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OF MO WAVEFUNCTIONS:

A ‘theoretical Microscope to explore VB-type local structures.
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(LOCAL) ELECTRONIC EVENTS (in the sense of Loge Theory[1])

< ° /\))Dv 2 /\/_)\/
— J <> - <> (+> <> nnn
o e e
® ™) Q)

~
3
\.= J | \ C
i W o8 Wl
N N N

@
‘ : o ) HZ” 0 )\
O O

/

/
/2
/

\
|
|
|

|1

w
—->
-

<
~

<
N~
K
)
’

Rl R]_ R]_ Rl
@ \@ """"" 8 - \ 3 e o
(J = / / S o / SR
R2 R2 R2 I R2
*+) Ry
® N

c—~O
/ @)
Ro

[1] R. Daudel, in ‘Localization and Delocalization in Quantum Chemistry’ , Chalvet, O. et al.,(eds), vol.I; Reidel, Dordrecht,1975, p. 3



METHOD

Extract a local information from adelocalized ¥(MO) :

<¥(MO)Y2p 2¢(MO)>
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- Elaboration of ¥(MO) within MOFFITT's theorem
( Y(MO) a W(TL) )

- Elaboration of [3 within SECOND QUANTIZATION

(include electron holes)



DELOCALIZED Y(MO)

TOTALLY LocAaL W(TL)

I
YimMoy = S ¢ [ Dy
I

o= v w o | Y (TL)
CMLOs Wy o W = > Chiy, Pk )
OFR.

e Slater Determinant, Dy, involving

the delocalized Khon-Sham orbitals, W,

MOFFITT’s theorem

Y(MO) = Y(TL)

Decomposition of MO-Slater determinants:

il = = TL lagl  (fromidentity relations)
K
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DENSITY OPERATORS

Let E isthenumber of thetarget electrons, and H isthe number of the target electron holes.
Placing ‘under the microscope E spin-orbitals:

~ + + - -
Peo (B - @ 0 =P, - P B B
or E+H gspin-orbitals:

~ + + - - + + - -
pE,H((pkl(pr1(pp‘1(RlH ): (p}‘l (pr(pul(puH(pHH (p}fll(p}\‘E(le
(for simplicity: creation @ insteadof a’ , and annihilation @ instead of &, )

- Expectation values, Pg,,, of thegeneralized densty operators:

Pl @1y o @i 1Py, Q) = <UL By (@, o Prp 1@y, Oy, ) | WL =

(‘le--‘PxE)
= a W(Dy )
KC oy, 9,,)
(‘le-c;‘PxE)
Where a represents a summation over Slater determinants, which involve

KE o, )

@y, - - @, andsmultaneously SOs@,, - - - @, are absent, and

W(Dg )

istheweight of the local Slater determi nant‘(D K| , depending on the (non-) orthogonality of orbitals.



Weights of thetotally local Slater deter minants, CDK‘ ;

(i) orthogonal orbitals

W(Dk) = T2

Provides the probability of a given occupation scheme of (local) AO-positions

(if) non-orthogonal orbitals (Mulliken partition for P.E.P.A)

The Coulson-Chirgwin definition for the weights of determinantal wave functions:

fullck;asis
W(Di) =Tg <Py [P > + T A Tke < Py | o>
K¢ K

By adopting the Mulliken partition for P.E.P.A., the weights, P¢.,;, of local electronic structures are
coherent with those of VB theory. The principal differenceisthat VB weights are obtained from spin-
elgenfunctions and concern the whole el ectronic assembly, while P¢.,;, are obtained from the sums
weights of single Sater determinants, and concern local structures.




Summary
The generalized Poly-Electron Population Analysis (PEPA)

requiresvery smple (formally) equation:

(Ml---q’xE)
o)

PE;H ( (pxl... (P;LE ;(Pul (PMH ) = a W((DK)

K(* 0y, --0,)

[Note: Theinvolved det { @, } have afixed occupation inthetarget SOs {Px ,Pu} , whilethe
remaining SOs can have anyone occupation ]

In medium size systems:
Exponential scaling of computational difficulties with the system size'!

3

Efficient calculation of Pgy  without approximations:

(A)Mixed local-non-local Slater deter minants

(B) Thehole-expansion methodoloqgy




Efficient calculation of P, (@,, = 9. ; @, - @.) (Without approximations)

(A) Mixed local-non-local Slater deter minants[1]

The factorization of VB-type (Totally Local) Sater determinants
(i.e grouping the TL Slater determinants, having as ‘common factor’ the target €ectrons under the
microscope )

The basic idea:

Any delocalized MO Slater determinant (of theinitial wave function), |D, ‘
‘DI‘ = v, ... Wl
- hon-local g
Is decomposed (i.e. expanded) in mixed local-non-local (LNL) Slater determinants, DTNL‘
I I R S I
- local® = non-local ®
A non-loca ' hasthefollowing form:
l_|JiH = é Ck,i (Pk
k1 Pj - Pj_Pp Py
Generalizing the Moffitt’s theorem we obtain:
LNL
Y(MO) = 232 LNLl +  Y(remanin Only this part is useful to
(MO) a C"D' ‘ ( 9 calculate

I ' > ,.
| | <YMO) | p |[Y(MO)>
[1] P. Papanikolaou, P. Karafiloglou J.Phys. Chem. A 112 (2008) 8839




Efficient calculation of Pg (e, - @i.; @, - @.,) (without approximations)

(B) Thehole-expansion methodology [1]

The basic ideas:
(i) One can show [1] that a structure involving only electron holes can be calculated very efficiently (i.e.

without generating and storing the extremely numerous TL Slater det.) :

o C

PO;H(O; (pH1 (pHH ) = a

|
where ‘Dl ‘ is a MO Sater determinant of the initial wave function:

\Dl\:"‘“h--- W |

And D{" are Slater determinantsinvolving (instead of MOs . ) projected MO, y;”

I, o C
C, a C|<D||D|H>
|

D] =l vt |
H
inwhich Wi isobtained from the corresponding ¥i , in which the SOs involving holes,®,, ... ¢, ,

are not excluded: y o

Wi = a Ck,i Ok
] k1 Pp P, ]
Anoverlap < D;| D;" > isadeterminant involving as elements the overlaps < Wi Wi s

H . H
< llJill/ﬁl—'il > <l|Ji11/t|JiN >

<D||D|H>:

<qu’\ll/‘z|"i|;| > <wiN1/t|Ji: >
[1] P. Karafiloglou J. Chem. Phys. 130 (2009) 164103



(i) One can show [1] that a structure involving only electrons can be expanded in terms involving only holes

(hole-expansion), as for example:

P1.0(9,,0) = 1-Py,(0¢, ) [atrivial example of a hole-expansion issued from the first order

anticommutation relation]
PZ;O ((pqu)kz;o) =1- PO;l (O’ (pkl) - PO;l(O;(pkz) + PO;Z (O;(pqu)kz)

Pso (9,,0;, $.5,0) = 1-Py,(0; 95,)-Py(0;9;,) - Pyy(0; 9:,) + Py, (0,905,905 ,) +

etc

Generalizing these relations, one can show inductively the following general expansion:

E Ag %E
Peo (o, ... ¢,.;0) =1+ §¢1* 3L & Po.q (0; @ ... 9;.)
= 1 K < ’q 1 q
=1 h < Iq
Similarly, for structuresinvolving both eectrons and holes:

Ps(9,0,,:9,9,,) = Poo (05 @u.@y,) - Pos(0;95,0,9,,) —
B PO;3(OI’(p7‘2 (pul (pHZ) + I:)0;4 (O’ (pkl (pkz (pulq)uz)
The general expression for any structureinvolving E eectronsand H holesis:

PE;H ((pkl... (pr;(pul...(puH) - I:)O;H (O’ (pul---(p”H)'l'

IOE A g %E
+ acn? L a Po;q+H(O¢;»cpjl... P, P, -

=1 j1<K < jq

ALGORTHM: Library of hole-structures

[1] P. Karafiloglou J. Chem. Phys. 130 (2009) 164103

PO;Z (0, (pxl (an) + PO;2 (0, (pxz (P;%) - P0;3(0; (pqu)kz (pxg)

(pHH)



A proposition for the VB workshop (Paris, July 2012)

¥(VB) — ¥(TL)

From a V.B. wave function obtain the Coulson-Chirgwin
weights, W( @ ), of single Slater determinants, @ .

(An output fileinvolving the weigths W (@) of single Slater determinants, ®g )
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Poly-Electron Population Analysis of VB wave functions



Two-electron One-electron one-hole
probability ( P,.o) : probability (Pp.q):
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Two-electron two-hole probabilities ( Py.p) :
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Three-electron one-hole probabilities ( Ps.q)
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Relationships between local structures

The electron-expansion methodology [1]
(Expand the holesin termsinvolving only electrons)

Prg(MH:V.V)= Poo(lH) - Papg(M.H. V) - Pag (LLP.V )+ Pag(H.H. V.V )

PQJ(H*EZ H.V) = Pg;n (IJE) - P3;|:| (p?ﬂ) - Pg;n (IJEV) + P4;|:| (H?p"»f) etc. ..

(B (%)
_ N o A
where Poa(MP:V,.V) = =~ W(@g) amd PV V)= =~ W)
H=v% K[, 9
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>\l

The P;, contribute with a minussign => The greater the contributions of the three-electron
structures are, the less important are both covalent and ionic structures, and thus the more week is
thebond: Déja vwu in the ‘L.P.B.W.E. effect’ of V.B. theory!

[1] P. Papanikolaou, P.Karafiloglou J.Phys. Chem. A 112 8839, 2008



The 4th order anticommutation relation
4

| |(a.+ﬂ.+ﬂ.a.+)=
1 1 1 1

=1
involves 16 terms:

ata*a_a_a’ a'|'1 + a' 331143

+ +
aja_a_ al : aja_a +ara’a a alala a

4 1 2 3 4 4 3 2

+ + o+ + o+ +
333431323231 214213

+ ata_a_ a atatata +ata a.a atatata_ +ata a_a atat ata +
192 %1% % %3 %2 Y 391 %2 % %2 % 291 %% % % Y1 %

+ataa a atatata + aa.a.a atatatat+
g9, 488,84, v 4,4, 4,4,3,3;,3,3
+aaa'1a'11'1+aaa'1a‘1"|'1+a+a+a+'1a+'1'1'1+
193 %4 %292 % % 19293 % "4 % %3 293 %4 %% 4% %
+“;“;“;azagﬂ4az“1+ aI’a; ;3414131211 +
+ata*ta a atata_a*+ atata a_ atata a = 1]
193 %2 % % %2 %% 2949 % %% Ty Yy

By adopting the V.B. perspective for chemical bonding, and choosing the above spin-
orbitals (i =1,2,3,4) suchas

i=1 5@ ,i=2 > ? ad i=3->5%1 , i=4-> Py
0. (pu

we obtan:



() () () )
* H * * *
1 RZ Rl Rz Rl 2 R RZ
() (&) ()
ARt AL T A
) ) )
Rl R2 Rl R2 Rl Rz

The bond localization (L) in VB language:

+) € € +)
L= N N N
R’ R, R; R, R? R, RI 2

or, the bond delocalization (D)

D= 1-1L

Lionel Salem in‘The Molecular Orbital Theory of Conjugated Systems', p.86(Benjam, N.Y ork
“Delocalization is ameasure of the degree to which the electrons cannot
be assigned by pairsto individual bonds’



Electron pairsin Chemical systems:

Coulomb and Fermi (or Exchange) correlations

||

Coulomb correlations in one orbital:

C(M ) = Py(h )= Py(h) Py(1)

y

Coulomb correations in two orbitals:

C(h 1) = Py(h p)— Py(R) Py(p)

[

Fermi correations in one orbital:

0
COLA) = Pyl h)= Py(h)?

0
(%) = P R)— Py(i.)?

i

Fermi correlations in two orbitals:
C(A, ) = Py, n)— Py(X) Py(p)

C(A, 1) = Py(h, n) — Py(A) Py(n)



From genuine chemical knowledge:
The chemical bond isa matter of an electron pair (f ¢)

_ /Favorable bonding "sttractive”
- => (H) between (p)\.’(Pll S v

C(A, ) < ZEF0 => nobonding (e.g.long range interactions)

Unfavorable bondin "repul sive"

\-negative=>Unfavorable paHing(N)/ between (p)»’(Pll Ko, |

(<0)
, , Butadiene . .
One orbital correlations: Two orbital correlations:
-0.0535 -0.0535
000
-0.0618 -0.0618

This corroborates with the V.B. description of butadiene:

[T\ — [\ = A

For a given (Pk : Z C(h,pn) = O
u




Coulomb () Fermi (or Exchange) (M):
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The absolutes values of Fermi are QF€ALEY than the Coulomb correlations
(this holds without any exception)

Note: Methods based on the behaviour of parallel spins (c.f.to Pauli Principle)

(e.g. Wiberg indices, E.L.F., D.A.F.H.), provide remarkably good results!



The covaent bonding is between Valence Orbitals
M0

Conceptual problems can arise evenin the simplest case of a double-zeta basis:

I n which extent the outer orbital isValence (and in which extent is Rydberqg) orbital ?




CHOICE OF ORBITAL SPACES

Current calculations involve quite extended AO-basis sets:
Multiple zeta + polarization functions
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Conceptual problems to interpret ‘accurate’ calculations:
Which orbitals represent better the valence orbitals and which the Rydberg ?

For example, the C atom makes bonds by using the valence 2s, 2p,
although for quantum chem. investigationsonemust use: s, s,s', p,p,p , polarization

A very good solution:
Natural Orbitals (NAOs, NHOs, NBOs, ...etc) [

@ These orbitals are ‘natural’ in the Lowdin sense and, thus, can beclearly
distinguished in valence and Rydberg.

@ They show remarkable stability with the extension of the SCF AO- basis set.

@ They span the complete SCF-AO basis set => The initial wavefunction can be transformed
into the Natural basis without altering its approximation level; this holds even for
correlated wavefunctions (linear combination of Slater determinants)
=> no approximations or additional assumptions for NPEPA.

@ The bonding NBOs show avery good transferability.

@ These Natura orbitals can be either orthogonal or non-orthogonal

[1] F. Weinhold, C. R. Landis, in‘Valency and Bonding: A Natural Bond Orbital
Donor-Acceptor Perspective’ ; Cambridge U. Press, 2005, and references cited therein



NON-ORTHOGONAL vs ORTHOGONAL ORBITALS

PNAOs AOAVESTeR NAOs

pNHOs W Ge  NHOs  (hybrid valence) etc ...

» 1 —Bonds: Both orthogonal and non-orthogonal orbitals are
appropriate, providing the same conceptual pictures[1,2]

» o —Bonds: For VB-type description appropriate are the (non-orthogonal)
PNAOs, or, better, the PNHOs.

Note: The NBOs are appropriate for both m—Bondsand o —Bonds.

[1] K. Hirao, H. Nakano, K. Nakayama J. Chem. Phys. 1997, 107, 9966
[2] P. Papanikolaou, P. Karafiloglou J.Phys. Chem. A 2008, 112 8839
P. Karafiloglou, J. P. Launay J. Phys. Chem. A 1998, 102, 8004



An intriguing Epistemological problem:

Although the chemical formula has been introduced before the development of Quantum
Theory, remains (and will remain) a basic stone for Chemical Sciences!

Question: In which degree the traditional chemical formula describes
correctly the physical (quantum) reality m ?

Quantum Probabilities for chemica formulae:

In each chemical formulawe associate a Quantum Probability, Py, 1.e. a factor
ranging to[0,1] :

I:)N;O — 1
Chemical formula — Physical Redlity

W[A NBO-based probability, Py.,, provides a guantitative measure of thisdegree]




A reminder:
The Coulomb correlations included invalence NAO or (PNAO) is negative
The Coulomb correlations between two valence invalence NAO or (PNAO) of abond is positive

P The Coulomb correlations, C(o® P ), included in bonding NBO, o, is small.

(A) For a totally localized (isolated) bond, C(o* ®»P)=0
(the more localized is the bonding orbital, m, the closer to zerois Coulomb correlation included in w.

(B) Sincea NBO isNatural in the Lowdin sense => it hasthe maximum occupation that a bonding
orbital can have inside a given molecular environment.

(A) and (B) => The Coulomb correlation included ina NBO is maximum =>

The NBO Lewis structure is a quantum description whichisthe closest possible to the
chemical formula

The probability of finding an eectron pair in NBO o, sSimultaneously an electron pair in ®y ... an
electron pair in oy, , iIsobtained from NPEPA:

Pro (0,0, 01 01 .. 0yp 0yp) = <P [PpNgol P2

Example: 14 electrons, 7 pairs.

S Y

" e

H S S
P o~ 0.90 P o~ 0.55




Spin-dependent or spin-independent Population Analvsis?

Closed shell systems:

P Pﬁ ]_:)'m'I3 ]_::-"1"lJt ..... higher order. .. . ..
FLO >IK >K
F(VWE) : :
P P ..... higher order. .. ...
Open shell systems:
|k P J P o ]_:J-'x"JL ..... higher order. . .. ..
A Iy A
E(MO ) 1 I
< X X 2!
P P ..... higher order. ... ..

Only for the 1-RDM (and for closed shell systems) one can use spin-free populations

For higher order RDM it 1s worthwhile to use spin-dependent populations



Information provided by PEPA and VB methods

1. VB : Spin-independent structures ( u  spin-eigenfunctions)

PEPA: Spin-dependent structures ( U single Slater determinants)

2. VB :Provides a weight of a N-electron structure (N=total number
of electrons)

PEPA: Provides a sum of weights of N-electron structures



(uéﬁ)
Po(mii:0) = a W(@k)
K

Orthogonal orbitals Non-orthogonal orbitals
Probability of finding simultaneous X
two
a, B electrons

Number of electron pairs (among the N* NP )

Sum of VB weights = Theweight of alocal structure
(while the remaining electrons can reside anywhere else)




