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In the standard VB approach the valence states of H2 are
described using 4 structures (2 neutral and 2 ionic):

1Ψn
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1sA1sB + 1sB1sA
√

2 (1 + S2)

αβ − βα√
2
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√
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Due to the non orthogonality of the 1sA and 1sB orbitals, two
of these structures are non orthogonal:

〈

1Ψn
I,g | 1Ψn

N,g

〉

=
2S

1 + S2
S = 〈1sA | 1sB〉

The 4 VB structures are used to describe two 1Σ+
g states,

Ψ1

(

1Σ+
g

)

= CN
1Ψn

N,g + CI
1Ψn

I,g

Ψ2

(

1Σ+
g

)

= C ′
N

1Ψn
N,g + C ′

I
1Ψn

I,g

and one 3Σ+
u and one 1Σ+

u states:

Ψ1

(

3Σ+
u

)

= 3Ψn
N,u Ψ1

(

1Σ+
u

)

= 1Ψn
N,u



Energy of the two 1Ψn
N,g and 1Ψn

I,g structures,

and of the two 1Σ+
g states.
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- The GS is fairly well described by the neutral VB
configuration (Coulomb and exchange integrals).
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(marginal for the chemical bond).
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- The GS is fairly well described by the neutral VB
configuration (Coulomb and exchange integrals).

- The bond formation is ascribed to the exchange integral.

- The ionic structure gives a modest improvement of De

(marginal for the chemical bond).

Considerations:

✔ In the HF wf the neutral and ionic structures have the
same weight and HF gives a correct description near Re.

✔ The ionic structure gives a modest energy modification,
but has a large weight in the wf (ionic and neutral are
close in energy with a large interaction).



Origin of the interpretative problems:

non-orthogonality
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Non-orthogonality consequences

✔ Practical: the working equation for the diagonalization of
the Hamiltonian matrix is

Hc = EMc M =

(

1 2S
1+S2

2S
1+S2 1

)

✔ Philosophical: the overlap between the two forms
indicates that one cannot describe the system with either
structure in an exclusive manner (the neutral form has
partially ionic nature and vice versa).



Energy of the two 3Ψn
N,u (3Σ+

u ) and 1Ψn
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The orthogonal VB approach.
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In OVB the structures are built using orthogonal atomic
orbitals (OAOs). The OAOs are obtained by Löwdin
(symmetric or “democratic”) orthogonalization of the 1sA and
1sB atomic orbitals:

a =
1

2

(

1√
1 + S

+
1√

1− S

)

1sA +
1

2

(

1√
1 + S

− 1√
1− S

)

1sB

b =
1

2

(

1√
1 + S

− 1√
1− S

)

1sA +
1

2

(

1√
1 + S

+
1√

1− S

)

1sB



The OVB structures.
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1Ψo
N,g =

ab+ ba√
2

αβ − βα√
2

3Ψo
N,u =

ab− ba√
2







αα
αβ+βα√

2

ββ







1Ψo
I,g =

aa+ bb√
2

αβ − βα√
2

1Ψo
I,u =

aa− bb√
2

αβ − βα√
2



The relation between OVB and VB.
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1Ψo
N,g =

√
1 + S2

1− S2

(

−S 1Ψn
I,g +

1Ψn
N,g

)

1Ψo
I,g =

√
1 + S2

1− S2

(

1Ψn
I,g − S 1Ψn

N,g

)

〈

1Ψo
N,g |1Ψo

I,g

〉

= 0 !

3Ψo
N,u = 3Ψn

N,u

1Ψo
I,u = 1Ψn

I,u



The valence states in OVB.
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Nature of the chemical bond in H2:

the OVB description.
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- The neutral structure gives a dissociative curve (no bond!).
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- The neutral structure gives a dissociative curve (no bond!).

- The energy stabilization with respect to the atoms comes
from the ionic structure (electron delocalization) which have a
large effect on the energy and on the wavefunction ⇒ this
structure has to be included in the calculation.
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- The neutral structure gives a dissociative curve (no bond!).

- The energy stabilization with respect to the atoms comes
from the ionic structure (electron delocalization) which have a
large effect on the energy and on the wavefunction ⇒ this
structure has to be included in the calculation.

A clear interpretation (no overlap) but:

The OAOs have a large weight on one atom and a tail on the
other atom → are the neutral and ionic structures really
neutral and ionic?



A comparison of VB and OVB:

OVB and the Σu states.
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more compact than the OVB one. The non orthogonality of
the structures brings some problem (practical and
interpretative).
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OVB gives a coherent description of the neutral and ionic
configurations (even if there is the “tail problem”) but it
requires the explicit inclusion of the ionic structures.



Conclusions

VB and OVB: H2

Standard VB

Orthogonal VB

Comparison of VB
and OVB

OVB analysis of
ethylene

A different approach
to benzene

Polyenes

Singlet-Triplet
splitting in Ullman’s
diradical

Ab initio VB, Paris, July 2012 33 / 65

The VB approach gives good energies with a wavefunction
more compact than the OVB one. The non orthogonality of
the structures brings some problem (practical and
interpretative).

OVB gives a coherent description of the neutral and ionic
configurations (even if there is the “tail problem”) but it
requires the explicit inclusion of the ionic structures.

Moreover, it can be directly linked to MO methods: by a
simple localization (unitary transformation) of the active MOs
one can have an OVB reading of the CASSCF wavefunction.
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C. Angeli, “On the nature of the π → π
∗ ionic excited states:

the V state of ethene as a prototype. J. Comp. Chem., 30(8), 1319-1333, (2009).

C. Angeli, “An analysis of the dynamic σ polarization in the V state of ethene”,

Int. J. Quant. Chem., 110(13), 2436-2447, (2010).
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The vertical excitation energy for the V state of ethylene is a
challenge for MO methods:

✔ experimental band maximum: 7.66 eV
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The vertical excitation energy for the V state of ethylene is a
challenge for MO methods:

✔ experimental band maximum: 7.66 eV

✔ very expensive MRCI calculations: 7.7 eV

✔ CASSCF 12/12 + MRPT2 + MRPT3: > 8.2 eV
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The vertical excitation energy for the V state of ethylene is a
challenge for MO methods:

✔ experimental band maximum: 7.66 eV

✔ very expensive MRCI calculations: 7.7 eV

✔ CASSCF 12/12 + MRPT2 + MRPT3: > 8.2 eV

✔ many other problems (diffuseness, slow convergence,
etc.)

Where is the source of these difficulties for such a “simple”
state (π → π∗) of such a small molecule?



The analysis in the π manifold:
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The V state is described by the singlet π → π∗ excitation
(CASSCF 2/2) on the GS. Focusing on the π space

1ΨB1u
=

‖ππ̄∗‖+ ‖π∗π̄‖√
2

Introducing two p OAOs (localized in the two C atoms)

π =
pa + pb√

2
π∗ =

pa − pb√
2

⇒ pa =
π + π∗

√
2

pb =
π − π∗

√
2

one has

1ΨB1u
=

papa − pbpb√
2

αβ − βα√
2

→ ionic
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Note that the triplet π → π∗ state (T state)

3ΨB1u
=

‖ππ̄∗‖ − ‖π∗π̄‖√
2

becomes

3ΨB1u
=

papb − pbpa√
2

αβ + βα√
2

→ neutral

Such interpretation of the V and T wavefunctions, is
completely hidden in the MO language where the V and T
states have both open-shell nature and differs only for the spin
coupling of the two unpaired electrons.



OVB decomposition: the π and σ C-C orbitals.
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Considering explicitly the σ C-C bond in the wf,

1ΨB1u
=

‖σσ̄ππ̄∗‖+ ‖σσ̄π∗π̄‖√
2

σa =
σ + σ∗

√
2

σb =
σ − σ∗

√
2

one has

1ΨB1u
=

1

2
√
2

(‖σaσ̄bpap̄a‖+ ‖σbσ̄apap̄a‖ − ‖σaσ̄bpbp̄b‖+

−‖σbσ̄apbp̄b‖+ ‖σaσ̄apap̄a‖ − ‖σbσ̄bpbp̄b‖+
+‖σbσ̄bpap̄a‖ − ‖σaσ̄apbp̄b‖)
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The structures:

‖σaσ̄bpap̄a‖, ‖σbσ̄apap̄a‖, ‖σaσ̄bpbp̄b‖, ‖σbσ̄apbp̄b‖

are ionic in the π manifold and neutral in the σ one.

C C
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The structures:

‖σaσ̄apap̄a‖, ‖σbσ̄bpbp̄b‖

are ionic in both manifolds, (C−2-C+2 and C+2-C−2).

C C
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The structures:

‖σbσ̄bpap̄a‖, ‖σaσ̄apbp̄b‖

are ionic in both manifolds, but globally neutral.

C C
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All the OVB structures have the same weight in the CASSCF
2/2 wf, but ‖σaσ̄apap̄a‖ and ‖σbσ̄bpbp̄b‖ are much higher in
energy. To improve the wf, one has to decrease their weight
and to improve the one of the ‖σbσ̄bpap̄a‖ and ‖σaσ̄apbp̄b‖
structure → dynamical σ polarization.

DECREASE INCREASE

C C C C



The σ polarization: the MO description.
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By an OVB analysis of the double excitations, one can show
that the σ polarization is described by the mixing of the
‖σσ̄ππ̄∗‖ and ‖σσ̄π∗π̄‖ CASSCF 2/2 determinants with the
‖σσ̄∗ππ̄‖, ‖σ∗σ̄ππ̄‖, ‖σσ̄∗π∗π̄∗‖ and ‖σ∗σ̄π∗π̄∗‖
determinants.

These are σπ∗ → σ∗π and σπ → σ∗π∗ double excitations with
respect to the determinants describing the V state or σ → σ∗

single excitations with respect to the determinants describing
the GS.

Indeed in a MR-CI wf these are the double excitations with
the largest weight.

Such an analysis is almost impossible in the MO frame!



The σ polarization: the the GS case.
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In the T state the dynamical σ polarization is not important!

In the GS, the dynamical σ polarization has a small effect.

Therefore it has a strong differential contribution to the
transition energy for the singlet but not for the triplet.

This effect is considered in a CAS(2/2) + MRPT2
calculation. The problem is not there ....



The contraction of the p OAOs.
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Actually, besides the dynamic σ polarization, another effect is
important and it is the contraction of the p orbitals due to the
reduction of ionicity originated by the dynamic σ polarization:

−(1−δ) −(1−δ)(1−δ)+ (1−δ)+
A A BB C CC C
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The description of benzene using

localized bond orbitals.

J.-P. Malrieu, C. Angeli,
“Aromaticity: an ab Initio Evaluation of the Properly Cyclic Delocalization

Energy and the π-Delocalization Energy Distortivity of Benzene”,

J. Phys. Chem. A, 112, 11481, (2008).
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The localized bond orbitals.
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One can consider a localization of the π orbitals on three
bonds (OBOs). In this case one of the Kekulé structure is:

3

1

2

=‖π1π̄1π2π̄2π3π̄3‖

The energy of this determinant is -230.501456 a.u., 9.0 eV
higher than the CASSCF energy. It represents 30.8 % of the
CASSCF wavefunction.



Static correlation energy: the local ππ̄ → π∗π̄∗

excitations.
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The ππ̄ → π∗π̄∗ excitations on each bond

‖π∗
1π̄

∗
1π2π̄2π3π̄3‖

‖π1π̄1π
∗
2π̄

∗
2π3π̄3‖

‖π1π̄1π2π̄2π
∗
3π̄

∗
3‖

describe the static correlation inside a π bond.

Their energy is -229.960712 a.u. (23.7 eV) and their weight in
the CASSCF wf is 3× 1.5 %.



Static correlation energy: single excitation

from one bond to another.
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The πi → π∗
j (i 6= j) excitations on each bond, such as for

instance

‖π1π̄
∗
2π2π̄2π3π̄3‖

describe the intrabond delocalization. They have and energy
of -230.150731 a.u. (18.5 eV) and their weight in the
CASSCF wf is 12× 2.5 %.



Static correlation energy: the cyclic

delocalization energy.
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Among other effects (next neighbor delocalization) they
account for the cyclic delocalization energy, which is a third
order contribution of the form (ΨK = Kekulé det.)
〈

ΨK

∣

∣

∣
Ĥ
∣

∣

∣
a
†
π∗

2

a
π1
ΨK

〉〈

a
†
π∗

2

a
π1
ΨK

∣

∣

∣
Ĥ
∣

∣

∣
a
†
π∗

3

a
π1
ΨK

〉〈

a
†
π∗

3

a
π1
ΨK

∣

∣

∣
Ĥ
∣

∣

∣
ΨK

〉

(επ∗ − επ) (επ∗ − επ)

+ +

−
−

An analog expression can be written for the delocalization of
“holes”. These are “aromatic” contributions!
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CASSCF delocalized molecular orbitals of hexatriene.
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CASSCF localized orthogonal atomic orbitals of hexatriene.
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CASSCF localized molecular (bond) orbitals of hexatriene.
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The ground state of the butadiene molecule.

Degen. Structure Energy (eV) Weight

1

 

 

0.00 0.847

2

 

 

16.68 0.038

4

 

+ _
 

11.11 0.015

More than 98 % of the wavefunction is represented by these
structures.
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The ground state of the hexatriene molecule.

Degen. Structure Energy (eV) Weight

1

 

 

0.00 0.740

2

 

 

16.63 0.033

1

 

 

16.96 0.033

4

 

 

+ _ 11.39 0.013

4

 

 

_ + 10.97 0.014

More than 94 % of the wavefunction is represented by these
structures.
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Ψ1 Ψ2

〈

Ψ1

∣

∣

∣
Ĥ
∣

∣

∣
Ψ2

〉

(eV)
 

 

 

 

3.72
 

 

 

 

3.81
 

 

 

 

+ _ 1.55
 

 

 

 

_ + 1.61

The same parameters have been computed also for butadiene
and octatetraene. An very good level of transferability has
been observed.

⇒ ab initio parameters for excitonic model Hamiltonians.



Singlet-Triplet splitting in Ullman’s

diradical

C. Angeli, C. J. Calzado, C. de Graaf, R. Caballol,
“The electronic structure of Ullman’s biradicals: an orthogonal valence bond interpretation”,

Phys. Chem. Chem. Phys., 13, 14617, (2011).
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The nitronylnitroxide radical and Ullman’s diradical → strange
behavior of the S-T splitting with “standard” MO methods
(CAS(2/2) + DDCI).
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Delocalized and localized CASSCF (3/3) MOs.
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Table 1: Weights of the various OVB structures.

Structure ROHF +SPm +SPd +SPmd CASSCF

NONO C

 

 

0.244 0.453 0.226 0.339 0.444

NONO C

 

 

0.122 0.040 0.278 0.170 0.222

NONO C

 

 

0.336 0.296 0.312 0.304 0.224

NONO C

 

 

0.176 0.172 0.162 0.174 0.086

NONO C

 

 

0.122 0.040 0.022 0.014 0.022

C SD (MPA) 0.000 -0.189
C SD (VBA) 0.000 -0.375 0.073 -0.155 -0.200



The nitronylnitroxide diradical

VB and OVB: H2

OVB analysis of
ethylene

A different approach
to benzene

Polyenes

Singlet-Triplet
splitting in Ullman’s
diradical

Ullman’s diradical

Ab initio VB, Paris, July 2012 64 / 65

Table 2: Matrix elements (in eV) of the OVB structures

Ψ1 Ψ2 Symbol
〈

Ψ1

∣

∣

∣
Ĥ
∣

∣

∣
Ψ2

〉

NONO C

 

 

NONO C

 

 

KCNO 0.27

NONO C

 

 

NONO C

 

 

tNOC 3.73

NONO C

 

 

NONO C

 

 

tNOC 3.75

NONO C

 

 

NONO C

 

 

t′NOC 3.31

NONO C

 

 

NONO C

 

 

tCNO 2.45
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The OVB analysis of a wf

✔ is a very powerful tool: it gives an information
complementary to that given in the MO frame (as
happens with pictures from different viewpoints of a solid
object);
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The OVB analysis of a wf

✔ is a very powerful tool: it gives an information
complementary to that given in the MO frame (as
happens with pictures from different viewpoints of a solid
object);

✔ allows the identification of the main physical effects (they
emerge in a rather intuitive way);
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The OVB analysis of a wf

✔ is a very powerful tool: it gives an information
complementary to that given in the MO frame (as
happens with pictures from different viewpoints of a solid
object);

✔ allows the identification of the main physical effects (they
emerge in a rather intuitive way);

✔ helps to identify effective computational strategies for
non standard or pathological problems.
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