𝜏 𝜓𝑛 →𝜏→∞ 𝜓0

DMC will diffuse the walkers to the bosonic groundstate!
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A classic quantum mechanical fermionic problem:
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The ground state is the Hartree-Fock wavefunction.

However, the diffusion algorithm is the same for 
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𝜓0 = 𝑒− 𝐻−𝐸0 𝜏 𝜓 = 𝑐0 𝜓0 + 

𝑛=1

∞

𝑐𝑛 𝑒
− 𝐸𝑛−𝐸0 𝜏 𝜓𝑛 →𝜏→∞ 𝜓0

DMC will diffuse the walkers to the bosonic groundstate!
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However the (energy) estimator is

𝐸𝑔𝑠 =
𝜓𝑔𝑠 𝐻 𝜓𝑔

𝜓𝑔𝑠 𝜓𝑔

And 

𝜓𝑔𝑠 𝜓𝑔 → 0

Since bosonic and fermion wave functions are orthogonal.
- The mean estimator is still correct

- The error on the estimator blows up by the 
→𝟎

→𝟎
ratio.

𝐸𝑔𝑠 =
 𝜓𝑔𝑠

∗ 𝜓𝑔
𝐻𝜓𝑔

𝜓𝑔

 𝜓𝑔𝑠
∗ 𝜓𝑔

On another point of view

𝜓𝑔𝑠
∗ 𝜓𝑔 is not a probability

since not strictly positive

Sign problem

Contessi Lorenzo - Monte Carlo 26



Sign problem
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Fix the zeros of the diffused wave function to be the same as the guide wave function:

Any walker that try to pass from a positive to a negative area of the guide wave function is removed.

It introduces a bias, but it will make the sampled wave function orthogonal to the bosonic one.

𝜓𝑔 𝑥

𝑥

𝐸𝑔𝑠 =
 𝜓𝑔𝑠

∗ 𝜓𝑔
𝐻𝜓𝑔

𝜓𝑔

 𝜓𝑔𝑠
∗ 𝜓𝑔

With fixed node: 𝜓𝑔𝑠
∗ 𝜓𝑔 > 0

is a well defined probability! 

Fixed phase:  for complex wave functions 

𝜓𝑔𝑠
∗ 𝜓𝑔 ∈ ℜ+

Constrained path: an alternative is to sample only 

the real part R𝑒 𝜓𝑔𝑠
∗ 𝜓𝑔

F. Bolton (1996)

S. Zhang (1997)

Fixed node, fixed phase, and constrained path
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Relese phase

M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. Rev. E55,  6210 (1997)

Not constraining the phase will make the variance explode.

Signal to noise spoiling can be delayed tuning the guide wavefunction (𝜖 parameter), 
but we should start with an almost correct groundstate.

 𝜓𝑔 = 𝑅𝑒 𝜓𝑔
2
+ 𝜖 𝐼𝑚 𝜓𝑔

2

with 𝜖 tuned to reduce the variance (e.g. 𝜖 ∼ 0.20 )

𝐸𝑔𝑠 =
 𝜓𝑔𝑠

∗  𝜓𝑔
𝜓𝑔
 𝜓𝑔

𝐻𝜓𝑔

𝜓𝑔

 𝜓𝑔𝑠
∗ 𝜓𝑔

gives enough time to see how far our 
fixed-node energy is far from the true solution.
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A physical exemple

16O using Contact Effective Field theory at LO:

𝑉𝐿𝑂 = 

𝑖<𝑗

[𝐶0 Λ + 𝐶1 Λ 𝜎𝑖 ⋅ 𝜎𝑗 ] 𝑒−
1
2 𝑟𝑖𝑗

2
Λ2

+𝐷0 Λ  

𝑖<𝑗 ≠𝑘

𝑒
−
Λ2

2 𝑟𝑖𝑗
2
+ 𝑟𝑖𝑘

2

+ 𝑒
−
Λ2

2 𝑟𝑖𝑗
2
+ 𝑟𝑗𝑘

2

+ 𝑒
−
Λ2

2 𝑟𝑗𝑘
2
+ 𝑟𝑖𝑘

2

In particular for large cutoffs (e.g. Λ = 8 fm−1)

• Performs well in few-body
• Do not stabilize larger nuclei at LO

(corrections are needed)
Es. 16O 

From
L. C., A. Lovato, F. 
Pederiva, A. Roggero, J. 
Kirscher and U. van Kolck,  
Phys.Lett.B 772 (2017), 
839-848
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16O Phenomenological orbitals
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Released-phase 16O
 energy

16O
 released-phase energy [constant F

i ]
4-a  threshold

𝑚𝜋 = 800 MeV

Λ = 4 fm −1

Λ = 8 fm −1

Λ = 6 fm −1

Λ = 8 fm −1

DMC converged energy
Using phenomenological orbitals
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𝑚𝜋 = 140 MeV

Λ
[fm−1]

16O
Energy
[MeV]

4α
treshold
[MeV]

2 -97.19(6) -92.68(8)

4
-92.23(14)

-94.52(9)

6
-97.51(14)

-100.24(8)

8 -100.97(20) -104.2(2)

∞ −1158(𝑠𝑡𝑎𝑡)
1(𝑠𝑦𝑠)

−1208(𝑠𝑡𝑎𝑡)
1(𝑠𝑦𝑠)

- All the errors shown are statistical errors from Monte Carlo method.

16O Spline orbitals and correlations
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16O Spline orbitals and correlations
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Oxygen density (𝑚𝜋 = 140 MeV)

Λ = 2 fm−1

Λ = 8 fm−1
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Conclusions first part

Contessi Lorenzo - Monte Carlo

Quantum Monte Carlo can solve high dimensional quantum problems.

Variational QMC is fast and precise, but relays on a good parametrization of the wavefunction

Green function QMC allows to extract the groundstate of the system using a diffusion in imaginary time

Auxiliary field QMC permits to find the groundstate energy of many-fermions

- Not positive wave functions (e.g. for many-fermions) will introduce the Sign Problem

- The Sign Problem can be tamed but not removed (fixed node, fixed phase, constraint path)
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