
Understanding properties of conceptual DFT

quantities using simple algebraic tools

Patrick Bultinck, Andres Cedillo and Dimitri Van Neck (and many
more)

Quantum Chemistry Group
Ghent University

WTC 2012, Kathmandu

Patrick Bultinck (UGent) Understanding conceptual DFT descriptors WTC 2012, Kathmandu 1 / 32



Fukui’s reactivity

Frontier molecular orbital theory: introduced by Fukui around
1952. Explained reactivity of conjugated systems in terms of
HOMO and LUMO (frontier MO’s).

Based on visual inspection of orbitals to assess where a reaction
will take place.

Essentially built on levels of theory that hold orbital energies (to
identify HOMO and LUMO)
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DFT interpretation

In DFT, the Fukui function is introduced in the context of a Taylor
series expansion of the energy with respect to the number of
electrons and the external potential vext (r)
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All these derivatives have their own significance although little work
has been done beyond second derivatives.
Of prime importance here is the so-called Fukui function; the first
mixed derivative
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Depends on r.

Integrates to 1.

Is the DFT equivalent of Fukui’s FMO theory.
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So-called conceptual DFT attaches chemical meaning to each of
these derivatives although in practice going beyond first order in an r
dependency is often hardly possible.
For instance:(
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Issues with the Fukui function

It is often assumed that f (r) ≈ ρFMO(r), however, near full CI
calculations show regions with negative f (r).

No connection can be established yet with an underlying matrix
as is the case in e.g., density matrices and their positive
semidefinite character.

one needs to distinguish (at least) two different Fukui functions:
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In practice, finite differences are used, using only the neutral molecule
and molecular ions.
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Atom condensed Fukui functions
The Fukui functions f ± (r) define a field, and most chemists prefer to
use a coarse grain representation as atom condensed Fukui functions.
Yang and Mortier introduced those, under the strict assumption that:
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∫
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)±
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=
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)±
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We follow the first, in agreement with Bader, but the second is far
more popular as in that case one has:

f +
A = qA (N + 1)− qA (N)

f −A = qA (N)− qA (N − 1)
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Negative values

Several attempts have been made concerning the possibility of
negative Fukui functions and even more, negative atom condensed
Fukui functions. Much of this reasoning is based on quite dubious
considerations. Two issues appear:
1. Commutation or not ?
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2. EEM based reasoning
EEM or Electronegativity Equalization Methods relate energies to
quadratic atomic energy expansions in terms of charges through the
hardness matrix with an exchange free embedding idea behind it. If
charge derivatives are considered to be atom condensed Fukui
functions, under extreme conditions, atom condensed values can

become negative.
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Challenges for the Fukui function
Can we show that the Fukui function is positive semi-definite
along the same lines as done for density matrices ?

Can we extend the Fukui function in a way that related it to
Fukui’s approach but for correlated levels of theory ?

Can we condense the Fukui function in a way to also have bond
Fukui functions as chemical reactions usually proceed via bond
formation and breaking ?

The Fukui matrix
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The Fukui matrix

The Fukui matrix is defined in a very simple fashion as:

f ± (r, r′) =

(
∂ρ (r, r′)

∂N

)±
vext (r)

such that the Fukui function is easily recovered as f ± (r, r). The first
question raised is easily answered if we project the Fukui function on
the basis of the natural orbitals:

Pij = 〈i |ρ (r, r′)| j〉
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{
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)
v(r)=v0(r)

}
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Spectrum of the Fukui matrix
The resulting matrix f can be diagonalized and the spectrum investigated.
Taking into account normalization, the matrix trace must equal 1. Results
show that the Fukui matrix is not positive definite and negative
eigenvalues occur frequently at the Hartree-Fock and B3LYP levels of
theory.

Table: f −(r) eigenvalues for some small molecules.

Molecule Pos Neg Low CFMO

CH2NH 8 7 -0.081 1.000

CO2 11 10 -0.079 1.000

HCN 7 6 -0.074 1.000

N2O 11 10 -0.072 1.000

CO 7 6 -0.055 1.000

The number of negative eigenvalues is always one less than the number of

positive eigenvalues. Strangely, in all cases there is one eigenvalue exactly

equal to 1!
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Eigenvalues of the Fukui matrix
This effect disappears at the correlated level of theory

Table: Properties of the Fukui matrix at different levels of theory using
the 6-311++G(2d,2p) basis set and B3LYP/6-311++G(2d,2p) optimized
geometries. The first row gives the largest eigenvalue of the Fβ,− matrix,
the second row gives the most negative eigenvalue.

B3LYP ROHF MP2 CISD CCSD
CH2NH 1.0000 1.0000 0.9806 0.9837 0.9580

-0.0805 -0.1611 -0.0878 -0.0908 -0.0702
CO2 1.0000 1.0000 0.9712 0.9822 0.9382

-0.0791 -0.0669 -0.2393 -0.2650 -0.0976
HCN 1.0000 1.0000 0.9643 0.9728 0.9556

-0.0774 -0.0808 -0.0912 -0.0805 -0.0697
N2O 1.0000 1.0000 0.9646 0.9796 0.9420

-0.0719 -0.0877 -0.2085 -0.2222 -0.0810
CO 1.0000 1.0000 0.9830 0.9803 0.9570

-0.0552 -0.0788 -0.1525 -0.1391 -0.0496
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Proof by Hartwig et al.: the difference of two idempotent
matrices can have only eigenvalues (here) equal to exactly 1 or 0
and all other eigenvalues must come in perfect pairing +x and
−x .

More accessible proof given by Van Neck in recent work.

At Hartree-Fock and DFT (Kohn-Sham) levels of theory,
idempotency of the density matrix leads to one dominant Fukui
orbital with eigenvalue exactly equal to 1. (Gradual) Loss of
idempotency leads to (gradual) loss of this equality.

No exceptions found!
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Eigenvectors of the Fukui matrix

Study of the eigenvectors of the Fukui matrix leads to better
understanding of Fukui’s FMO theory.
In most molecules, a coefficient near 1.000 appears for the FMO in
the dominant eigenvector (with eigenvalue 1).

Table: f −(r) eigenvalues for some small molecules.

Molecule Pos Neg Low CFMO
CH2NH 8 7 -0.081 1.000
CO2 11 10 -0.079 1.000
HCN 7 6 -0.074 1.000
N2O 11 10 -0.072 1.000
CO 7 6 -0.055 1.000
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Correlated FMO’s

This dominance of one single coefficient in the eigenvector with the
highest eigenvalue and the near unity coefficient for the FMO at
single determinant level, opens up the way to the following
generalization.

The frontier molecular orbital is that eigenvector of the
Fukui matrix with the highest eigenvalue.

In case of a idempotent density matrix theory, Fukui’s approach is
recovered, but the secondary eigenvectors explain regions with
negative Fukui functions.

Patrick Bultinck (UGent) Understanding conceptual DFT descriptors WTC 2012, Kathmandu 16 / 32



Figure: |0.0002| Isosurfaces of f −(r) for the total Fukui function (a), the
sum of contributions with positive eigenvalues (b) and negative
eigenvalues (c) for FCCF.

Negative regions may arise depending on the spectrum of the Fukui
matrix as well as on the eigenvectors.
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Effect of electron correlation

SAB = 100 ∗
∑

ij

(
f A
ij f

B
ji

)√∑
ij

(
f A
ij f

A
ji

)∑
ij

(
f B
ij f

B
ji

)
Table: Similarity matrix between the f − matrices obtained at different
levels of theory for CH2NH.

B3LYP ROHF MP2 CISD CCSD
B3LYP 100.0 95.5 95.7 95.8 99.5
ROHF 95.5 100.0 96.0 96.2 97.4
MP2 95.7 96.0 100.0 100.0 97.7
CISD 95.8 96.2 100.0 100.0 97.8
CCSD 99.5 97.4 97.7 97.8 100.0

The influence is clearly not very large but may become so when
different levels of theory lead to different dominant eigenvectors.
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Atom and bond condensed Fukui matrices

Up to now virtually no Fukui functions used for atoms: usually
atom condensed values only.

Ambiguity on how to compute atom condensed Fukui functions

f ±A =

∫
wA(r)

(
∂ρ (r)

∂N

)±
vext (r)

or

f ±A =

∫ (
∂ (wA(r)ρ (r))

∂N

)±
vext (r)

dr
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Density matrix partitioning approach
Based on our technique to partition density matrices:

f AB (r, r′) =
1

2
(wA (r)wB (r′) + wA (r′)wB (r)) f (r, r′)

wA (r) is a weight function as obtained using Hirshfeld-I, and
expressed in the basis of the natural orbitals. Bader approach equally
well possible. Gives Fukui functions ∀{A,B}. Atom condensed Fukui
functions recovered easily:∑

A,B

f AB (r, r′) = f (r, r′)

fA =
∑

B

fAB∑
A,B

fAB =
∑

A

fA = 1
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Compared to previous work by Fradera and Solà (ab initio) and
Contreras (HMO, FMO), current Fukui function based on first order
density matrix. Fradera and Solà as well as Contreras consider the
derivative of (de)localization indices with respect to N ; i.e. derivative
of exchange correlation density matrix (a 2-electron quantity).

Problems do remain, e.g., with Hirshfeld-I based recipes:

f− f+

neutral cation neutral anion
CC 0.77 0.75 0.49 0.86
CO 0.07 0.07 0.33 0.07
OO 0.16 0.17 0.19 0.07

Table: Atom condensed Fukui functions for CO using wA (r) from either
the neutral molecule or molecular ion.
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Effect of non-commutation of mathematical operations:

f −A f +
A

Eq. 1 Eq. 2 Eq. 1 Eq. 2
C 0.81 0.88 0.65 1.17
O 0.19 0.12 0.35 -0.17

Table: ROHF/aug-cc-pvdz fA values for CO according to respectively
equations 1 and 2.

f ±A =

∫
wA(r)

(
∂ρ (r)

∂N

)±
vext (r)

(1)

or

f ±A =

∫ (
∂ (wA(r)ρ (r))

∂N

)±
vext (r)

dr (2)
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Fragment 1 2 3 4 5 11 12 13 14
∑

i f AB
ii

CC -0.03 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.009
CO -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.009
CH -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.016
CH -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.016
CH’ -0.04 -0.04 -0.01 0.00 0.00 0.00 0.01 0.05 0.09 0.051
CH* -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.004
OO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.029
OH -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.001
OH -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.001
OH’ -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.001
OH* -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.000
HH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.044
HH -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.001
HH’ -0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.003
HH* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.001
HH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.044
HH’ -0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.003
HH* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.001
HH’ -0.11 -0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.84 0.650
HH* -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.058
H*H* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.060∑

A,B

∑
i f AB

ii 1.000

Table: The f −AB Fukui orbitals and their eigenvalues for methanol,
calculated in the STO-3G basis set on the ROHF level of theory.
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Conclusions

The Fukui function has been generalized to a Fukui matrix, showing
that:

We have definite proof that the Fukui function can be negative.

Negative eigenvalues are bound to appear (almost) always.

Differences between (non-)idempotent matrices show interesting
properties.

A new perspective is found on FMO theory, allowing it to be
extended to correlated levels of theory.

Bond Fukui functions may be introduced. But also

Partitioning and condensing Fukui functions remains
problematic, especially for f +.
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3 BP.; Fias, S.; Van Alsenoy, C.; Ayers, P.W.; Carbó-Dorca, R. Critical thoughts on computing atom condensed Fukui

functions. J. Chem. Phys., 2007, 127, 034102.
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