Large-scale Second-RPA calculations for collective excitations

Panagiota Papakonstantinou

Institute of Nuclear Physics, T.U.Darmstadt, Germany

TECHNISCHE UNIVERSITÄT DARMSTADT

RPA Workshop, Paris, January 2010

Overview

Introduction – Motivation

• ... and some formalism

Large-scale Second RPA

- Technical issues
- Physical aspects via illustrative examples
- Stability problems and missing correlations

Open questions

- Range and conditions of validity of SRPA?
- Any implications for first RPA?
- ...

About this work

(S)RPA for excited states

- ... on top of a mean-field ground state Hartree Fock
- ... mostly from a nuclear point of view
- Spherical, closed-shell nuclei will be considered (good angular momentum, no pairing)
- Why go beyond first-order RPA?
 - Decay of collective excitations, but also...
 - ... convergence and the problem of the (nuclear) interaction

Nuclear Giant Resonances

Giant Resonances – ²⁰⁸Pb

phenomenological effective interactions

- start with some ansatz, e.g. $V_0 e^{-r^2/\mu^2} + \cdots$, or $V_0 \delta(\vec{r}) + \cdots$ and determine parameters by fitting HF, RPA results to data
- Streamlined over the years for **global properties** energy and strength of GRs

realistic effective interactions

- start with the bare NN interaction and renormalize it properly, using, e.g., the UCOM, SRG, ...
- perturbative interactions, retaining the complexities of the bare NNI – but not tailored for HF, RPA

UCOM-HF + PT

UCOM-HF + PT

Large-scale, "self-consistent" Second RPA

A typical SRPA application:

- phenomenological s.p. energies and residual interaction
- a few (relatively speaking...) 2p2h configurations in the vicinity of a resonance

In this work:

- Large-scale:
 - choose a s.p. space large enough for good convergence (e.g. 12 HO shells) – solve HF
 - include all ph and 2p2h configurations available
- "self-consistent":
 - 2B interaction sole input used to describe ground state and residual couplings

Quantities of interest

• Strength function – response to an external field F^{\dagger} :

$$S_F(E) = \sum_{\nu} |\langle \nu | F^{\dagger} | 0 \rangle|^2 \delta(E_{\nu} - E)$$

Sum rules

$$m_k = \int_0^\infty S_F(E) E^k dE$$

- We consider electrical multipole fields inducing smallamplitude oscillations of the density: compression, surface deformation, etc.
- F[†] will be a single-particle operator, able to excite, e.g., ph configurations when acting on the Hartree-Fock ground state.

Equations of Motion Method

Schrödinger equation:

$$H|\nu\rangle = E_{\nu}|\nu\rangle$$

Define creation / annihilation operators

$$|\nu\rangle = Q_{\nu}^{\dagger}|0\rangle \quad ; \quad Q_{\nu}|0\rangle = 0$$

Rewrite:

$$\langle 0|[R, [H, Q_{\nu}^{\dagger}]]|0\rangle = E_{\nu}\langle 0|[R, Q_{\nu}^{\dagger}]|0\rangle \quad ; \quad \forall R$$

• E.g.: $R = a_p^{\dagger} a_h$, *ph* operator, $Q_{\nu} = \sum_{ph} X_{ph} a_p^{\dagger} a_h - Y_{ph} a_h^{\dagger} a_p$, and $|0\rangle = |\text{HF}\rangle$: HF-RPA Vibration creation operator:

$$Q_{\nu}^{\dagger} = \sum_{ph} X_{ph}^{\nu} O_{ph}^{\dagger} - \sum_{ph} Y_{ph}^{\nu} O_{ph} \quad ; \quad Q_{\nu} |\text{RPA}\rangle = 0 \quad ; \quad Q_{\nu}^{\dagger} |\text{RPA}\rangle = |\nu\rangle$$

Standard RPA - the RPA vacuum is approximated by the HF ground state:

 $\langle \text{RPA} | \dots | \text{RPA} \rangle \rightarrow \langle \text{HF} | \dots | \text{HF} \rangle \quad ; \quad O_{ph}^{\dagger} \rightarrow a_p^{\dagger} a_h$

RPA equations in ph-space:

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$

 $A_{ph,p'h'} = \delta_{pp'} \delta_{hh'} (e_p - e_h) + H_{hp',ph'} \; ; \; B_{ph,p'h'} = H_{hh',pp'} \; ; \; H = H_{\text{int}} = T_{\text{rel}} + V_{\text{UCOM}}$

Self-consistent HF+RPA: spurious state and sum rules

• Vibration creation operator: Includes 2p2h configurations

$$Q_{\nu}^{\dagger} = \sum_{ph} X_{ph}^{\nu} O_{ph}^{\dagger} - \sum_{ph} Y_{ph}^{\nu} O_{ph} + \sum_{p_1 h_1 p_2 h_2} \mathcal{X}_{p_1 h_1 p_2 h_2}^{\nu} O_{p_1 h_1 p_2 h_2}^{\dagger} \\ - \sum_{p_1 h_1 p_2 h_2} \mathcal{Y}_{p_1 h_1 p_2 h_2}^{\nu} O_{p_1 h_1 p_2 h_2}$$

The SRPA vacuum is approximated by the HF ground state:

 $\langle SRPA | \dots | SRPA \rangle \rightarrow \langle HF | \dots | HF \rangle$

SRPA equations in $ph \oplus 2p2h$ -space:

$$\begin{pmatrix} A & \mathcal{A}_{12} & B & 0 \\ \mathcal{A}_{21} & \mathcal{A}_{22} & 0 & 0 \\ \hline -B^* & 0 & -A^* & -\mathcal{A}_{12}^* \\ 0 & 0 & -\mathcal{A}_{21}^* & -\mathcal{A}_{22}^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ \mathcal{X}^{\nu} \\ \hline Y^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ \mathcal{X}^{\nu} \\ \hline Y^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix}$$

 $A_{ph,p'h'} = \delta_{pp'}\delta_{hh'}(e_p - e_h) + H_{hp',ph'} ; B_{ph,p'h'} = H_{hh',pp'} ; H = H_{int} = T_{rel} + V_{UCOM}$ $\mathcal{A}_{12}: \text{ interactions between } ph \text{ and } 2p2h \text{ states}$ $\mathcal{A}_{22}: \delta_{p_1p'_1}\delta_{h_1h'_1}\delta_{p_1p'_1}\delta_{h_1h'_1}(e_{p_1} + e_{p_2} - e_{h_1} - e_{h_2}) + \text{ interactions among } 2p2h \text{ states}$ $\overset{13}{}$

■ 2Nx2N RPA problem, with A and B NxN symmetric:

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix} = \epsilon_{\nu} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix}$$

Reduction to NxN is always possible in various ways
... even when $A \pm B$ are not positive definite

■ How:

if A + B decomposable as A + B = CDE (all real, E has inverse),^(**)

then solve $HR_{\nu} = \epsilon_{\nu}^2 R_{\nu}$ where H = E(A - B)CD is $N \times N$

For real, positive solutions, recover X, Y as

$$X_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} E^{-1} + \epsilon_{\nu}^{-1/2} CD] R_{\nu}$$

$$Y_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} E^{-1} - \epsilon_{\nu}^{-1/2} CD] R_{\nu}$$
(**) completely analogous expressions can be derived if we decompose $A - B$ instead

■ 2Nx2N RPA problem, with A and B NxN symmetric:

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix} = \epsilon_{\nu} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix}$$

Reduction to NxN is always possible in various ways

... even when $A \pm B$ are not positive definite

• A + B positive-definite: Use Cholesky (find square root):

 $A + B = CDE = LL^T$ ($C = E^T = L$ lower-triangular, D = I)

then solve $HR_{\nu} = \epsilon_{\nu}^2 R_{\nu}$ where $H = L^T (A - B)L$ is $N \times N$ symmetric Recover *X*, *Y* as

$$X_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} L^{T^{-1}} + \epsilon_{\nu}^{-1/2} L] R_{\nu}$$
$$Y_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} L^{T^{-1}} - \epsilon_{\nu}^{-1/2} L] R_{\nu}$$

[Chi, NPA146(70)449]

■ 2Nx2N RPA problem, with A and B NxN symmetric:

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix} = \epsilon_{\nu} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix}$$

Reduction to NxN is always possible in various ways

... even when $A \pm B$ are not positive definite

• Unsure about A + B: Use "Generalized" Cholesky :

 $A + B = CDE = LDL^T$ ($C = E^T = L$ triang., D =diagonal with ± 1)

then solve $HR_{\nu} = \epsilon_{\nu}^2 R_{\nu}$ where H = E(A - B)CD is $N \times N$ symmetric

For real, positive solutions, recover X, Y as

$$X_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} L^{T^{-1}} + \epsilon_{\nu}^{-1/2} L] R_{\nu}$$
$$Y_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} L^{T^{-1}} - \epsilon_{\nu}^{-1/2} L] R_{\nu}$$

decomposition algorithm as efficient as Cholesky

■ 2Nx2N RPA problem, with A and B NxN symmetric:

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix} = \epsilon_{\nu} \begin{pmatrix} X_{\nu} \\ Y_{\nu} \end{pmatrix}$$

- Reduction to NxN is always possible in various ways
 ... even when $A \pm B$ are not positive definite
- Simplest way: (saves matrix operations)

$$[(A-B)(A+B)]R_{\nu} = \epsilon_{\nu}^2 R_{\nu}$$
, with $R_{\nu} = \epsilon_{\nu}^{-1/2} (X_{\nu} + Y_{\nu})$

For real, positive solutions,

$$X_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} I + \epsilon_{\nu}^{-1/2} (A + B)] R_{\nu}$$
$$Y_{\nu} = \frac{1}{2} [\epsilon_{\nu}^{1/2} I - \epsilon_{\nu}^{-1/2} (A + B)] R_{\nu}$$

- Large model spaces:
 - Number of states up to $\approx 10^6$ for the present cases can get larger
 - But SRPA matrix is sparse and reduction to half the size is always possible

- Large model spaces:
 - Number of states up to $\approx 10^6$ for the present cases can get larger
 - But SRPA matrix is sparse and reduction to half the size is always possible

Use Lanczos

- Find only the lowest eigenvalues $|\epsilon_{\nu}|$
- ... or the ones closest to a set value E_0 , e.g.

$$HX_{\nu} = \epsilon_{\nu}X_{\nu} \iff H'X_{\nu} = \epsilon'_{\nu}X_{\nu} , \quad \left\{ \begin{array}{l} H' \equiv H - E_{0}I \\ \epsilon'_{\nu} \equiv \epsilon_{\nu} - E_{0} \end{array} \right\}$$

- Large model spaces:
 - Number of states up to $\approx 10^6$ for the present cases can get larger
 - But SRPA matrix is sparse and reduction to half the size is always possible

Use Lanczos

- Find only the lowest eigenvalues $|\epsilon_{\nu}|$
- ... or the ones closest to a set value E_0 , e.g.

$$HX_{\nu} = \epsilon_{\nu}X_{\nu} \iff H'X_{\nu} = \epsilon'_{\nu}X_{\nu} , \left\{ \begin{array}{l} H' \equiv H - E_{0}I \\ \epsilon'_{\nu} \equiv \epsilon_{\nu} - E_{0} \end{array} \right\}$$

- Alternatively, reduce to an ω -dependent problem of RPA size
 - ... especially if you ignore interactions within 2p2h space:

$$A_{php'h'} \longrightarrow A_{php'h'}(\epsilon) = A_{php'h'} + \sum_{PHP'H'} \frac{A_{phP'H'}^* A_{p'h'PHP'H'}}{\hbar\epsilon - (\epsilon_P + \epsilon_{P'} - \epsilon_H - \epsilon_{H'}) + i\eta}$$

SRPA Eigenstates

SRPA and its diagonal approximation ("SRPA0") vs RPA

¹⁶O with UCOM-AV18 in 7 shells

Diagonal Approximation

Diagonal Approximation

Fragmentation of ph states

Fragmentation of ph states

Truncation in 2p2h energy

UCOM :: RPA and SRPA

UCOM :: RPA and SRPA

Spurious states

Low-lying states

SRPA0: convergence and stability of low-lying ISQ states

RPA, SRPA, and extensions

Nucl.Phys.A477(88)205 etc

Role of ground-state correlations

- Use a more consistent extended-RPA formalism
- For the moment, possible tests:
 - ignore GSC altogether TDA and STDA (B = 0)
 - renormalize matrix elements: e.g., $\times D_{ph}^{1/2}$ ($D_{ph} \equiv n_h n_p$)
 - here occupation probabilities from shell model

Ground State Correlations

¹⁶O octupole states

Ground State Correlations

⁴⁸Ca quadrupole states

	E_1	E_2	$E_{\rm GQR}$	$B(E_1)$	$B(E_2)$	B(GQR)
RPA	2.19	8.12	27.22	450.05	79.18	915.2
RRPA	2.42	8.16	27.41	373.09	69.36	892.2
TDA	2.61	8.39	27.42	127.05	46.06	813.1
SRPA	-4.44	<i>i</i> ×0.803	19.51	223.18		1021.3
RSRPA	-3.14	1.34	20.18	161.95	22.25	991.3
STDA	-4.26	0.46	19.72	182.28	41.14	831.1

Ground State Correlations

monopole states

32

M.Tohyama, PRC75 (07) 044310

$$H = \epsilon J_z + \frac{V}{2}(J_+^2 + J_-^2) + \frac{U}{2}[J_z(J_+ + J_-) + (J_+ + J_-)J_z],$$

N = 4 and $U/\epsilon = V/2\epsilon = -0.15$

U = V/2

M.Tohyama, PRC75 (07) 044310

$$H = \epsilon J_z + \frac{V}{2}(J_+^2 + J_-^2) + \frac{U}{2}[J_z(J_+ + J_-) + (J_+ + J_-)J_z],$$

strong correlations: all methods fail

M.Tohyama, PRC75 (07) 044310

$$\begin{split} H &= \epsilon J_z + \frac{V}{2} (J_+^2 + J_-^2) + \frac{U}{2} [J_z (J_+ + J_-) \\ &+ (J_+ + J_-) J_z], \end{split}$$

M.Tohyama, PRC75 (07) 044310

$$H = \epsilon J_z + \frac{V}{2}(J_+^2 + J_-^2) + \frac{U}{2}[J_z(J_+ + J_-) + (J_+ + J_-)J_z],$$

weak correlations: 1-phonon state OK?

M.Tohyama, PRC75 (07) 044310

GQR of $^{16}\mathrm{O}$

STDDM	
RPA	
SRPA	

Conclusions – nuclear

Extended-RPA calculations using correlated realistic interactions

Effective interactions for extended RPA?

- ✓ Avoiding conceptual problems
- ✓ More fundamental treatment of nucleon self energy, m[∗] (ISQ, IVD)
- **X** Two-body UCOM: Soft nuclei due to residual three body effects?
- Second RPA:
 - ✓ Great improvement over RPA results
 - ✓ model space should be flexible enough to describe residual LRC
 - **X** Instabilities and inconsistencies
- Extensions of the present simple SRPA method

Summary

Large-scale Second RPA calculations for collective states

Role of model space and interaction

✓ Large-scale: no arbitrary truncations of model space

- ✓ "Self-consistent": NN interaction only input
- Second RPA:
 - ✓ Shift and fragmentation of resonances
 - **X** Instabilities and inconsistencies
 - ... but GRs rather stable? (Except compression mode)
- Extensions of the present simple SRPA method?

Thank you!

Work in collaboration with:

- R. Roth and the TNP++ group, J.Wambach, V.Yu.Ponomarev, ... Institut f
 ür Kernphysik, TU Darmstadt, Germany
- H. Feldmeier, K. Langanke, G. Martinez-Pinedo, T. Neff, ... GSI, Darmstadt, Germany

Some related references

- P. P., R. Roth, to appear in PRC (2010)
- P. P., R. Roth, PLB671, 356 (2009)
- and many more: http://crunch.ikp.physik.tu-darmstadt.de/tnp/ http://crunch.ikp.physik.tu-darmstadt.de/~panagiota/

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

