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Chemically relevant problems
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Strongly correlated orbitals
How do we define a strongly correlated orbital?
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Can we describe it simply?
system. Moreover, the crystal field splitting
of the Co d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system (Fig. 4E), so the half-width D of the
hybridized d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system. According to theoretical models for

the Kondo temperature TK (33, 34), TK in-
creases monotonically as U decreases or as
D increases ETK 0 D0e

–(pU/8DM), where D is a
prefactor and M is the degeneracy number^.
Previous experiments (24) reported that the
TK for Co/Au(111) is È75 K; thus, our exper-
imental finding of a higher TK for the d-CoPc

on Au(111) is in qualitative agreement with
theory.
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Fig. 3. The geometric and electronic structures of CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized computational model for the CoPc/Au(111) adsorption system. The
dashed line represents the unit cell, which contains 56 Au atoms per layer. (C) The PDOS of the Co
atom in a CoPc molecule on a Au(111) surface. The black line is the total PDOS; the red, green, and
blue lines represent its m 0 0, kmk 0 1, and kmk 0 2 components, respectively. E, electron energy.
(D) The PDOS of the Co atom in a free CoPc molecule is shown. (E) The simulated STM image of
CoPc/Au(111). arb., arbitrary.

Fig. 4. The geometric and electronic structures of d-CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized structure model for the d-CoPc/Au(111) adsorption system. The dashed
line stands for the unit cell. (C) The PDOS of the Co atom in a d-CoPc molecule on a Au(111) surface.
The black line is the total PDOS; the red, green, and blue lines represent its m 0 0, kmk 0 1, and kmk 0 2
components, respectively. (D) The simulated STM image of d-CoPc/Au(111). (E) Comparison of the total
PDOS of an isolated Co atom on a hollow site of a Au(111) surface with that of a d-CoPc molecule on
Au(111). Arrows indicate the energy positions of the spin-polarized PDOS centroids of the Co atom.
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system. Moreover, the crystal field splitting
of the Co d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system (Fig. 4E), so the half-width D of the
hybridized d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system. According to theoretical models for

the Kondo temperature TK (33, 34), TK in-
creases monotonically as U decreases or as
D increases ETK 0 D0e

–(pU/8DM), where D is a
prefactor and M is the degeneracy number^.
Previous experiments (24) reported that the
TK for Co/Au(111) is È75 K; thus, our exper-
imental finding of a higher TK for the d-CoPc

on Au(111) is in qualitative agreement with
theory.
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Fig. 3. The geometric and electronic structures of CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized computational model for the CoPc/Au(111) adsorption system. The
dashed line represents the unit cell, which contains 56 Au atoms per layer. (C) The PDOS of the Co
atom in a CoPc molecule on a Au(111) surface. The black line is the total PDOS; the red, green, and
blue lines represent its m 0 0, kmk 0 1, and kmk 0 2 components, respectively. E, electron energy.
(D) The PDOS of the Co atom in a free CoPc molecule is shown. (E) The simulated STM image of
CoPc/Au(111). arb., arbitrary.

Fig. 4. The geometric and electronic structures of d-CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized structure model for the d-CoPc/Au(111) adsorption system. The dashed
line stands for the unit cell. (C) The PDOS of the Co atom in a d-CoPc molecule on a Au(111) surface.
The black line is the total PDOS; the red, green, and blue lines represent its m 0 0, kmk 0 1, and kmk 0 2
components, respectively. (D) The simulated STM image of d-CoPc/Au(111). (E) Comparison of the total
PDOS of an isolated Co atom on a hollow site of a Au(111) surface with that of a d-CoPc molecule on
Au(111). Arrows indicate the energy positions of the spin-polarized PDOS centroids of the Co atom.
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mapping

This procedure is called embedding 

How to describe system and environment?



system. Moreover, the crystal field splitting
of the Co d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system (Fig. 4E), so the half-width D of the
hybridized d-level of the d-CoPc/Au(111)
system is greater than that of the Co/Au(111)
system. According to theoretical models for

the Kondo temperature TK (33, 34), TK in-
creases monotonically as U decreases or as
D increases ETK 0 D0e

–(pU/8DM), where D is a
prefactor and M is the degeneracy number^.
Previous experiments (24) reported that the
TK for Co/Au(111) is È75 K; thus, our exper-
imental finding of a higher TK for the d-CoPc

on Au(111) is in qualitative agreement with
theory.
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Fig. 3. The geometric and electronic structures of CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized computational model for the CoPc/Au(111) adsorption system. The
dashed line represents the unit cell, which contains 56 Au atoms per layer. (C) The PDOS of the Co
atom in a CoPc molecule on a Au(111) surface. The black line is the total PDOS; the red, green, and
blue lines represent its m 0 0, kmk 0 1, and kmk 0 2 components, respectively. E, electron energy.
(D) The PDOS of the Co atom in a free CoPc molecule is shown. (E) The simulated STM image of
CoPc/Au(111). arb., arbitrary.

Fig. 4. The geometric and electronic structures of d-CoPc on Au(111). (A and B) Top and side views,
respectively, of the optimized structure model for the d-CoPc/Au(111) adsorption system. The dashed
line stands for the unit cell. (C) The PDOS of the Co atom in a d-CoPc molecule on a Au(111) surface.
The black line is the total PDOS; the red, green, and blue lines represent its m 0 0, kmk 0 1, and kmk 0 2
components, respectively. (D) The simulated STM image of d-CoPc/Au(111). (E) Comparison of the total
PDOS of an isolated Co atom on a hollow site of a Au(111) surface with that of a d-CoPc molecule on
Au(111). Arrows indicate the energy positions of the spin-polarized PDOS centroids of the Co atom.
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open system

environment object used in embedding

wave 
function
 

density

⇢

Green’s 
function
G(!)

• photoelectron spectrum (DOS)

• Angular Momentum Resolved 
Spectrum (ARPES)

• temperature dependent quantities

• band gaps

• ground state energy

• lattice constants

•  ground state energy 

•  zero temperature

•  lattice constants

•  on-site occupations

spectroscopic quantities

thermodynamic quantities

Different types of QM/QM embedding approaches

ground state quantities

DMET DFT embedding DMFT SEET



Building well defined approximations
How to find good approximate self-energies?

E[⇢] = FHK(⇢) +

Z
drVNe(r)⇢(r)

⌦(G) =
1

�
{�LW � Tr[⌃G+ ln(⌃�G�1

0 )]}

For Green’s function we have a universal functional

Luttinger-Ward functional (finite temperature)

Hohenberg-Kohn functional (zero temperature)

universal  
functional

grand potential

ground state energy



Perturbative approximations to LW functional

@�LW

@G
= ⌃

Approximations to Luttinger-Ward functional are used to evaluate self-energy

A subset of skeleton diagrams present in the exact functional

J. Chem. Phys. 122, 164102 ︎2005︎



Systems where perturbative series converges slowly

full physical system

system  
B

environment 
A

lower level method higher level method

�
LW

= �low level

AB

+ �high level

B

� �low level

B

⌃ = ⌃low level

AB

+ ⌃high level

B

� ⌃low level

B

physically motivated separation  
into localized fragments



Dynamical Mean Field Theory (DMFT)

I1 I2 I3 I4 I5 …….…….

U U U U U

4

If multiple correlated spaces are present then sepa-
rate impurity problems are solved in each subspace Ai,
and correlated self-energies [⌃A]i obtained. These self-
energies are then used to update each [⌃A]i block of
the self-energy ⌃SEET obtained with the weak coupling
method according to Eq. 6, and the Green’s function for
the entire system is evaluated using the Dyson equation.
Iteration of this procedure, alternating weak coupling
steps to update ⌃int,⌃R, with impurity solver steps to
obtain [⌃A]i produces a converged �SEET and ⌃SEET of
the form of Eq. 5 and Ref. 11. Appendix A has detailed
step-by-step instructions on the construction of the iter-
ative procedure. It is still not clear how the screening
comes in in SEET and this makes me a bit uncomfort-
able.

5. SEET results

I think here I would like to discuss and cite a couple
of the existing SEET papers to give the reader a chance
to go and look them up. We can also reproduce a graph
that shows that it actually converges as we increase NA.
The following papers cite SEET:27–39

B. The Dynamical Mean Field Theory from the
perspective of SEET

The dynamical mean-field theory9,40,41 is a �-derivable
theory that can be cast as an approximation to the exact
� functional14:

�DMFT =
MX

j=1

[�I ]j (18)

where j denotes unit cells, and [�I ]j contains all those
diagrams of � where the interaction vertices have all four
indices inside unit cell j. All diagrams in � connecting
di↵erent unit cells, either via interactions or via propaga-
tors, are discarded. As a consequence, ⌃DMFT = ��DMFT

�G
is purely local to every cell. In a translationally invari-
ant system all unit cells are equal, ⌃DMFT is indepen-
dent of I, and only one impurity problem exists. In
analogy to Eq. 15, an impurity model with Gimp = GI ,
⌃imp = ⌃I can be defined and the self-consistent solu-
tion of the Dyson equation G = G0 + G0⌃DMFTG and
the solution of the impurity problem leads to the DMFT
approximation of Eq. 1.

Eq. 18 shows that DMFT can be understood as a spe-
cial case of self-energy embedding theory in which the
orbital subspaces Ai are chosen to be the orbitals local
to a unit cell, the ‘weak correlation’ method is skipped
so that �weak = 0, and the strong-correlation problem is
computed by the DMFT impurity solver. Correspond-
ingly, DMFT will provide a good approximation to the
physics of a correlated system as long as the following

two criteria are fulfilled: first, the interactions are pre-
dominantly local; and second, self-energy contributions
from non-local terms (interactions or propagators) are
negligible.

Question: should we discuss DMFT for molecules?

C. HF+DMFT

Similarly, HF+DMFT fits into this framework. The
chosen correlated orbital subspaces Ij are local to each
unit cell, and the exact � is approximated as

�DMFT+HF = �tot
HF +

MX

j=1

�
[�I ]j � [�I

HF]j
�
., (19)

where [�I
HF]j is the HF �-functional local to the unit cell

j. To get the self-consistent updated �DMFT+HF, the
Hartree Fock equations are solved for the entire system
and subsequently some or all local orbitals are then cho-
sen to the correlated subspace Ij . Then, the impurity
problem in the local subspace is solved along the lines
of DMFT. Note that all the non-local contributions to
the self-energy of the unit cells are frequency indepen-
dent and come from �tot

HF. Any higher order contribution
to the frequency dependent self-energy has purely local
vertices and there are no non-local frequency dependent
self-energy terms in the �DMFT+HF functional. Addi-
tionally, in the non-empirically adjusted HF+DMFT all
the impurity interactions remain the bare Coulomb inter-
actions vpqrs are local to the unit cell orbital subspaces
Ij .

D. GW+DMFT

GW+DMFT42,43 is based on the premise that both
non-local interactions and non-local correlations are im-
portant, but that non-local interactions may be treated
perturbatively.

The starting point is the GW approximation6,44 for
which the � functional consist of an infinite series of
‘bubble’ polarization diagrams P = GG connected by
interaction lines. The series of bubbles can be sub-
sumed into a frequency-dependent ‘screened’ interaction
W = V + V PW , and the self-energy approximated as
⌃ = �GW , so that in the GW approximation �[G] =
� 1

2GWG. However, as ALMBLADH et al.

3 showed, it
is convenient to define a functional  , which is a func-
tional both of the Green’s function G and of the screened
interaction W ,3 as

 [G, W ] = �� 1

2
(PW � log(1 + PW )) (20)

physically motivated separation  
into localized fragments

H = �t
X

<i,j>,�

(c†i�cj� + c†j�ci�) + U

NX

i=1

ni"ni#

diagrams with all the 
interaction vertices inside orbital group Ij
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If multiple correlated spaces are present then sepa-
rate impurity problems are solved in each subspace Ai,
and correlated self-energies [⌃A]i obtained. These self-
energies are then used to update each [⌃A]i block of
the self-energy ⌃SEET obtained with the weak coupling
method according to Eq. 6, and the Green’s function for
the entire system is evaluated using the Dyson equation.
Iteration of this procedure, alternating weak coupling
steps to update ⌃int,⌃R, with impurity solver steps to
obtain [⌃A]i produces a converged �SEET and ⌃SEET of
the form of Eq. 5 and Ref. 11. Appendix A has detailed
step-by-step instructions on the construction of the iter-
ative procedure. It is still not clear how the screening
comes in in SEET and this makes me a bit uncomfort-
able.

5. SEET results

I think here I would like to discuss and cite a couple
of the existing SEET papers to give the reader a chance
to go and look them up. We can also reproduce a graph
that shows that it actually converges as we increase NA.
The following papers cite SEET:27–39

B. The Dynamical Mean Field Theory from the
perspective of SEET

The dynamical mean-field theory9,40,41 is a �-derivable
theory that can be cast as an approximation to the exact
� functional14:

�DMFT =
MX

j=1

[�I ]j (18)

where j denotes unit cells, and [�I ]j contains all those
diagrams of � where the interaction vertices have all four
indices inside unit cell j. All diagrams in � connecting
di↵erent unit cells, either via interactions or via propaga-
tors, are discarded. As a consequence, ⌃DMFT = ��DMFT

�G
is purely local to every cell. In a translationally invari-
ant system all unit cells are equal, ⌃DMFT is indepen-
dent of I, and only one impurity problem exists. In
analogy to Eq. 15, an impurity model with Gimp = GI ,
⌃imp = ⌃I can be defined and the self-consistent solu-
tion of the Dyson equation G = G0 + G0⌃DMFTG and
the solution of the impurity problem leads to the DMFT
approximation of Eq. 1.

Eq. 18 shows that DMFT can be understood as a spe-
cial case of self-energy embedding theory in which the
orbital subspaces Ai are chosen to be the orbitals local
to a unit cell, the ‘weak correlation’ method is skipped
so that �weak = 0, and the strong-correlation problem is
computed by the DMFT impurity solver. Correspond-
ingly, DMFT will provide a good approximation to the
physics of a correlated system as long as the following

two criteria are fulfilled: first, the interactions are pre-
dominantly local; and second, self-energy contributions
from non-local terms (interactions or propagators) are
negligible.

Question: should we discuss DMFT for molecules?

C. HF+DMFT

Similarly, HF+DMFT fits into this framework. The
chosen correlated orbital subspaces Ij are local to each
unit cell, and the exact � is approximated as

�DMFT+HF = �tot
HF +

MX

j=1

�
[�I ]j � [�I

HF]j
�
., (19)

where [�I
HF]j is the HF �-functional local to the unit cell

j. To get the self-consistent updated �DMFT+HF, the
Hartree Fock equations are solved for the entire system
and subsequently some or all local orbitals are then cho-
sen to the correlated subspace Ij . Then, the impurity
problem in the local subspace is solved along the lines
of DMFT. Note that all the non-local contributions to
the self-energy of the unit cells are frequency indepen-
dent and come from �tot

HF. Any higher order contribution
to the frequency dependent self-energy has purely local
vertices and there are no non-local frequency dependent
self-energy terms in the �DMFT+HF functional. Addi-
tionally, in the non-empirically adjusted HF+DMFT all
the impurity interactions remain the bare Coulomb inter-
actions vpqrs are local to the unit cell orbital subspaces
Ij .

D. GW+DMFT

GW+DMFT42,43 is based on the premise that both
non-local interactions and non-local correlations are im-
portant, but that non-local interactions may be treated
perturbatively.

The starting point is the GW approximation6,44 for
which the � functional consist of an infinite series of
‘bubble’ polarization diagrams P = GG connected by
interaction lines. The series of bubbles can be sub-
sumed into a frequency-dependent ‘screened’ interaction
W = V + V PW , and the self-energy approximated as
⌃ = �GW , so that in the GW approximation �[G] =
� 1

2GWG. However, as ALMBLADH et al.

3 showed, it
is convenient to define a functional  , which is a func-
tional both of the Green’s function G and of the screened
interaction W ,3 as

 [G, W ] = �� 1

2
(PW � log(1 + PW )) (20)

I1 I2 I3 I4 I5 …….…….

LDA+DMFT or HF+DMFT

2

our discussion on the molecular systems where the near ex-
act (or very accurate) solutions at zero temperature are known
from variety of methods such as density matrix renormaliza-
tion group (DMRG)33–39 or NEVPT2/CASPT2. These simple
benchmark systems allow us to establish the best way of treat-
ing molecular systems using Green’s function methods.

This paper is organized in the following way. In Sec. II A,
we present a theoretical motivation behind SEET. In Sec. II B,
we describe the GF2 theory that allows us to produce the self-
energy for the weakly correlated orbitals. Subsequently, in
Sec. II C, we proceed to explaining how SEET is related to
DMFT-type approaches that use on-site e↵ective interactions.
SEET can be executed using various strongly correlated or-
bital selection schemes either based on energy or spatial cri-
teria as discussed in Sec. II D. To ensure that very high accu-
racy and systematic improbability is maintained during SEET
calculations, it is essential to use Green’s function quantum
impurity solvers that can describe full realistic Hamiltonian
in the impurity orbitals. We discuss possible implication of
this fact in Sec. II E. Finally, we present numerical results in
Sec. III and conclude this paper in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Self-energy embedding theory (SEET)

Let us assume that we would like to calculate properties of
a realistic system described by a Hamiltonian

H =
X

i j

ti ja†i a j +
1
2

X

i jkl

vi jkla†i a†ka jal, (1)

where ti j and vi jkl are the one- and two-body integrals in an
orbital basis that can be either orthogonal or non-orthogonal.
Many realistic systems are correlated enough that low-level
many-body methods cannot describe them with su�cient ac-
curacy. While high-level many-body methods can deliver ac-
curate answers, for many interesting systems the total number
of orbitals N may be too large to compute the whole prob-
lem using a high-level method. However, for most realistic
cases only few orbitals contribute significantly to the physics
or chemistry of the total problem. Consequently, these physi-
cally or chemically important orbitals, which we will call ac-
tive or strongly correlated orbitals, can be described by a high-
level method, while all the other inactive or weakly correlated
orbitals can be described by a lower level method.

The separation of the orbital space into active and inac-
tive or strongly and weakly correlated orbitals implies in the
Green’s function language that we will express the self-energy
of the strongly correlated orbitals u and v as

[⌃]uv = [⌃low�level
non�local]uv + [⌃high�level

local ]uv, (2)

where a given self-energy matrix element [⌃]uv is composed
out of the local self-energy described by a high-level theory
embedded into the self-energy described by a low-level the-
ory. We assume that the self-energy contains both the fre-
quency dependent and independent parts, ⌃ = ⌃1 + ⌃(i!).

Note that the separation of the self-energy presented in Eq. 2
is characteristic for embedding methods and thus is general
without necessarily specifying how the low- and high-level
self-energies are evaluated in practice. Here, few major routes
exist (i) either by a variational minimization of the free en-
ergy functional (that depends on the self-energy and Green’s
function), (ii) by an explicit construction of the diagrammatic
series necessary to represent di↵erent parts of the self-energy,
(iii) or by perturbative construction that allows for updating
the hybridization between the embedded system and the envi-
ronment. Clearly while multitude of approximations are pos-
sible, the choice of a particular route should depend on the
physics of the system under study.

In our two previous papers23,24 and in this paper, we use the
third option and construct an impurity model for the strongly
correlated orbitals that then has its self-energy evaluated in
DMFT-type iterations; however, we would like to stress that
the self-energy partitioning is general and our choice of eval-
uating the two parts of self-energy is one of many possible
choices. The separation of the self-energy contributions al-
lows us to evaluate the non-local part of the self-energy at a
perturbative, inexpensive level, while the local, strongly corre-
lated part is expressed as an impurity problem and is evaluated
with a more accurate method.

Consequently, one of the most important questions is how
to choose orbitals that are strongly correlated and ought to be
treated by a higher level method. To make such a choice based
on the physics and not only our intuition, we first perform
a low-level perturbative calculation and analyze occupations,
energy, or spatial domains of the orbitals involved. The details
of such a procedure will be discussed in subsection II D.

For now, let us assume that using one of the possible cri-
teria (orbital occupations, energies, or spatial domains), we
have chosen the active (strongly correlated) orbitals that we
denote u, v, t,w, ..., while µ, � are the inactive (weakly corre-
lated) orbitals, and b stands for a bath orbital index. We define
the active space Green’s function as

Gact(i!) =
h
i!1 � f nodc

act � �(i!) � ⌃act(i!)
i�1
, (3)

where subscript act stands for the active space. A molecu-
lar Fock matrix without double counting is denoted as f nodc.
The double counting between the mean-field and high-level
treatments in the active space is removed since the mean-field
Coulomb interaction in the active space is exactly subtracted.
Explicitly, the above operation is given by

f nodc
uv = huv +

X

µ�

Pµ�
 
vuvµ� �

1
2

vu�µv

!
�

X

tw

Ptw

 
vuvtw �

1
2

vtvuw

!
,

(4)

where P is the one-body density matrix obtained from a per-
turbative method. Note that the chemical potential has been
included in the one-body electron integral matrix, h, for con-
venience.

SEET is general and multiple perturbative methods such as
GF2, GW, or FLEX40,41, etc. can be used to describe the in-
active orbitals and deliver initial density and Fock matrices

local contributions from group Ij

all the non-local contributions
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How chemistry controls electron localization in 3d1 perovskites 15

Figure 7. Schematic representation of the O-A covalent bonds shown for LaTiO3 in
figures 5 and 6: O1 binds to two while O2 binds to one of the four A-neighbours. One
of the two O1-A bonds is relatively weak and is indicated by a short, red arrow. The
resulting GdFeO3-type distortion shortens the O-A bonds correspondingly. In CaVO3,
LaTiO3, and YTiO3, the shortest O1-A bond is shortened by respectively 10, 17, and
28% with respect to the average, the 2nd-shortest O1-A bond by respectively 4, 11,
and 23%, and the shortest O2-A bond by respectively 12, 16, and 22%. The oxygen
coordination of the A-ion is reduced from 12 to 4, with two of the near oxygens being
in the horizontal, flat face of the distorted A-cube, and the two others in one of the
vertical, buckled faces. The A-B-A diagonal (orange bar) lying in the plane of the
short, red arrows is shortened by respectively 3, 7, and 9% of the average. The unit
shown is the front bottom left one (subcell 1) seen in e.g. figure 2.

the unit is the one in the front bottom left corner.

LaO

Ti

LaTiO

transforming 
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effective 
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controlled
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requires orbital 
transformation 
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Chemists’ effective Hamiltonian approach
Hamiltonian always remains unchanged 

important “dressed” orbital space 
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wave functions or self-energies are approximated 



realistic molecular problems

• separate different energy scales in realistic systems

• use different methods for weakly and strongly correlated orbitals

• be systematically improvable without any adjustable parameters

• maintain chemical accuracy

• include temperature

• calculate thermodynamic quantities and spectra

energy

strongly
correlated

orbitals
near the gap

weakly correlated
orbitals

weakly correlated
orbitals

traditionally calculate ground state energy, perhaps couple of excited states

active orbitalsinactive orbitals inactive orbitals



Self-energy embedding

energy
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weakly correlated
orbitals

• no double counting of electron correlation when using PT

• no adjustable parameters in the Hamiltonian
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I. SYSTEM

We consider a system described by a Hamiltonian with
full two-body interaction vijkl and one-body terms tij in
a finite orbital basis:

H =
NX

ij

tija
†
iaj +

NX

ijkl

vijkla
†
ia

†
jalak, (1)

where the indices ijkl enumerate all N basis orbitals
present in the system. In case of a periodic system, Eq. 1
may in particular contain one-body terms connecting any
orbital in any unit cell to any other orbital in any other
unit cell, and general two-body integrals v mixing inter-
actions between any of the orbitals in any of the unit cells
in the system.

Physical properties including thermodynamic quan-
tities (energies and entropies), single-particle (Green’s
functions and self-energies) and two-particle quanti-
ties (susceptibilities) can be described in a functional
approach.1–4 In this approach, a �- functional �[G] of
the Green’s function G, which contains all linked closed
skeleton diagrams,1 is used to express the grand potential
as

⌦ = � � Tr log G�1 � Tr⌃G, (2)

and satisfies

��

�G
= ⌃[G], (3)

where the self-energy ⌃ is defined with respect to a non-
interacting Green’s function G0 via the Dyson equation

G = G0 + G0⌃G. (4)

The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.2,5 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
noninteracting limits are consistent.2 Functional theory
therefore provides a convenient framework for construct-
ing perturbative2,6–8 and non-perturbative9–11 diagram-
matic approximations.

The approximations we discuss in the following are
all expressed in the functional form, thus making them
straightforward to discuss and compare their respective
assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)11 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai are
more strongly correlated among each other than with the
remainder of the system, so that their correlations need
to be obtained in a non-perturbative way. Conversely,
inter-set correlations between orbitals belonging to two
di↵erent sets Ai and Aj , i 6= j, and correlations belong-
ing to the remainder R are assumed to be weaker, such
that they can be simulated perturbatively. The choice of
orbital subsets and subset size NA

i is general and will be
commented on in Sec. IA 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory12,13 or the
GW method.6 �A denotes all those terms in � where all
four indices i, j, k, l of vijkl as well as i, j of tij are con-
tained inside orbital subspace A. �A

weak is the approxi-
mation to �A within the weak coupling method used for
solving the entire system, and �A

strong the approximation
or exact solution of �A obtained using the higher order
method capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
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The cost of the exact solution of the many-electron problem is believed to be exponential in the
number of degrees of freedom, necessitating approximations that are controlled and accurate but
numerically tractable. In this paper, we show that one of these approximations, the self-energy
embedding theory (SEET), is derivable from a universal functional and therefore implicitly satisfies
conservation laws and thermodynamic consistency. We also show how other approximations, such
as the dynamical mean field theory (DMFT) and its combinations with many-body perturbation
theory, can be understood as a special case of SEET and discuss how the additional freedom present
in SEET can be used to obtain systematic convergence of results.

I. INTRODUCTION

The computational cost of the exact solution of the re-
alistic extended many-electron problem is believed to be
exponential in the number of degrees of freedom, necessi-
tating the development of accurate approximate methods
able to capture interacting electron physics.1

While mature tools for obtaining ground state energet-
ics for both molecular and solid state problems exist,2,3

solid state experiments are often performed at finite tem-
perature and yield as the measured result not energy dif-
ferences but single-and two-particle response functions,
requiring a description of finite temperature excitations.

Many-body perturbation theory3 accurately describes
these phenomena where interactions are weak. How-
ever, many systems of interest are believed to be out-
side the regime of validity of perturbative approxima-
tions. In these systems, a non-perturbative solution is
desired for a subset of the correlated degrees of freedom
embedded into a background of more weakly correlated,
perturbatively treated states. Ideally such an embedding
construct should be numerically tractable and defined
in terms of one or more small parameters that allow its
tuning from a crude but computationally cheap, approx-
imate solution to the exact but exponentially expensive
one.

Several such theories have been developed. They in-
clude the dynamical mean field theory (DMFT),4,5 its
combination with electronic structure methods, such as
LDA+DMFT6–8 and GW+DMFT9,10, the self-energy
functional theory,11 and most recently the self-energy em-
bedding theory (SEET).12–14 All of them require a com-
promise between accuracy and numerical tractability or
time to solution.

In this paper, we show that SEET can be under-
stood as a conserving functional approximation to an ex-
act Luttinger-Ward functional.15 This functional frame-
work of SEET allows us to compare this theory to other
functional approximations, and show in particular that
DMFT, HF+DMFT, and GW+DMFT can be under-
stood as a special case of SEET and to illustrate how
the additional freedom given by SEET can be employed
to systematically improve results. In particular, we focus

on various aspects of electron ‘screening’ and downfold-
ing and how they are treated in various approximations.

This paper proceeds as follows. In Sec. II, we introduce
the system under study, the SEET definition, DMFT,
and several combinations of DMFT with many-body per-
turbation theory. In Sec. III, we compare the di↵erent
approaches based on their functionals. In Sec. IV, we fo-
cus in detail on various aspects of electron screening. We
form conclusions in Sec. V.

II. SYSTEM AND FORMALISM

We consider a system described by a Hamiltonian with
full two-body interaction vijkl and one-body terms tij in
a finite orbital basis:

H =
NX

ij

tija
†
iaj +

NX

ijkl

vijkla
†
ia

†
jalak, (1)

where the indices i, j, k, and l enumerate all N basis or-
bitals present in the system. In case of a periodic system,
Eq. 1 may in particular contain one-body terms connect-
ing any orbital in any unit cell to any other orbital in any
other unit cell, and general two-body integrals v mixing
interactions between any of the orbitals in any of the unit
cells in the system.

Physical properties including thermodynamic quanti-
ties (energies and entropies), frequency dependent single-
particle (Green’s functions and self-energies) and two-
particle quantities (susceptibilities) can be described in
a functional approach.15–18 In this approach, a �- func-
tional �[G] of the Green’s function G, which contains all
linked closed skeleton diagrams,15 is used to express the
grand potential as

⌦ = � � Tr log G�1 � Tr⌃G, (2)

and it satisfies

��

�G
= ⌃[G], (3)

where the self-energy ⌃ is defined with respect to a non-
interacting Green’s function G0 via the Dyson equation

G = G0 + G0⌃G. (4)

A1 A2 A3 A4 A5 …….…….
weak strong strong strong strong strong
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I. SYSTEM

We consider a system described by a Hamiltonian with
full two-body interaction vijkl and one-body terms tij in
a finite orbital basis:

H =
NX

ij

tija
†
iaj +

NX

ijkl

vijkla
†
ia

†
jalak, (1)

where the indices ijkl enumerate all N basis orbitals
present in the system. In case of a periodic system, Eq. 1
may in particular contain one-body terms connecting any
orbital in any unit cell to any other orbital in any other
unit cell, and general two-body integrals v mixing inter-
actions between any of the orbitals in any of the unit cells
in the system.

Physical properties including thermodynamic quan-
tities (energies and entropies), single-particle (Green’s
functions and self-energies) and two-particle quanti-
ties (susceptibilities) can be described in a functional
approach.1–4 In this approach, a �- functional �[G] of
the Green’s function G, which contains all linked closed
skeleton diagrams,1 is used to express the grand potential
as

⌦ = � � Tr log G�1 � Tr⌃G, (2)

and satisfies

��

�G
= ⌃[G], (3)

where the self-energy ⌃ is defined with respect to a non-
interacting Green’s function G0 via the Dyson equation

G = G0 + G0⌃G. (4)

The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.2,5 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
noninteracting limits are consistent.2 Functional theory
therefore provides a convenient framework for construct-
ing perturbative2,6–8 and non-perturbative9–11 diagram-
matic approximations.

The approximations we discuss in the following are
all expressed in the functional form, thus making them
straightforward to discuss and compare their respective
assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)11 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai are
more strongly correlated among each other than with the
remainder of the system, so that their correlations need
to be obtained in a non-perturbative way. Conversely,
inter-set correlations between orbitals belonging to two
di↵erent sets Ai and Aj , i 6= j, and correlations belong-
ing to the remainder R are assumed to be weaker, such
that they can be simulated perturbatively. The choice of
orbital subsets and subset size NA

i is general and will be
commented on in Sec. IA 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory12,13 or the
GW method.6 �A denotes all those terms in � where all
four indices i, j, k, l of vijkl as well as i, j of tij are con-
tained inside orbital subspace A. �A

weak is the approxi-
mation to �A within the weak coupling method used for
solving the entire system, and �A

strong the approximation
or exact solution of �A obtained using the higher order
method capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the

low level perturbative method
for the whole problem
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The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)23–28

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact

solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
the rest of the system, the weak correlation solu-
tion for the full system is recovered since �tot

weak =

�tot
weak +

PM
i=1

⇣
[�A

weak]i � [�A
weak]i

⌘
.

While consideration of the exact limits is essential, the
important practical question is whether (and where) one
can expect SEET to be accurate away from these ex-
act limits. As is evident in Eq. 5, SEET becomes ac-
curate where the diagrams considered at the lower level
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FIG. 1. Feynman diagrams for the second order self-energy in
GF2. Here a red wavy line represents a two electron integral,
while a black arrow line represents a Green’s function. From
left to right the diagrams shown are the first order Hartree
and exchange diagrams, and the second order pair bubble and
second order exchange.

iterative solution of the Dyson equation

G(!) = G0(!) + G0(!)⌃(!)G0(!)

+G0(!)⌃(!)G0(!)⌃(!)G0(!) + · · ·

= G0(!)

� X

n

�
⌃(!)G0(!)

�n
�

=
⇥
G0(!)�1 � ⌃(!)

⇤
�1

(1)

Here G0(!) is the Green’s function of a non-interacting
system, while ⌃(!) is the proper self-energy, which in
GF2 is truncated at second order and written as an ap-
proximate functional of the Green’s function, ⌃[G(!)].
Because of the structure of the Dyson equation, the self-
consistent G(!) will contain an infinite order summation
of the second order proper self-energy parts, ⌃(!). As we
recently showed, this summation of diagrams allows GF2
to give reasonably fine results for strongly correlated sys-
tems such as stretched hydrogen lattices[23] when MP2
would diverge. In the language of fractional electron er-
rors, this suggests that GF2 improves tremendously over
MP2 for fractional spins as a result of the self-consistent
infinite order summation. An interesting question that
arises then is what e↵ect does this Dyson summation
have on the more general fractional electron behavior?
Relative to other methods such as RPA, GW, approxi-
mate DFT, and Hartree-Fock (HF), MP2 has only a very
small fractional charge error[12], and consequently lit-
tle many electron self-interaction error (SIE). Ideally one
would hope that GF2 improves on the disastrous frac-
tional spin error of MP2 without deteriorating MP2’s
impressively small fractional charge error. To investi-
gate this question, here we will generalize our previous
GF2 implementation[23] to open-shell systems and then
investigate its fractional charge and spin behavior.

Before closing this section it should be emphasized that
what is challenging about the fractional charge and frac-
tional spin errors is that any attempt to reduce one er-
ror tends to exacerbate the other[13, 25, 26]. For exam-
ple, a semilocal DFT functional (such as BLYP[27, 28],
or PBE[29]) will tend to have a large fractional charge
error but a relatively smaller fractional spin error. On
the other end of the extreme Hartree-Fock will have
significantly less fractional charge error but a much

greater fractional spin error. Any hybrid of these two
(B3LYP[28, 30] or PBEh[29, 31], for example) will essen-
tially trade one error for the other to the extent that the
HF-type exchange is admixed in place of DFT exchange.
What is worth noting is that, in the language of hybrid
DFT, the Fock matrix in GF2 contains full HF-type ex-
change (which in Green’s function theory is usually re-
ferred to as first order exchange) yet we will show GF2
yields both less fractional charge and fractional spin error
than HF, B3LYP, and PBEh. This unique result comes
about from a combination of the Dyson summation with
including all diagrams to second order.

II. SPIN UNRESTRICTED GF2 THEORY

To study open-shell systems we generalize G(!) to
have two spin blocks

G =

�
G� 0
0 G�

�
(2)

where the spin-up and spin-down blocks are given by

G�(!) =
⇥
(µ� + !)S � F� � ��(!)

⇤
�1

, � = �, � (3)

The o↵-diagonal spin-blocks of G(!) here are identically
0, meaning we do not allow for the possibility of spin-
flips, and our solutions are constrained to be eigenstates
of Ŝz. In Eq. 3 S and F� are the overlap and Fock ma-
trices, ��(!) is the self-energy, µ� is the chemical po-
tential, and ! is an imaginary frequency. By introduc-
ing µ�, µ� as separate chemical potentials we can al-
low for di↵erent numbers of electrons in the respective
correlated density matrices, P�, P� , which are given
by P� = �G�(⌧=1/kBT), � = �, �, where G�(⌧) is
the Green’s function fast Fourier transformed (FFT) to
the imaginary time domain, and 1/kBT is the inverse-
temperature. The expression for F� is the standard re-
sult from spin-unrestricted HF theory,

F�
ij = hij +

X

kl

(P�
kl + P �

kl)vijkl � P�
klviklj ,

F �
ij = hij +

X

kl

(P�
kl + P �

kl)vijkl � P �
klviklj .

(4)

However, unlike HF theory the density-matrices that en-
ter this expression are those obtained from the Green’s
function and thus include electron correlation e↵ects from
solving the Dyson equation. This covers the electron-
electron interaction from zeroth through first order (the
first order diagrams in Figure 1 are described by the HF
mean-field). At second order in GF2 the electron-electron
interaction is described by the frequency dependent self-
energy, which is given in the imaginary time domain as

�GF2(i!) =

2
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⌃(i!n) that describes the correlation e↵ects. In GF2, the
self-energy is

⌃ij(⌧) =
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The Fock matrix here is F = h + ⌃
1
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cludes the kinetic and nuclear-electron parts and ⌃
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the static, frequency independent part of the self-energy
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AO basis.

Typically, in the first iteration we obtain the density
matrix P from a Hartree-Fock (HF) solution; however,
at convergence due to the iterations GF2 is formally ref-
erence independent, so the initial Fock-matrix can be
DFT-based. Beyond the first iteration, the density ma-
trix is evaluated using the correlated Green’s function as
P = 2
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G(i!n) from which one constructs the
Fock matrix.

Given the initial density matrix and Fock matrix, one
iteratively constructs (until self-consistency is reached)
self-energy matrices ⌃(i!n) and ⌃
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, and the correlated
Green’s function, density and Fock matrices. The chem-
ical potential µ is adjusted at each stage so that Tr(PS)
yields the correct number of electrons, Ne.

In GF2, both the Green’s function and self-energy
are smooth functions of the imaginary time and fre-
quency. At each stage, G(i!n) is calculated and trans-
formed to yield G(⌧), which is used to make the time-
dependent self-energy ⌃(⌧) which is then transformed
to give ⌃(i!n). For computational e�ciency, we use
a non-equidistant spline grid20 sampling the Matsubara
frequencies. In the time domain, ⌃(⌧) is expressed in an
orthogonal polynomial basis.21
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defined as the di↵erence between the total energy and the
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first iteration GF2 yields automatically the temperature-

dependent MP2 energy:
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The main numerical challenge in GF2 is the determi-
nation of the time-dependent self-energy (Eq. 3), where,
heuristically, two 4-index tensors are connected through
three matrices. To reduce the scaling we turn to the
stochastic paradigm which replaces matrices by a ran-
dom average over stochastically chosen vectors

Gkl(⌧) =
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⌘k(⌧)⌘̄l(⌧)

 
, (6)

where the curly brackets refer to a stochastic average
constructed using random vectors. Here, we construct
these vectors in the most symmetric way possible, i.e.,
based on a square-root-like decomposition of the real-
symmetric matrix G(⌧):

⌘(⌧) = A(⌧)
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where we introduced the eigenvectors and eigenvalues
of the Green’s function, G(⌧) = A(⌧)g(⌧)AT (⌧), while
⌘0(⌧) is a completely random vector, i.e., ⌘0

j (⌧) = ±1 for
j = 1, ..., N . It is straightforward to prove Eq. 6 based
on the fact that
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We similarly separate the other two G(⌧) matrices from
Eq. 3, writing them as Gmn(⌧) =
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and

Gpq(� � ⌧) =
�
⇠p(� � ⌧)⇠̄q(� � ⌧)
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matrix becomes then an average over a separable prod-
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�
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where formally ui(⌧) =
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with analogous expressions for ū, w (see below). It is
e�cient to evaluate these summations on a grid, i.e., we
define a time- and space-dependent random function on
a grid

⌘(r, ⌧) =
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⌘l(⌧)�l(r), (10)

with similar expressions for ⇣(r, ⌧), ⇠(r, ⌧), etc. (The
computation of these functions is linear in system size
since the AO functions are local.) We then write the
vectors decomposing ⌃(⌧) as convolution integrals:
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FIG. 1. Feynman diagrams for the second order self-energy in
GF2. Here a red wavy line represents a two electron integral,
while a black arrow line represents a Green’s function. From
left to right the diagrams shown are the first order Hartree
and exchange diagrams, and the second order pair bubble and
second order exchange.

iterative solution of the Dyson equation

G(!) = G0(!) + G0(!)⌃(!)G0(!)

+G0(!)⌃(!)G0(!)⌃(!)G0(!) + · · ·
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⇤
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Here G0(!) is the Green’s function of a non-interacting
system, while ⌃(!) is the proper self-energy, which in
GF2 is truncated at second order and written as an ap-
proximate functional of the Green’s function, ⌃[G(!)].
Because of the structure of the Dyson equation, the self-
consistent G(!) will contain an infinite order summation
of the second order proper self-energy parts, ⌃(!). As we
recently showed, this summation of diagrams allows GF2
to give reasonably fine results for strongly correlated sys-
tems such as stretched hydrogen lattices[23] when MP2
would diverge. In the language of fractional electron er-
rors, this suggests that GF2 improves tremendously over
MP2 for fractional spins as a result of the self-consistent
infinite order summation. An interesting question that
arises then is what e↵ect does this Dyson summation
have on the more general fractional electron behavior?
Relative to other methods such as RPA, GW, approxi-
mate DFT, and Hartree-Fock (HF), MP2 has only a very
small fractional charge error[12], and consequently lit-
tle many electron self-interaction error (SIE). Ideally one
would hope that GF2 improves on the disastrous frac-
tional spin error of MP2 without deteriorating MP2’s
impressively small fractional charge error. To investi-
gate this question, here we will generalize our previous
GF2 implementation[23] to open-shell systems and then
investigate its fractional charge and spin behavior.

Before closing this section it should be emphasized that
what is challenging about the fractional charge and frac-
tional spin errors is that any attempt to reduce one er-
ror tends to exacerbate the other[13, 25, 26]. For exam-
ple, a semilocal DFT functional (such as BLYP[27, 28],
or PBE[29]) will tend to have a large fractional charge
error but a relatively smaller fractional spin error. On
the other end of the extreme Hartree-Fock will have
significantly less fractional charge error but a much

greater fractional spin error. Any hybrid of these two
(B3LYP[28, 30] or PBEh[29, 31], for example) will essen-
tially trade one error for the other to the extent that the
HF-type exchange is admixed in place of DFT exchange.
What is worth noting is that, in the language of hybrid
DFT, the Fock matrix in GF2 contains full HF-type ex-
change (which in Green’s function theory is usually re-
ferred to as first order exchange) yet we will show GF2
yields both less fractional charge and fractional spin error
than HF, B3LYP, and PBEh. This unique result comes
about from a combination of the Dyson summation with
including all diagrams to second order.

II. SPIN UNRESTRICTED GF2 THEORY

To study open-shell systems we generalize G(!) to
have two spin blocks

G =

�
G� 0
0 G�

�
(2)

where the spin-up and spin-down blocks are given by

G�(!) =
⇥
(µ� + !)S � F� � ��(!)

⇤
�1

, � = �, � (3)

The o↵-diagonal spin-blocks of G(!) here are identically
0, meaning we do not allow for the possibility of spin-
flips, and our solutions are constrained to be eigenstates
of Ŝz. In Eq. 3 S and F� are the overlap and Fock ma-
trices, ��(!) is the self-energy, µ� is the chemical po-
tential, and ! is an imaginary frequency. By introduc-
ing µ�, µ� as separate chemical potentials we can al-
low for di↵erent numbers of electrons in the respective
correlated density matrices, P�, P� , which are given
by P� = �G�(⌧=1/kBT), � = �, �, where G�(⌧) is
the Green’s function fast Fourier transformed (FFT) to
the imaginary time domain, and 1/kBT is the inverse-
temperature. The expression for F� is the standard re-
sult from spin-unrestricted HF theory,

F�
ij = hij +

X

kl

(P�
kl + P �

kl)vijkl � P�
klviklj ,

F �
ij = hij +

X

kl

(P�
kl + P �

kl)vijkl � P �
klviklj .

(4)

However, unlike HF theory the density-matrices that en-
ter this expression are those obtained from the Green’s
function and thus include electron correlation e↵ects from
solving the Dyson equation. This covers the electron-
electron interaction from zeroth through first order (the
first order diagrams in Figure 1 are described by the HF
mean-field). At second order in GF2 the electron-electron
interaction is described by the frequency dependent self-
energy, which is given in the imaginary time domain as

�GF2(i!) =
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proximate functional of the Green’s function, ⌃[G(!)].
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tional spin error of MP2 without deteriorating MP2’s
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greater fractional spin error. Any hybrid of these two
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tially trade one error for the other to the extent that the
HF-type exchange is admixed in place of DFT exchange.
What is worth noting is that, in the language of hybrid
DFT, the Fock matrix in GF2 contains full HF-type ex-
change (which in Green’s function theory is usually re-
ferred to as first order exchange) yet we will show GF2
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than HF, B3LYP, and PBEh. This unique result comes
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including all diagrams to second order.
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0, meaning we do not allow for the possibility of spin-
flips, and our solutions are constrained to be eigenstates
of Ŝz. In Eq. 3 S and F� are the overlap and Fock ma-
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However, unlike HF theory the density-matrices that en-
ter this expression are those obtained from the Green’s
function and thus include electron correlation e↵ects from
solving the Dyson equation. This covers the electron-
electron interaction from zeroth through first order (the
first order diagrams in Figure 1 are described by the HF
mean-field). At second order in GF2 the electron-electron
interaction is described by the frequency dependent self-
energy, which is given in the imaginary time domain as
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FIG. 1. Bare and dressed second-order self-energy diagrams.

⌃(i!n) that describes the correlation e↵ects. In GF2, the
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cludes the kinetic and nuclear-electron parts and ⌃
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the static, frequency independent part of the self-energy
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AO basis.

Typically, in the first iteration we obtain the density
matrix P from a Hartree-Fock (HF) solution; however,
at convergence due to the iterations GF2 is formally ref-
erence independent, so the initial Fock-matrix can be
DFT-based. Beyond the first iteration, the density ma-
trix is evaluated using the correlated Green’s function as
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G(i!n) from which one constructs the
Fock matrix.

Given the initial density matrix and Fock matrix, one
iteratively constructs (until self-consistency is reached)
self-energy matrices ⌃(i!n) and ⌃
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, and the correlated
Green’s function, density and Fock matrices. The chem-
ical potential µ is adjusted at each stage so that Tr(PS)
yields the correct number of electrons, Ne.

In GF2, both the Green’s function and self-energy
are smooth functions of the imaginary time and fre-
quency. At each stage, G(i!n) is calculated and trans-
formed to yield G(⌧), which is used to make the time-
dependent self-energy ⌃(⌧) which is then transformed
to give ⌃(i!n). For computational e�ciency, we use
a non-equidistant spline grid20 sampling the Matsubara
frequencies. In the time domain, ⌃(⌧) is expressed in an
orthogonal polynomial basis.21
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defined as the di↵erence between the total energy and the
Hartree-Fock energy, Ecorr = E � EHF. Note that in the
first iteration GF2 yields automatically the temperature-

dependent MP2 energy:
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The main numerical challenge in GF2 is the determi-
nation of the time-dependent self-energy (Eq. 3), where,
heuristically, two 4-index tensors are connected through
three matrices. To reduce the scaling we turn to the
stochastic paradigm which replaces matrices by a ran-
dom average over stochastically chosen vectors

Gkl(⌧) =
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⌘k(⌧)⌘̄l(⌧)

 
, (6)

where the curly brackets refer to a stochastic average
constructed using random vectors. Here, we construct
these vectors in the most symmetric way possible, i.e.,
based on a square-root-like decomposition of the real-
symmetric matrix G(⌧):

⌘(⌧) = A(⌧)
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where we introduced the eigenvectors and eigenvalues
of the Green’s function, G(⌧) = A(⌧)g(⌧)AT (⌧), while
⌘0(⌧) is a completely random vector, i.e., ⌘0
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j = 1, ..., N . It is straightforward to prove Eq. 6 based
on the fact that
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with analogous expressions for ū, w (see below). It is
e�cient to evaluate these summations on a grid, i.e., we
define a time- and space-dependent random function on
a grid

⌘(r, ⌧) =
X

l

⌘l(⌧)�l(r), (10)

with similar expressions for ⇣(r, ⌧), ⇠(r, ⌧), etc. (The
computation of these functions is linear in system size
since the AO functions are local.) We then write the
vectors decomposing ⌃(⌧) as convolution integrals:

uj(⌧) = (�j⌘(⌧)|⇣(⌧)⇠(� � ⌧)) (11)
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(�j ⌘̄(⌧)|⇣̄(⌧)⇠̄(� � ⌧)). Therefore, the expensive sum-
mation over many indices is replaced by averaging over
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The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)23–28

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact

solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
the rest of the system, the weak correlation solu-
tion for the full system is recovered since �tot

weak =

�tot
weak +

PM
i=1

⇣
[�A

weak]i � [�A
weak]i

⌘
.

While consideration of the exact limits is essential, the
important practical question is whether (and where) one
can expect SEET to be accurate away from these ex-
act limits. As is evident in Eq. 5, SEET becomes ac-
curate where the diagrams considered at the lower level
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The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)23–28

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact

solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
the rest of the system, the weak correlation solu-
tion for the full system is recovered since �tot

weak =

�tot
weak +

PM
i=1

⇣
[�A

weak]i � [�A
weak]i

⌘
.

While consideration of the exact limits is essential, the
important practical question is whether (and where) one
can expect SEET to be accurate away from these ex-
act limits. As is evident in Eq. 5, SEET becomes ac-
curate where the diagrams considered at the lower level
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The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)23–28

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact

solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks
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These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
the rest of the system, the weak correlation solu-
tion for the full system is recovered since �tot

weak =

�tot
weak +

PM
i=1

⇣
[�A

weak]i � [�A
weak]i

⌘
.

While consideration of the exact limits is essential, the
important practical question is whether (and where) one
can expect SEET to be accurate away from these ex-
act limits. As is evident in Eq. 5, SEET becomes ac-
curate where the diagrams considered at the lower level
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SEET in localized orbitals
many strongly correlated electrons (50 orbitals, 50 electrons, STO-6G basis) 

too many for traditional quantum chemistry methods (NEVPT2 or CASPT2)!!! 
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FIG. 10. Upper panel: LiH2 chain in the TZ basis. En-
ergy errors (in mHartree) EFCI � EX for X = NEVPT2(4e,4o)
and SEET(FCI/GF2)[4o]/NO as a function of bond distances.
Lower panel: Energy errors per fragment (in mHartree)
(ENEVPT2 � EX)/N for SEET in the RNO basis for N = 2, 4
for both LiH2 and LiH4 in the TZ basis.

OO-AP1roG and CPMFT(TPSSc) curves are far above
and far below the DMRG reference, respectively. While the
CPMFT(TPSSc) curve displays huge non-parallelity errors
near the equilibrium geometry, the OO-AP1roG curve re-
mains nicely parallel to the DMRG curve. GF2 gives very
good energies for short distances; however, it largely devi-
ates from DMRG at long distances. SEET(FCI/GF2)[25⇥2o],
where 25 Anderson impurities containing two impurity or-
bitals are embedded in the GF2 self-energy, yields a signif-
icantly improved energies at long distances when compared
to GF2 alone. The errors can be further minimized when
SEET(FCI/GF2)[5⇥4o+5⇥6o] calculation is carried out.

3. H10 chain in cc-pVDZ basis

Here, we explore the concept of active space splitting
where the full number of active orbitals is divided into sev-
eral groups of orbitals used to build Anderson impurity mod-
els. To demonstrate that SEET is systematically improvable,
when the number of orbitals used to build the impurities is in-
creased, we performed calculations with di↵erent number of
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FIG. 11. Upper panel: potential energy curves for H50 chain
in the STO-6G basis. DMRG, CPMFT(TPSSc), and OO-
AP1roG data are taken from Refs. 77–79. Lower panel: en-
ergy error per atom (in mHartree) with respect to the DMRG
data.

orbitals in the impurities for H10 chain in the cc-pVDZ basis80.
The total number of orbitals in this basis set is 50 while the
size of full active space is 10 orbitals. SEET results are sum-
marized in Table IV along with GF2, NEVPT2(10e,10o) and
DMRG81 energies for comparison. The DMRG data were
computed using the BLOCK program82,83. The errors rela-
tive to DMRG are shown in Fig 12 as a function of bond
length. At short distances (R < 2.0 a.u.), GF2 energies are
comparable to those from the NEVPT2(10e,10o) calculation.
Upon bond stretching, when compared to DMRG, the GF2
error strongly increases, while NEVPT2(10e,10o) one slowly
decreases. We can see that the errors of GF2 are significantly
reduced when SEET(FCI/GF2)[2o+2⇥4o] calculation is car-
ried out. For stretched distances, a systematic reduction of er-
rors can be observed when the number of impurity orbitals is
systematically enlarged starting from (2o+2⇥4o), (4o+6o), to
(2o+8o). Interestingly, this error reduction with an increasing
number of impurity orbitals is very systematic and is indepen-
dent of the distances on the potential energy curve.

Consequently, one can expect that in cases where the num-
ber of active space orbitals is too large to be treated within one
impurity, it is possible to split the active space orbitals among
several impurities and systematically improve the answer. We
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OO-AP1roG and CPMFT(TPSSc) curves are far above
and far below the DMRG reference, respectively. While the
CPMFT(TPSSc) curve displays huge non-parallelity errors
near the equilibrium geometry, the OO-AP1roG curve re-
mains nicely parallel to the DMRG curve. GF2 gives very
good energies for short distances; however, it largely devi-
ates from DMRG at long distances. SEET(FCI/GF2)[25⇥2o],
where 25 Anderson impurities containing two impurity or-
bitals are embedded in the GF2 self-energy, yields a signif-
icantly improved energies at long distances when compared
to GF2 alone. The errors can be further minimized when
SEET(FCI/GF2)[5⇥4o+5⇥6o] calculation is carried out.

3. H10 chain in cc-pVDZ basis

Here, we explore the concept of active space splitting
where the full number of active orbitals is divided into sev-
eral groups of orbitals used to build Anderson impurity mod-
els. To demonstrate that SEET is systematically improvable,
when the number of orbitals used to build the impurities is in-
creased, we performed calculations with di↵erent number of

     −0.56

     −0.52

     −0.48

     −0.44

1.2 1.6 2.0 2.4 2.8 3.2
E

n
e

rg
y 

p
e

r 
a

to
m

 [
a

.u
.]

R(H−H) [a.u.]

DMRG

GF2

SEET(FCI/GF2)[25x2o]

SEET(FCI/GF2)[5x4o+5x6o]

CPMFT(κTPSSc)

OO−AP1roG

    −20.00

    −10.00

      0.00

     10.00

     20.00

     30.00

1.2 1.6 2.0 2.4 2.8 3.2

E
rr

o
r 

p
e

r 
a

to
m

 [
m

H
a

rt
re

e
]

R(H−H) [a.u.]

GF2

SEET(FCI/GF2)[25x2o]

SEET(FCI/GF2)[5x4o+5x6o]

CPMFT(κTPSSc)

OO−AP1roG

FIG. 11. Upper panel: potential energy curves for H50 chain
in the STO-6G basis. DMRG, CPMFT(TPSSc), and OO-
AP1roG data are taken from Refs. 77–79. Lower panel: en-
ergy error per atom (in mHartree) with respect to the DMRG
data.

orbitals in the impurities for H10 chain in the cc-pVDZ basis80.
The total number of orbitals in this basis set is 50 while the
size of full active space is 10 orbitals. SEET results are sum-
marized in Table IV along with GF2, NEVPT2(10e,10o) and
DMRG81 energies for comparison. The DMRG data were
computed using the BLOCK program82,83. The errors rela-
tive to DMRG are shown in Fig 12 as a function of bond
length. At short distances (R < 2.0 a.u.), GF2 energies are
comparable to those from the NEVPT2(10e,10o) calculation.
Upon bond stretching, when compared to DMRG, the GF2
error strongly increases, while NEVPT2(10e,10o) one slowly
decreases. We can see that the errors of GF2 are significantly
reduced when SEET(FCI/GF2)[2o+2⇥4o] calculation is car-
ried out. For stretched distances, a systematic reduction of er-
rors can be observed when the number of impurity orbitals is
systematically enlarged starting from (2o+2⇥4o), (4o+6o), to
(2o+8o). Interestingly, this error reduction with an increasing
number of impurity orbitals is very systematic and is indepen-
dent of the distances on the potential energy curve.

Consequently, one can expect that in cases where the num-
ber of active space orbitals is too large to be treated within one
impurity, it is possible to split the active space orbitals among
several impurities and systematically improve the answer. We
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domains criteria, depending on system studied. As an exam-
ple, in Fig. 1, we present the selection of impurities using the
aforementioned criteria for the H8 chain.
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FIG. 1. Two schemes for selecting orbitals used to construct
impurities for the H8 chain. Note that in the spatial selection
scheme there are two pairs of degenerate impurities (A, D)
and (B, C). In the energy or occupation scheme, there is no
such degeneracy and impurities are build using bonding and
corresponding antibonding orbitals.

To construct the orbital basis in the energy domain, the one-
body density matrix P is first evaluated using the converged
GF2 Green’s function,

P = �2GGF2
mol (⌧ = �), (21)

where � = 1/(kBT ) is the inverse temperature. Then, this
whole molecular one-body density matrix is diagonalized to
obtain the natural orbitals (NOs) and occupation numbers.
The active orbitals are then chosen from this set of NOs based
on their occupations, as it is done in traditional CAS type
methods. The strongly correlated orbitals have occupations
significantly di↵erent from 0 or 2, while the weakly correlated
orbitals are mostly empty or doubly occupied. In SEET per-
formed in the NO basis, if the number of active orbitals is too
large to be included in a single impurity, the orbitals can be
easily split into di↵erent groups (impurities) belonging to dif-
ferent fragments or di↵erent symmetries without any further
implementation as shown in Fig. 1, for numerical examples
see Table IV.

In the spatial domain, the localized orbitals can be formally
obtained by localizing NOs using the well-known Pipek–
Mezey56 and Boys57 localization schemes. Note that Boys
orbitals are a molecular analogue of Wannier orbitals58. In
this work, we use the Löwdin orthogonalized AO (SAO) basis
when dealing with a minimal basis set, while the so-called re-
gional natural orbital (RNO) basis59,60 is employed for larger
basis sets than the minimal one. The construction of RNO
basis for SEET can be briefly described as follows. Starting
from AO density matrix PAO, the density matrix in SAO basis

PSAO can be obtained by the Löwdin orthogonalization,

PSAO = S1/2PAOS1/2, (22)

where S is an AO overlap matrix. In the next step of RNO
basis construction, we separately diagonalize a block density
matrix of predefined fragments i

PRNO
i = U†i PSAO

i Ui. (23)

The transformation matrix from SAO to RNO basis for a
molecule consisting of n molecular fragments is a direct sum-
mation of all block eigenvectors Ui

U = U1 � U2 � ... � Un. (24)

The density matrix in RNO basis can be obtained as follows

PRNO = U†PSAOU. (25)

Finally, the RNO coe�cients present in the non-orthogonal
AO basis are obtained by a back transformation

CRNO = S�1/2U. (26)

The active orbitals are then chosen from RNOs belonging to
particular molecular fragments.

It is worth mentioning that in the original description of
the RNO construction59,60, the RNO density matrix (Eq. 25)
is further diagonalized using the Jacobi rotation to obtain the
bonding between fragments. However, since our purpose is
to approximately disentangle the bonding between fragments,
we will not proceed according to the original description.

Generally, depending on a system under study, we can use
either NO or SAO/RNO bases. If the entanglement between
molecular fragments is large, the NO basis should be used
to correctly describe the bonding between fragments. On the
other hand, if molecular fragments are only weakly coupled,
we approximately can separate them and employ SAO/RNO
bases. The advantages and disadvantages of each orbital ba-
sis will be carefully demonstrated using numerical results in
subsection III C.

E. Implications for impurity solvers to reach chemical
accuracy

For SEET procedure to be computationally well behaved
and accurate one has to fulfill multiple requirements: (i) or-
thogonality of the orbital basis to properly carry out the em-
bedding procedure when an explicit bath representation for a
CI solver is necessary, (ii) including a realistic Hamiltonian
in the impurity problem, (iii) hybridizations that simplify the
bath fitting procedure, (iv) locality to make the self-energy
decay fast with respect to the distance, and (v) a possibility
of treating many strongly correlated orbitals by an impurity
solver. All of these requirements have implications for the
possible quantum impurity solvers that can be used in SEET
or DMFT procedures.

For molecules, if chemical accuracy is desired, any modi-
fication of the realistic Hamiltonian containing full one- and
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I. SYSTEM

We consider a system described by a Hamiltonian with
full two-body interaction vijkl and one-body terms tij in
a finite orbital basis:

H =
NX

ij

tija
†
iaj +

NX

ijkl

vijkla
†
ia

†
jalak, (1)

where the indices ijkl enumerate all N basis orbitals
present in the system. In case of a periodic system, Eq. 1
may in particular contain one-body terms connecting any
orbital in any unit cell to any other orbital in any other
unit cell, and general two-body integrals v mixing inter-
actions between any of the orbitals in any of the unit cells
in the system.

Physical properties including thermodynamic quan-
tities (energies and entropies), single-particle (Green’s
functions and self-energies) and two-particle quanti-
ties (susceptibilities) can be described in a functional
approach.1–4 In this approach, a �- functional �[G] of
the Green’s function G, which contains all linked closed
skeleton diagrams,1 is used to express the grand potential
as

⌦ = � � Tr log G�1 � Tr⌃G, (2)

and satisfies

��

�G
= ⌃[G], (3)

where the self-energy ⌃ is defined with respect to a non-
interacting Green’s function G0 via the Dyson equation

G = G0 + G0⌃G. (4)

The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.2,5 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
noninteracting limits are consistent.2 Functional theory
therefore provides a convenient framework for construct-
ing perturbative2,6–8 and non-perturbative9–11 diagram-
matic approximations.

The approximations we discuss in the following are
all expressed in the functional form, thus making them
straightforward to discuss and compare their respective
assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)11 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai are
more strongly correlated among each other than with the
remainder of the system, so that their correlations need
to be obtained in a non-perturbative way. Conversely,
inter-set correlations between orbitals belonging to two
di↵erent sets Ai and Aj , i 6= j, and correlations belong-
ing to the remainder R are assumed to be weaker, such
that they can be simulated perturbatively. The choice of
orbital subsets and subset size NA

i is general and will be
commented on in Sec. IA 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory12,13 or the
GW method.6 �A denotes all those terms in � where all
four indices i, j, k, l of vijkl as well as i, j of tij are con-
tained inside orbital subspace A. �A

weak is the approxi-
mation to �A within the weak coupling method used for
solving the entire system, and �A

strong the approximation
or exact solution of �A obtained using the higher order
method capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
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The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

On the other hand, approximations based on a �
functional do not guarantee self-consistency on the two-
particle level, so that vertex functions which appear in
the calculation of the one-particle self-energy may not
the same as those generated by functional di↵erentiation
in two-particle correlation functions, and crossing sym-
metries may be violated.23–25 The construction of meth-
ods for model systems that respect these symmetries by
construction is an active topic of research.26,27

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)28–33

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact
solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
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mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

On the other hand, approximations based on a �
functional do not guarantee self-consistency on the two-
particle level, so that vertex functions which appear in
the calculation of the one-particle self-energy may not
the same as those generated by functional di↵erentiation
in two-particle correlation functions, and crossing sym-
metries may be violated.23–25 The construction of meth-
ods for model systems that respect these symmetries by
construction is an active topic of research.26,27

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
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i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
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MX
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⇣
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strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)28–33

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact
solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form
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Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as
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The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

On the other hand, approximations based on a �
functional do not guarantee self-consistency on the two-
particle level, so that vertex functions which appear in
the calculation of the one-particle self-energy may not
the same as those generated by functional di↵erentiation
in two-particle correlation functions, and crossing sym-
metries may be violated.23–25 The construction of meth-
ods for model systems that respect these symmetries by
construction is an active topic of research.26,27

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
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⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)28–33

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
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weak is the approximation to �A

within the weak coupling method used for solving the
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strong the approximation or exact
solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
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Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
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strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and
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the system with the strong correlation method since
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the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
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non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
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particle level, so that vertex functions which appear in
the calculation of the one-particle self-energy may not
the same as those generated by functional di↵erentiation
in two-particle correlation functions, and crossing sym-
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ods for model systems that respect these symmetries by
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i orbitals, and a remainder R
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intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
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⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as

Dominika Zgid, E. Gull, New J. Phys. 19, 023047 (2017)



Choosing strongly correlated orbitals automatically
How do we define a strongly correlated orbital?
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SEET for molecules in energy basis
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SEET in energy basis
splitting strongly correlated orbitals into many groups   

is systematically improvable and converges well

H10 stretching in cc-pVDZ basis (50 orbitals, 10 electrons)
error  w.r.t. DMRG 

14

TABLE IV. Potential energies (in a.u.) as a function of bond distance (in a.u.) for H10 chain in the cc-pVDZ basis. Energies
from GF2 and SEET with di↵erent number of impurity orbitals building the active space are compared to NEVPT2(10e,10o)
and DMRG energies81. FCI solver is used to treat [2o+2⇥4o] and [4o+6o] impurities, while RASCI solver is used for [2o+8o]
impurity. Non-parallelity error [NPE] (a.u.) which is the di↵erence between the largest and smallest errors with respect to
DMRG references are also provided.

R(H-H) GF2 SEET(CI/GF2) NEVPT2(10e,10o) DMRG[2o+2⇥4o] [4o+6o] [2o+8o]
1.4 –5.367 9 –5.380 6 –5.385 6 –5.388 5 –5.358 9 –5.408 7
1.6 –5.525 5 –5.540 0 –5.547 7 –5.552 9 –5.520 6 –5.570 2
1.8 –5.564 6 –5.582 1 –5.593 6 –5.598 8 –5.570 3 –5.614 1
2.0 –5.539 5 –5.559 3 –5.569 7 –5.583 2 –5.551 8 –5.594 9
2.4 –5.403 9 –5.431 7 –5.445 4 –5.463 2 –5.442 9 –5.476 1
2.8 –5.235 2 –5.271 4 –5.292 1 –5.320 4 –5.305 7 –5.334 4
3.2 –5.074 1 –5.119 3 –5.148 7 –5.192 9 –5.185 3 –5.212 5
3.6 –4.935 3 –4.995 0 –5.032 8 –5.082 2 –5.095 4 –5.123 8

NPE 0.147 7 0.100 8 0.068 6 0.028 8 0.021 5
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FIG. 12. Errors in energy (in a.u.) with respect to DMRG ref-
erence as a function of R(H-H) for GF2, SEET with di↵erent
active spaces in the NO basis, and NEVPT2(10e,10o). All
energies (in a.u.) are presented in Table IV.

would like to stress that this systematic improvement will be-
come crucial for systems where the exact answer is unknown,
thus the only way of assessing if the level of accuracy given by
SEET is su�cient will be coming from internal SEET criteria
and checking if the answer obtained does not change drasti-
cally upon enlarging the number of impurity orbitals.

IV. CONCLUSIONS

In this paper, we have presented a detailed discussion of
the molecular Green’s function quantum embedding scheme
called SEET. The self-energy separation characteristic for
SEET onto strongly correlated/active/subsystem and weakly
correlated/inactive/environment parts is completely general
and does not specify how the self-energies for these fragments
will be evaluated in practice. While many schemes are pos-

sible, in this paper we used a scheme where first the whole
molecule is treated by the perturbative self-consistent GF2
approach and then selected strongly correlated orbitals are
used to build impurity+bath models that are solved in DMFT-
like procedure in the presence of self-energy coming from the
weakly correlated/inactive/environment orbitals.

We aim for SEET to be systematically improvable, with-
out empirical parameters, and reaching chemical accuracy.
Consequently, we discussed many aspects of SEET that were
developed by us to fulfill these strict demands. SEET is
a Green’s function method capable not only of delivering
ground state energies but also many more physically relevant
quantities such as free energies, ionization potentials (IP) and
electron a�nities (EA), or temperature-dependent magnetic
susceptibility; however, here we focused on analyzing SEET
results for small molecular examples where multiple ground
state methods are known to give excellent results and ground
state energies can be easily used to asses the SEET perfor-
mance.

We started our considerations by explaining the double self-
consistency loop present in SEET, where in the inner DMFT-
like loop the active space/impurity self-energy is updated us-
ing an accurate many-body solver. The outer loop requires an
update of the self-energy for inactive orbitals performed by us
at the GF2 level; however other inexpensive ab initio methods
could also be used for the calculation of the inactive orbitals
self-energy. We observed, when analyzing numerical results,
that this outer loop’s self-energy update is crucial for classes
of systems where the initial perturbative description was not
quantitative.

Next, we have analyzed di↵erent schemes for selecting the
strongly correlated/active/subsystem orbitals either based on
the energy (occupations) or spatial criteria. We stress that in
the energy (or occupation) scheme the strongly correlated or-
bital selection is done mainly based on the occupations of cor-
related one-body density matrix, thus not only relying on intu-
itive means. Moreover, in the result section for H10 chain, we
have demonstrated that the results of such a selection scheme

6

domains criteria, depending on system studied. As an exam-
ple, in Fig. 1, we present the selection of impurities using the
aforementioned criteria for the H8 chain.

impurity A impurity B impurity C impurity D

H H H H H H H H

Spatial impurity selection scheme

Energy or occupation impurity selection scheme
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FIG. 1. Two schemes for selecting orbitals used to construct
impurities for the H8 chain. Note that in the spatial selection
scheme there are two pairs of degenerate impurities (A, D)
and (B, C). In the energy or occupation scheme, there is no
such degeneracy and impurities are build using bonding and
corresponding antibonding orbitals.

To construct the orbital basis in the energy domain, the one-
body density matrix P is first evaluated using the converged
GF2 Green’s function,

P = �2GGF2
mol (⌧ = �), (21)

where � = 1/(kBT ) is the inverse temperature. Then, this
whole molecular one-body density matrix is diagonalized to
obtain the natural orbitals (NOs) and occupation numbers.
The active orbitals are then chosen from this set of NOs based
on their occupations, as it is done in traditional CAS type
methods. The strongly correlated orbitals have occupations
significantly di↵erent from 0 or 2, while the weakly correlated
orbitals are mostly empty or doubly occupied. In SEET per-
formed in the NO basis, if the number of active orbitals is too
large to be included in a single impurity, the orbitals can be
easily split into di↵erent groups (impurities) belonging to dif-
ferent fragments or di↵erent symmetries without any further
implementation as shown in Fig. 1, for numerical examples
see Table IV.

In the spatial domain, the localized orbitals can be formally
obtained by localizing NOs using the well-known Pipek–
Mezey56 and Boys57 localization schemes. Note that Boys
orbitals are a molecular analogue of Wannier orbitals58. In
this work, we use the Löwdin orthogonalized AO (SAO) basis
when dealing with a minimal basis set, while the so-called re-
gional natural orbital (RNO) basis59,60 is employed for larger
basis sets than the minimal one. The construction of RNO
basis for SEET can be briefly described as follows. Starting
from AO density matrix PAO, the density matrix in SAO basis

PSAO can be obtained by the Löwdin orthogonalization,

PSAO = S1/2PAOS1/2, (22)

where S is an AO overlap matrix. In the next step of RNO
basis construction, we separately diagonalize a block density
matrix of predefined fragments i

PRNO
i = U†i PSAO

i Ui. (23)

The transformation matrix from SAO to RNO basis for a
molecule consisting of n molecular fragments is a direct sum-
mation of all block eigenvectors Ui

U = U1 � U2 � ... � Un. (24)

The density matrix in RNO basis can be obtained as follows

PRNO = U†PSAOU. (25)

Finally, the RNO coe�cients present in the non-orthogonal
AO basis are obtained by a back transformation

CRNO = S�1/2U. (26)

The active orbitals are then chosen from RNOs belonging to
particular molecular fragments.

It is worth mentioning that in the original description of
the RNO construction59,60, the RNO density matrix (Eq. 25)
is further diagonalized using the Jacobi rotation to obtain the
bonding between fragments. However, since our purpose is
to approximately disentangle the bonding between fragments,
we will not proceed according to the original description.

Generally, depending on a system under study, we can use
either NO or SAO/RNO bases. If the entanglement between
molecular fragments is large, the NO basis should be used
to correctly describe the bonding between fragments. On the
other hand, if molecular fragments are only weakly coupled,
we approximately can separate them and employ SAO/RNO
bases. The advantages and disadvantages of each orbital ba-
sis will be carefully demonstrated using numerical results in
subsection III C.

E. Implications for impurity solvers to reach chemical
accuracy

For SEET procedure to be computationally well behaved
and accurate one has to fulfill multiple requirements: (i) or-
thogonality of the orbital basis to properly carry out the em-
bedding procedure when an explicit bath representation for a
CI solver is necessary, (ii) including a realistic Hamiltonian
in the impurity problem, (iii) hybridizations that simplify the
bath fitting procedure, (iv) locality to make the self-energy
decay fast with respect to the distance, and (v) a possibility
of treating many strongly correlated orbitals by an impurity
solver. All of these requirements have implications for the
possible quantum impurity solvers that can be used in SEET
or DMFT procedures.

For molecules, if chemical accuracy is desired, any modi-
fication of the realistic Hamiltonian containing full one- and

T.N. Lan, A. A. Kananenka, Dominika Zgid, JCTC, 2016, 12 (10), pp 4856



SEET for molecules

4

split into two smaller equivalent active spaces, where each ac-
tive space includes one pair of MOs. As shown in Fig. 3,
SEET(FCI/GF2)[(2e,2o)+(2e,2o)] dissociation curve does not
diverge and remains nearly parallel to the FCI one at long dis-
tances. While for the example of two parallel Li dimers, it is
possible to localize orbitals on each fragment before splitting
the full active space (similarly to the active space decomposi-
tion (ASD) developed by Parker and coworkers46), we avoid
doing so since we aim to demonstrate that despite missing
many CI configurations when the active space consisting of
MOs of the same symmetry (i.e. σ−type MO) is split, SEET
can avoid divergences and recover a dissociation limit parallel
to the FCI curve. Moreover, it is evident that the SEET de-
scription can be systematically improved when enlarging the
active space.
To further explore active space splitting, in Fig. 4, as a func-

tion of bond stretching in Li4 cluster, we plot orbital occupa-
tions of valence MOs obtained by FCI, CASSCF, GF2, and
SEET(FCI/GF2) methods. FCI occupations smoothly shift
from single-reference to multi-reference as the bond length
increases. CASSCF(4e,4o) and SEET(FCI/GF2)(4e,4o) oc-
cupations are in a very good agreement with FCI reference.
In GF2, occupations suddenly jump from single-reference to
multi-reference regime at R = 9.0 a.u. This is reflected
by a kink in the GF2 dissociation curve, see Fig. 3. Fur-
thermore, beyond this point, GF2 occupation numbers are
even closer to 1.0 than those of FCI, indicating that GF2
overestimates static correlation in the Li4 cluster. On the
other hand, when performing FCI in two active spaces on
top of GF2, namely SEET(FCI/GF2)[(2e,2o)+(2e,2o)], the
single-reference to multi-reference transition becomes much
smoother indicating that SEET(FCI/GF2)[(2e,2o)+(2e,2o)]
describes the correlations in a more balanced way than
GF2 by itself. Consequently, the active space splitting in
SEET(FCI/GF2) can be used to qualitatively describe the dis-
sociation regime.
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FIG. 4. Occupation numbers of Li4 with respect to Li-Li dis-
tance.

Finally, we show that the full active space in
SEET(FCI/GF2) can be split into smaller groups, where
each group consists of different symmetry MOs. To this

end, we consider NH3 molecule in the 6-31G basis47.
Fig. 5 displays the dissociation curves from FCI, CASSCF,
NEVPT2, GF2, and SEET(FCI/GF2) calculations. For
NH3 molecule, the full active space is composed of 4
π−type and 2 σ−type orbitals. Both CASSCF(6e,6o) and
NEVPT2(6e,6o) correctly reproduce the FCI dissociation
behavior. Although GF2 yields the energy that is comparable
to NEVPT2(6e,6o) energy at the equilibrium, it significantly
differs from NEVPT2(6e,6o) at longer distances. In the
SEET(FCI/GF2) method, the full active space is split into
two smaller active spaces with different orbital symmetries.
One group consists of 2 σ−type orbitals and 4 π−type
orbitals are included in the other one. It is evident that the
SEET(FCI/GF2)[(2e,2o)+(4e,4o)] curve is close to that of
NEVPT2(6e,6o) within the range of distances considered.
This stands in contrast to the GF2 behavior which has large
error for stretched geometries. Let us point out that in
conventional CAS methods, it is also possible to split the
full active space into smaller active spaces with the different
orbital symmetries12,13; however, such a procedure requires
a complicated implementation. In SEET, the active space
splitting does not require any additional implementation.
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FIG. 5. Potential energy curve of NH3 with 6-31G basis.

In conclusion, we have presented a generalization of the
SEET method to ab initio Hamiltonians for molecular sys-
tems. GF2 and FCI were used to treat correlations in non-
local (weakly correlated) and local (strongly correlated) sub-
spaces, respectively, in a perturb and diagonalize type of
scheme. The performance of SEET(FCI/GF2) was illustrated
using small molecules in small basis sets. We demonstrated
that SEET(FCI/GF2) provides results of comparable quality
to NEVPT2 with the same active space. Additionally, un-
like conventional multi-reference perturbation theories, SEET
avoids intruder states and does not require high-order RDMs,
and furthermore, the full active space can be split into smaller
active spaces without any additional implementation. In con-
trast to LDA+DMFT type schemes, the double counting prob-
lem does not appear in SEET and the accuracy can be im-
proved either by increasing the order of the perturbation or
by enlarging the active space. Since the non-local interac-
tions are described by the non-local self-energy, we do not

NH3 triple bond stretching in 6-31G basis (15 orbitals, 10 electrons) 
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Structure of self-energy 

2

The functional formalism is useful because approxima-
tions to � that can be formulated as a subset of the
terms of the exact � functional can be shown to respect
the conservation laws of electron number, energy, mo-
mentum, and angular momentum by construction.16,19 In
addition, �-derivability ensures that quantities obtained
by thermodynamic or coupling constant integration from
non-interacting limits are consistent.16 Functional theory
therefore provides a convenient framework for construct-
ing perturbative16,20–22 and non-perturbative4,11–14 dia-
grammatic approximations.

On the other hand, approximations based on a �
functional do not guarantee self-consistency on the two-
particle level, so that vertex functions which appear in
the calculation of the one-particle self-energy may not
the same as those generated by functional di↵erentiation
in two-particle correlation functions, and crossing sym-
metries may be violated.23–25 The construction of meth-
ods for model systems that respect these symmetries by
construction is an active topic of research.26,27

The approximations we discuss in the following sec-
tions are all expressed in the functional form, thus mak-
ing them straightforward to discuss and compare their
respective assumptions, limits, and strengths.

A. The Self-energy Embedding Theory

1. Self-energy Embedding Equations

The self-energy embedding theory (SEET)12–14 starts
from the assumption that all orbitals present in the sys-
tem can be separated into M distinct orbital subsets
Ai, each containing NA

i orbitals, and a remainder R
with NR orbitals, such that NA

i ⌧ N , for each i, and

N =
PM

i=1 NA
i + NR.

We assume that the orbitals within each subset Ai

are more strongly correlated among each other than
with other orbitals present in the system, so that their
intra-subset correlations need to be obtained in a non-
perturbative way. Conversely, inter-set correlations be-
tween orbitals belonging to two di↵erent sets Ai and Aj ,
i 6= j, and correlations belonging to the remainder R
are assumed to be weaker, such that they can be simu-
lated perturbatively. The choice of orbital subsets and
subset size NA

i is general and will be commented on in
Sec. II A 2.

SEET first approximates the solution of the entire sys-
tem using an a↵ordable but potentially inaccurate �-
derivable method (weak coupling methods are a natu-
ral choice), and then corrects this approximation in the
strongly correlated subspaces by a non-perturbative re-
sult. This is achieved by approximating the exact �-
functional as

�SEET = �tot
weak +

MX

i=1

⇣
[�A

strong]i � [�A
weak]i

⌘
. (5)

Here, �tot
weak denotes a solution of the entire system using

a conserving low-order approximation, for instance self-
consistent second order perturbation theory (GF2)28–33

or the GW method.20 �A denotes all those terms in �
where all four indices i, j, k, l of vijkl are contained inside
orbital subspace A. �A

weak is the approximation to �A

within the weak coupling method used for solving the
entire system, and �A

strong the approximation or exact
solution of �A obtained using the higher order method
capable of describing ‘strong correlation’.

Since the self-energy is a functional derivative of the
�SEET-functional, the total self-energy ⌃ contains dia-
grams from both the ‘strong’ and ‘weak’ coupling meth-
ods and can be written in a matrix form reflecting the
system separation onto di↵erent correlated blocks

⌃SEET =

2

6664

[⌃A]1 ⌃int . . . . . . . . .
⌃int [⌃A]2 ⌃int . . . . . .
. . . . . . . . . . . . . . .
. . . . . . ⌃int [⌃A]M ⌃int

. . . . . . . . . ⌃int ⌃R

3

7775
(6)

These blocks are obtained upon di↵erentiation of the
�SEET functional according to Eq. 3 and have the fol-
lowing form

[⌃A]i = ⌃tot
weak + ([⌃A

strong]i � [⌃A
weak]i), (7)

⌃R = ⌃R
weak, (8)

⌃int = ⌃int
weak. (9)

Eq. 6 describes a subspace self-energy consisting of a con-
tribution from the strongly correlated subspace embed-
ded into a weakly correlated self-energy generated by all
orbitals outside the subspace. This embedding of the self-
energy leads to the name ‘self-energy embedding theory’.

SEET satisfies the following limits:

• If the interaction vijkl is zero or the temperature is
infinity, � = 0, the self-energy is zero and therefore
the method becomes exact.

• If M = 1 and the only subspace A includes all or-
bitals present in the system, NA = N , so that no
orbitals are left in the perturbatively treated sub-
space, NR = 0, then the entire system is solved
using the strong correlation method and �SEET =
�A

strong. Consequently, if the strong correlation
method provides the exact solution, the exact so-
lution of Eq. 1 is recovered.

• In the limit of non-interacting subsystems, when
the interactions between strongly correlated sub-
spaces are zero, together with a condition NR = 0
and

P
i NA

i = N , SEET recovers the solution of
the system with the strong correlation method since
�SEET =

PM
i [�A

strong]i.

• If the correlated subspaces are not treated exactly
but using the same ‘weak correlation’ method as

strong

weak

strong

strong

strong

strong

weak

• What about a system with many strongly correlated orbitals?  

• What if strongly correlated orbitals are divided into multiple groups?

The accurately treated region is small. 

Many strong interactions between orbitals are treated only perturbatively. 

The accuracy of the calculations may not be sufficient!!!



Recovering the self-energy fully
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Comparing splitting vs mixing SEET schemes
energy
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Figure 1: Potential energy curves for H6 chain in cc-pVDZ basis.
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Comparing splitting vs mixing SEET schemes
Linear NiO2 in cc-pVDZ basis 

(12 strongly  and 59 weakly correlated orbitals)

SEET(FCI/HF)-mix(9o)  CASCI(18e,12o) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.79	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.79	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.79	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.79	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.46	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.47	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.46	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.47	  

Occupation Numbers

Hartree-Fock                    -1656.203 
SEET(FCI/HF)-mix(9o):    -1656.514    
CASCI(18e,12o):              -1656.512 

Electronic Energy [a.u.]

T.N. Lan, Dominika Zgid, arXiv:1703.06981, accepted to JCPL



SEET for molecules vs Quantum Chemistry methods

T.N. Lan,  A. Kananenka, Dominika Zgid, J. Chem. Phys. 143, 241102 (2015), arXiv:1511.00986

NEVPT2 / CASPT2 SEET (FCI-in-GF2)

diagonalize and perturb perturb and diagonalize

divergence of denominators
when strong correlation present

no divergence

requires 1-, 2-, 3-, 4- RDM requires 1-body 
Green’s functions 

PT2 describes only 
weak correlation

GF2 describes partially 
strong correlation

all strongly correlated orbitals 
are treated simultaneously

strongly correlated orbitals 
can be split among multiple impurities



Periodic systems with SEET

Evaluate GF2 self-energy in the real space
Evaluate Green’s Functions in the momentum space
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Periodic SEET

• SEET is a finite temperature method 
 To be close to zero temp ground state we cool down our problem  
to beta =10000 1/a.u. or 31.6 K

H — H — H — H — (H — H) — H — H — H — H — H — H1

Infinite 1D  Hydrogen solid in STO-3G basis 

Goal: To show that periodic SEET can give very accurate energies  

Comparison with ground state TDL data from AFQMC (Shiwei Zhang)  

• Multiple physical phases are possible                                                           
We need to be careful not be trapped in a metastable solution

Finite temperature quantum embedding theories for correlated systems

Dominika Zgid1, ⇤ and Emanuel Gull2

1
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

2
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

The cost of the exact solution of the many-electron problem is believed to be exponential in the
number of degrees of freedom, necessitating approximations that are controlled and accurate but
numerically tractable. In this paper, we show that one of these approximations, the self-energy
embedding theory (SEET), is derivable from a universal functional and therefore implicitly satisfies
conservation laws and thermodynamic consistency. We also show how other approximations, such
as the dynamical mean field theory (DMFT) and its combinations with many-body perturbation
theory, can be understood as a special case of SEET and discuss how the additional freedom present
in SEET can be used to obtain systematic convergence of results.

I. INTRODUCTION

The computational cost of the exact solution of the re-
alistic extended many-electron problem is believed to be
exponential in the number of degrees of freedom, necessi-
tating the development of accurate approximate methods
able to capture interacting electron physics.1

While mature tools for obtaining ground state energet-
ics for both molecular and solid state problems exist,2,3

solid state experiments are often performed at finite tem-
perature and yield as the measured result not energy dif-
ferences but single-and two-particle response functions,
requiring a description of finite temperature excitations.

Many-body perturbation theory3 accurately describes
these phenomena where interactions are weak. How-
ever, many systems of interest are believed to be out-
side the regime of validity of perturbative approxima-
tions. In these systems, a non-perturbative solution is
desired for a subset of the correlated degrees of freedom
embedded into a background of more weakly correlated,
perturbatively treated states. Ideally such an embedding
construct should be numerically tractable and defined
in terms of one or more small parameters that allow its
tuning from a crude but computationally cheap, approx-
imate solution to the exact but exponentially expensive
one.

Several such theories have been developed. They in-
clude the dynamical mean field theory (DMFT),4,5 its
combination with electronic structure methods, such as
LDA+DMFT6–8 and GW+DMFT9,10, the self-energy
functional theory,11 and most recently the self-energy em-
bedding theory (SEET).12–14 All of them require a com-
promise between accuracy and numerical tractability or
time to solution.

In this paper, we show that SEET can be under-
stood as a conserving functional approximation to an ex-
act Luttinger-Ward functional.15 This functional frame-
work of SEET allows us to compare this theory to other
functional approximations, and show in particular that
DMFT, HF+DMFT, and GW+DMFT can be under-
stood as a special case of SEET and to illustrate how
the additional freedom given by SEET can be employed
to systematically improve results. In particular, we focus

on various aspects of electron ‘screening’ and downfold-
ing and how they are treated in various approximations.

This paper proceeds as follows. In Sec. II, we introduce
the system under study, the SEET definition, DMFT,
and several combinations of DMFT with many-body per-
turbation theory. In Sec. III, we compare the di↵erent
approaches based on their functionals. In Sec. IV, we fo-
cus in detail on various aspects of electron screening. We
form conclusions in Sec. V.

II. SYSTEM AND FORMALISM

We consider a system described by a Hamiltonian with
full two-body interaction vijkl and one-body terms tij in
a finite orbital basis:

H =
NX

ij

tija
†
iaj +

NX

ijkl

vijkla
†
ia

†
jalak, (1)

where the indices i, j, k, and l enumerate all N basis or-
bitals present in the system. In case of a periodic system,
Eq. 1 may in particular contain one-body terms connect-
ing any orbital in any unit cell to any other orbital in any
other unit cell, and general two-body integrals v mixing
interactions between any of the orbitals in any of the unit
cells in the system.

Physical properties including thermodynamic quanti-
ties (energies and entropies), frequency dependent single-
particle (Green’s functions and self-energies) and two-
particle quantities (susceptibilities) can be described in
a functional approach.15–18 In this approach, a �- func-
tional �[G] of the Green’s function G, which contains all
linked closed skeleton diagrams,15 is used to express the
grand potential as

⌦ = � � Tr log G�1 � Tr⌃G, (2)

and it satisfies

��

�G
= ⌃[G], (3)

where the self-energy ⌃ is defined with respect to a non-
interacting Green’s function G0 via the Dyson equation

G = G0 + G0⌃G. (4)
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SEET with 2-site impurity in the unit cell is very close to AFQMC  
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• SEET does not assume any mapping to a model Hamiltonian, it usually relays 
on a transformation to an effective Hamiltonian with energy scale separation.

• Self-energy is approximated, Hamiltonian is left unchanged.

• A systematic iterative approach yielding excellent energies can be easily 
constructed with SEET.  

• Self-energy between weakly correlated orbitals can be easily included with 
GF2, strongly correlated orbitals are treated with truncated ED .

• SEET avoids some of the problems present in quantum chemistry methods.

• Iterative Green’s function methods (GF2) can be used to choose strongly 
correlated orbitals.  

SEET  key features 
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