POLY-ELECTRON POPULATION ANALYSIS (PEPA) OF MO WAVEFUNCTIONS:

A '*theoretical Microscope***' to explore VB-type local structures.**

Padeleimon KARAFILOGLOU *ARISTOTLE* UNIVERSITY OF THESSALONIKI **GREECE**

PEPA or (Natural) NPEPA: **Population analysis for both electrons and electron-holes**

P. Karafiloglou *J. Chem. Phys. 130* (2009) *164103* P. Papanikolaou, P. Karafiloglou *J. Phys. Chem. A 112* (2008) *8839*

[1] **R. Daudel**, in '*Localization and Delocalization in Quantum Chemistry'* , Chalvet, O. *et al.*,(eds.), vol.I; Reidel, Dordrecht,1975, p. 3

METHOD

Extract a local information from a delocalized Ψ(ΜΟ) :

<Ψ(ΜΟ)½ ρ*ˆ* **½Ψ(ΜΟ)>**

⇓

- Elaboration of **Ψ(ΜΟ)** within MOFFITT's theorem **(Ψ(ΜΟ) à Ψ(ΤL))**

- Elaboration of ρ*ˆ* within SECOND QUANTIZATION (include electron holes)

DELOCALIZED $\Psi(MO)$

$$
\begin{array}{rcl}\Psi(MO) &=& \displaystyle\sum_{I}^{CI} C_I \ | \ D_I \ | \\ \\ \displaystyle\quad \ \, | \ D_I \ | = & \displaystyle\left\| \psi_{i_1^w} \ldots \psi_{i_{k_w}^v} \ \overline{\psi}_{i_1^s} \ldots \overline{\psi}_{i_{k_w}^s} \ \right\| \\ \\ (MOs \ \ \psi_{i_1} : \ \ \psi_{i_1} = & \displaystyle\sum_k c_{k,i_1} \ \phi_k \ \) \\ \\ & \displaystyle\quad \ \, OR\ \end{array}
$$

TOTALLY LOCAL Ψ (TL)

$$
\begin{array}{rcl}\Psi \left(\text{TL} \right) & = & \sum\limits_{K} \text{T}_{K} \ \left| \ \Phi_{K} \right| \\ \\ \left| \ \Phi_{K} \ \right| & = & \left\| \ \Phi_{k_{1}^{\alpha}} \ldots \Phi_{k_{1_{\alpha}}^{\alpha}} \ \overline{\Phi}_{k_{1}^{\beta}} \ldots \overline{\Phi}_{k_{1_{\beta}}^{\beta}} \right\| \end{array}
$$

One Slater Determinant, D1, involving

the delocalized Khon-Sham orbitals, ψ_{i_1}

MOFFITT's theorem

$$
\overline{\Psi(MO)} = \Psi(TL)
$$

Decomposition of MO-Slater determinants:

$$
|D_I| = \sum_K T_K^I \upharpoonleft \Phi_K| \quad \text{(from identity relations)}
$$
\n
$$
T_K^I = \begin{vmatrix} c_{k_1^{\alpha} - \tilde{t}_1^{\alpha}} & \cdots & c_{k_1^{\alpha} - \tilde{t}_{k_\alpha}^{\alpha}} \\ \vdots & & \vdots \\ c_{k_{1_{\alpha}}^{\alpha} - \tilde{t}_1^{\alpha}} & \cdots & c_{k_{1_{\alpha}}^{\alpha} - \tilde{t}_{\alpha}^{\alpha}} \end{vmatrix} \times \begin{vmatrix} c_{k_1^{\beta} - \tilde{t}_1^{\beta}} & \cdots & c_{k_1^{\beta} - \tilde{t}_{\beta}} \\ \vdots & & \vdots \\ c_{k_{1_{\beta}}^{\beta} - \tilde{t}_1^{\beta}} & \cdots & c_{k_{1_{\beta}}^{\beta} - \tilde{t}_{\beta}^{\beta}} \end{vmatrix}
$$

$$
T_K = \sum_{i}^{s} C_i T_K^I
$$

DENSITY OPERATORS

Let \mathbf{E} is the number of the target electrons, and \mathbf{H} is the number of the target electron holes. Placing 'under the microscope' **E** spin-orbitals:

$$
\boldsymbol{\hat{\rho}}_{E;0} \ (\ \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_1} \ \ldots \ \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_E} \ ; \textbf{0}) = \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_1}^+ \ \ldots \ \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_E}^+ \ \ \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_E}^- \ \ldots \ \boldsymbol{\phi}_{\!\scriptscriptstyle \lambda_1}^-
$$

or $E + H$ spin-orbitals:

$$
\hat{\rho}_{\text{E;H}}~(~\phi_{\lambda_1}\phi_{\lambda_\text{E}}~;\phi_{\mu_1}~\dots \phi_{\mu_H}~)\nonumber\\ =~\phi_{\lambda_1}^+~\dots~\phi_{\lambda_\text{E}}^+\phi_{\mu_1}^-~\dots~\phi_{\mu_H}^-\phi_{\mu_H}^+~\dots~\phi_{\mu_1}^+\phi_{\lambda_\text{E}}^- \dots\phi_{\lambda_1}^-
$$

 φ^+ instead of a^+_{φ} (for simplicity: creation φ^+ instead of a^+_{φ} , and annihilation φ^- instead of a_{φ})

- Expectation values, $P_{E:H}$ **, of the generalized density operators:**

$$
P_{E;H}(\varphi_{\lambda_{1}}... \varphi_{\lambda_{E}}; \varphi_{\mu_{1}}... \varphi_{\mu_{H}}) = \langle \Psi(TL)| \hat{\rho}_{E;H} (\varphi_{\lambda_{1}}... \varphi_{\lambda_{E}}; \varphi_{\mu_{1}}... \varphi_{\mu_{H}}) | \Psi(TL) > =
$$
\n
$$
= \sum_{(\varphi_{\lambda_{1}}... \varphi_{\lambda_{E}})} W(\varphi_{K})
$$
\nwhere\n
$$
K(\neq \varphi_{\mu_{1}}...\varphi_{\mu_{H}})
$$
\nwhere\n
$$
K(\neq \varphi_{\mu_{1}}...\varphi_{\mu_{H}})
$$
\nwhere\n
$$
K(\neq \varphi_{\mu_{1}}...\varphi_{\mu_{H}})
$$
 represents a summation over Slater determinants, which involve

 $\varphi_{\lambda_1} \cdots \varphi_{\lambda_{\epsilon}}$ and simultaneously SOs $\varphi_{\mu_1} \cdots \varphi_{\mu_{\mu}}$ are absent, and

 $\mathsf{W}(\Phi_{\mathrm{K}}^{\vphantom{\dag}})$

is the **weight** of the local Slater determinant $|\Phi_K|$, depending on the (non-) orthogonality of orbitals.

Weights of the totally local **Slater** determinants, $|\Phi_K|$:

(i) orthogonal orbitals

$$
W(\Phi_K) = T_K^2
$$

Provides the **probability** of a given occupation scheme of (local) AO-positions

(ii) non-orthogonal orbitals (Mulliken partition for P.E.P.A)

The Coulson-Chirgwin definition for the weights of determinantal wave functions:

$$
\mathsf{W}(\,\Phi_K\,)\ =\, T^{\,2}_K\ <\Phi_K\ |\, \Phi_K\ >\ +\ T_K\,\sum_{K'\neq\,K}^{\text{fullbasis}}\! T_{K'}\ <\ \Phi_K\ |\, \Phi_{K'}\!>
$$

By adopting the Mulliken partition for P.E.P.A., the weights, $P_{E:H}$, of local electronic structures are coherent with those of VB theory. The principal difference is that VB weights are obtained from spineigenfunctions and concern the whole electronic assembly, while $P_{E;H}$ are obtained from the sums weights of single Slater determinants, and **concern** local structures.

Summary

The generalized Poly-Electron Population Analysis (PEPA)

requires very simple (formally) equation:

$$
P_{E;H} \quad (\varphi_{\lambda_1} \dots \varphi_{\lambda_E} \ ; \varphi_{\mu_1} \dots \varphi_{\mu_H}) = \sum_{K(\neq \varphi_{\mu_1} \dots \varphi_{\mu_H})}^{(\varphi_{\lambda_1} \dots \varphi_{\lambda_E})} W(\Phi_K)
$$

[Note: The involved det $\{ \Phi_K \}$ have a fixed occupation in the target SOs $\{ \Phi_\lambda, \Phi_\mu \}$, while the remaining SOs can have **anyone occupation**]

(B) The *hole-expansion* **methodology**

Efficient calculation of $P_{E;H}(\varphi_{\lambda_1} \cdots \varphi_{\lambda_E}; \varphi_{\mu_1} \cdots \varphi_{\mu_k})$ (without approximations)

(A) Mixed local-non-local Slater determinants [1]

The factorization of VB-type (Totally Local) Slater determinants (i.e grouping the TL Slater determinants, having as 'common factor' the target electrons under the microscope)

The basic idea:

Any delocalized MO Slater determinant (of the initial wave function), $\left|D_1\right|$

$$
\begin{vmatrix} D_I \end{vmatrix} = \begin{vmatrix} \Psi_{i_1} & \dots & \Psi_{i_N} \end{vmatrix}
$$

$$
\leftarrow \text{ non-local} \rightarrow
$$

is decomposed (i.e. expanded) in mixed $\frac{\text{local non-local (LNL)}}{\text{M}}$ Slater determinants, $\left| \right.$ D_{I}^{LNL}

$$
\left| D_{I}^{LNL} \right| = \|\phi_{i_{1}} \dots \phi_{i_{E}} \psi_{i_{E+1}}^{H} \dots
$$

$$
\leftarrow \text{local} \rightarrow \leftarrow \text{ non-local} \rightarrow
$$

A non-local ψ_i^H has the following form :

$$
\psi_i^H \ = \ \sum_{k\;\neq\;\phi_{i_1} \dots \phi_{i_E} \phi_{\mu_1} \dots \phi_{\mu_H}} c_{k,i} \quad \phi_k
$$

Generalizing the Moffitt's theorem we obtain:

$$
\Psi(MO) = \sum_{I}^{LNL} C_{I} |D_{I}^{LNL}| + \Psi(\text{remaining})
$$
 Only this part is useful to calculate

$$
\leftarrow \Psi(MO) | \hat{\rho} | \Psi(MO) \rangle
$$

║

[1] P. Papanikolaou, P. Karafiloglou *J. Phys. Chem. A 112* (2008) *8839*

Efficient calculation of $P_{E;H}(\varphi_{\lambda_1} \cdots \varphi_{\lambda_E}; \varphi_{\mu_1} \cdots \varphi_{\mu_H})$ (without approximations)

(B) The hole-expansion methodology [1]

The basic ideas:

(i) One can show [1] that a structure involving only electron holes can be calculated very efficiently (i.e. without generating and storing the extremely numerous TL Slater det.) :

$$
P_{0;H}(0; \phi_{\mu_1} ... \phi_{\mu_H}) = \sum_{I}^{C I} C_I^* \sum_{I}^{C I} C_I < D_I | D_I^H > \sum_{I}^{C I} C_I^* \sum_{I}^{C I
$$

where $|D_I|$ is a MO Slater determinant of the initial wave function:

$$
\mathbf{D}_{\mathrm{I}} = \|\Psi_{i_1} \dots \Psi_{i_N}\|
$$

And D_I^H are Slater determinants involving (instead of MOs ψ_i) projected MO, ψ_i^H

$$
\left|\mathbf{D}_{\mathrm{I}}^H\right| = \left|\!\left|\mathbf{u}_{\mathbf{i}_1}^H\right|\!\right| \ldots \mathbf{u}_{\mathbf{i}_N}^H\left|\!\left|\!\right|
$$

in which Ψ_i^H is obtained from the corresponding Ψ_i , in which the SOs involving holes, Ψ_{μ_1} ... Ψ_{μ_H} , are not excluded:

$$
\Psi_i^H = \sum_{k \neq \varphi_{\mu_1} \dots \varphi_{\mu_H}} c_{k,i} \varphi_k
$$

An overlap $\langle D_{I} | D_{I}^{H} \rangle$ is a determinant involving as elements the overlaps $\langle \Psi_{I} | \Psi_{I}^{H} \rangle$.

$$
< D_I \big| \left. \begin{array}{ccc} D_I^H > & \cdots < \psi_{i_1} \big| \psi_{i_N}^H > & & \cdots & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \end{array} \right|
$$

[1] P. Karafiloglou *J. Chem. Phys. 130* (2009) *164103*

(ii) One can show [1] that a structure involving only electrons can be expanded in terms involving only holes (**hole-expansion**), as for example:

 $P_{1,0}(\varphi_{\lambda_1};0) = 1 - P_{0,1}(0\varphi_{\lambda_1})$ [a trivial example of a hole-expansion issued from the first order anticommutation relation] $P_{2;0} (\varphi_{\lambda_1} \varphi_{\lambda_2};0) = 1 - P_{0;1} (0; \varphi_{\lambda_1}) - P_{0;1} (0; \varphi_{\lambda_2}) + P_{0;2} (0; \varphi_{\lambda_1} \varphi_{\lambda_2})$ $P_{3,0} (\varphi_{\lambda_1} \varphi_{\lambda_2} \varphi_{\lambda_3};0) = 1 - P_{0,1} (0; \varphi_{\lambda_1}) - P_{0,1} (0; \varphi_{\lambda_2}) - P_{0,1} (0; \varphi_{\lambda_3}) + P_{0,2} (0; \varphi_{\lambda_1} \varphi_{\lambda_2}) +$ $P_{0;2}$ $(0; \varphi_{\lambda_1} \varphi_{\lambda_3}) + P_{0;2}$ $(0; \varphi_{\lambda_2} \varphi_{\lambda_3}) - P_{0;3}$ $(0; \varphi_{\lambda_1} \varphi_{\lambda_2})$ $\overline{\varphi}_{\lambda_3}$ etc

Generalizing these relations, one can show inductively the following general expansion:

$$
P_{E;0} \left(\begin{array}{ccc} \varphi_{\lambda_1} & \ldots & \varphi_{\lambda_E}; 0 \end{array} \right) \ = \ 1 \ + \ \sum_{q=1}^E (-1)^q \ \ \sum_{j_1 < K}^{\lambda_E} \ \sum_{< \ j_q}^{\lambda_E} \ P_{0;q} \left(0; \phi_{j_1} \ldots \phi_{j_q} \right)
$$

Similarly, for structures involving both electrons and holes:

$$
P_{2;2} (\varphi_{\lambda_1} \varphi_{\lambda_2}; \varphi_{\mu_1} \varphi_{\mu_2}) = P_{0;2} (0; \varphi_{\mu_1} \varphi_{\mu_2}) - P_{0;3} (0; \varphi_{\lambda_1} \varphi_{\mu_1} \varphi_{\mu_2}) -
$$

$$
- P_{0;3} (0; \varphi_{\lambda_2} \varphi_{\mu_1} \varphi_{\mu_2}) + P_{0;4} (0; \varphi_{\lambda_1} \varphi_{\lambda_2} \varphi_{\mu_1} \varphi_{\mu_2})
$$

The general expression for any structure involving E electrons and H holes is:

$$
P_{E;H} (\varphi_{\lambda_{1}}... \varphi_{\lambda_{E}}; \varphi_{\mu_{1}}... \varphi_{\mu_{H}}) = P_{0;H} (0; \varphi_{\mu_{1}}... \varphi_{\mu_{H}}) + \sum_{q=1}^{E} (-1)^{q} \sum_{j_{1} \leq K}^{\lambda_{E}} \sum_{\ell_{j_{q}}}^{\lambda_{E}} P_{0; q+H} (0; \varphi_{j_{1}}... \varphi_{j_{q}} \varphi_{\mu_{1}}... \varphi_{\mu_{H}})
$$

\n*GORITHM*: I library of hole-structures

ALGORTHM: Library of hole-structures

[1] P. Karafiloglou *J. Chem. Phys. 130* (2009) *164103*

A proposition for the VB workshop (Paris, July 2012)

$\Psi(VB) \longrightarrow \Psi(TL)$

From a V.B. wave function obtain the Coulson-Chirgwin weights, W(Φ_K), of single Slater determinants, Φ_K .

⇓

(An output file involving the weigths $W(\Phi_K)$ of single Slater determinants, Φ_K) ⇓

Poly-Electron Population Analysis of VB wave functions

Four-electron two-hole probabilities (P4;2) :

N H

 \mathbf{H} **A**

...

N H

Relationships between local structures

The *electron-expansion* **methodology [1] (Expand the holes in terms involving only electrons)**

 $P_{2,2}(\mu, \overline{\mu}; \nu, \overline{\nu}) = P_{2,0}(\mu, \overline{\mu}) - P_{3,0}(\mu, \overline{\mu}, \nu) - P_{3,0}(\mu, \overline{\mu}, \overline{\nu}) + P_{4,0}(\mu, \overline{\mu}, \nu, \overline{\nu})$

 $P_{2,2}(\mu, \overline{v} ; \overline{\mu}, v) = P_{2,0}(\mu, \overline{v}) - P_{3,0}(\mu, \overline{v}, \overline{\mu}) - P_{3,0}(\mu, \overline{v}, v) + P_{4,0}(\mu, \overline{v}, \overline{\mu}, v)$, etc...

where $P_{2,2}(\mu, \bar{\mu}; v, \bar{v}) = \sum_{K \neq v, \bar{y}}^{(\mu, \bar{\mu})} W(\Phi_K)$ and $P_{2,2}(\mu, \bar{v}; \bar{\mu}, v) = \sum_{K \neq \bar{\mu}, \bar{y}}^{(\mu, \bar{v})} W(\Phi_K)$ … etc …

The $P_{3;0}$ contribute with a minus sign \Rightarrow The greater the contributions of the three-electron structures are, the less important are both covalent and ionic structures, and thus the more week is the bond: *Déjà vu* in the 'L.P.B.W.E. effect' of V.B. theory !

[1] P. Papanikolaou, P. Karafiloglou *J. Phys. Chem. A 112 8839*, 2008

The 4th order anticommutation relation

$$
\prod_{i=1}^4 \, (\,a^{\texttt{+}}_i \, a^{\texttt{+}}_i \, a^{\texttt{+}}_i \,) \, = \, 1
$$

involves 16 terms :

$$
a_{1}^{*}a_{4}^{*}a_{2}a_{3}a_{3}^{*}a_{2}^{*}a_{4}a_{1} + a_{2}^{*}a_{3}^{*}a_{1}a_{4}a_{4}^{*}a_{1}^{*}a_{3}a_{1} + a_{1}^{*}a_{2}^{*}a_{3}a_{4}a_{4}^{*}a_{3}^{*}a_{2}a_{1} + a_{3}^{*}a_{4}^{*}a_{1}a_{2}a_{2}^{*}a_{1}^{*}a_{4}a_{3}^{*} + a_{3}^{*}a_{1}a_{2}a_{3}^{*}a_{4}a_{4}^{*}a_{3}^{*}a_{2}^{*}a_{1} + a_{3}^{*}a_{1}a_{2}a_{4}a_{4}^{*}a_{2}^{*}a_{1}^{*}a_{3} + a_{2}^{*}a_{1}a_{3}a_{4}a_{4}^{*}a_{3}^{*}a_{1}^{*}a_{2} + a_{4}^{*}a_{1}a_{2}a_{3}a_{4}a_{4}^{*}a_{3}^{*}a_{2}^{*}a_{1}^{*}a_{1}a_{2}a_{3}a_{4}a_{4}^{*}a_{4}^{*}a_{3}^{*}a_{2}^{*}a_{1}^{*} + a_{4}^{*}a_{1}a_{2}a_{3}a_{3}^{*}a_{2}^{*}a_{1}^{*}a_{4}^{*}a_{4}^{*}a_{3}^{*}a_{2}^{*}a_{1}^{*} + a_{1}^{*}a_{3}^{*}a_{4}^{*}a_{2}a_{2}^{*}a_{4}a_{3}a_{1} + a_{1}^{*}a_{2}^{*}a_{3}^{*}a_{4}a_{4}^{*}a_{3}a_{2}a_{1}^{*} + a_{1}^{*}a_{2}^{*}a_{4}^{*}a_{3}a_{2}^{*}a_{1}^{*} + a_{1}^{*}a_{2}^{*}a_{3}^{*}a_{4}^{*}a_{4}a_{3}^{*}a_{2}^{*}a_{1}^{*} + a_{1}^{*}a_{3}^{*}a_{2}a_{4}^{*}a_{4}^{*}a_{2}^{*}a_{3}^{*}a_{1}^{*}a_{1}^{*}a_{3}^{*}a
$$

By adopting the $V.B.$ perspective for chemical bonding, and choosing the above spinorbitals $(i = 1,2,3,4)$ such as

$$
i = 1 \rightarrow \varphi_{\lambda} , i = 2 \rightarrow \overline{\varphi}_{\lambda} \text{ and } i = 3 \rightarrow \varphi_{\mu} , i = 4 \rightarrow \overline{\varphi}_{\mu}
$$

$$
\bigotimes_{R_1} \bigotimes_{i=1}^{n} \bigotimes_{R_2}
$$

we obtain :

The *bond localization* (L) in **VB language**:

$$
L = R_1 \bigoplus R_2 + R_3 \bigoplus R_2 + R_1 \bigoplus R_2 + R_3 \bigoplus R_3 + R_4 \bigoplus R_4 \bigoplus R_2 + R_1 \bigoplus R_2 \bigoplus R_3
$$

or, the *bond delocalization* (D) :

 $D = 1 - L$

Lionel Salem in '*The Molecular Orbital Theory of Conjugated Systems'***,** p.86(Benjam, N.York *"Delocalization is a measure of the degree to which the electrons cannot be assigned by pairs to individual bonds"*

Electron pairs in Chemical systems :

Coulomb and Fermi (or Exchange) correlations

CA
$$
\overrightarrow{\lambda}
$$

\n**0** Correlations in one orbital: **1 1** Correlations in one orbital:
\n $C(\lambda, \overline{\lambda}) = P_2(\lambda, \overline{\lambda}) - P_1(\lambda) P_1(\overline{\lambda})$
\n $C(\overline{\lambda}, \overline{\lambda}) = P_2(\overline{\lambda}, \overline{\lambda}) - P_1(\lambda)^2$
\n $C(\overline{\lambda}, \overline{\lambda}) = P_2(\overline{\lambda}, \overline{\lambda}) - P_1(\overline{\lambda})^2$

 $C(\lambda, \bar{\mu}) = P_2(\lambda, \mu)$ $P_1(\lambda) P_1(\mu)$ Coulomb correlations in two orbitals: Fermi correlations in two orbitals: _ _ _ _ C(λ , μ) = P₂(λ , μ) - P₁(λ) P₁(μ) $C(\lambda, \mu) = P_2(\lambda, \mu) - P_1(\lambda) P_1(\mu)$ _ _ _ _ _ _ _ $-$ p (1) p $($ $\overline{}$ $\overline{}$

The absolutes values of Fermi are **greater** than the Coulomb correlations *(this holds without any exception)*

Note: Methods based on the behaviour of parallel spins (c.f. to Pauli Principle)

(e.g. **Wiberg** indices, **E.L.F.**, **D.A.F.H.**), provide remarkably good results **!**

The covalent bonding is between **Valence Orbitals**

Conceptual problems can arise even in the simplest case of a double-zeta basis:

 $_$, $_$,

In which extent the outer orbital is Valence (and in which extent is Rydberg) orbital ?

CHOICE OF ORBITAL SPACES

Current calculations involve quite extended AO-basis sets: **Multiple zeta + polarization functions**

⇓

Conceptual problems to interpret 'accurate' calculations: *Which orbitals represent better the valence orbitals and which the Rydberg* ?

For example, the C atom makes bonds by using the valence 2s, 2p, although for quantum chem. investigations one must use **:** s, s', s'', p, p', p'', polarization

> A very good solution: **Natural Orbitals** (NAOs, NHOs, NBOs, …etc) [1]

- ¬ These orbitals are '*natural*' in the Löwdin sense and, thus, can be clearly distinguished in valence and Rydberg.
- \neg They show remarkable stability with the extension of the SCF AO- basis set.
- \neg They span the complete SCF-AO basis set \Rightarrow The initial wavefunction can be transformed into the Natural basis without altering its approximation level; this holds even for correlated wavefunctions (linear combination of Slater determinants)
	- \Rightarrow no approximations or additional assumptions for NPEPA.
- \neg The bonding NBOs show a very good transferability.
- \neg These Natural orbitals can be either orthogonal or non-orthogonal

[1] **F. Weinhold, C. R. Landis**, in '*Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective***'; Cambridge U. Press,** 2005, and references cited therein

NON-ORTHOGONAL vs ORTHOGONAL ORBITALS

 \blacktriangleright π – Bonds : Both orthogonal and non-orthogonal orbitals are appropriate, providing the same conceptual pictures [1,2]

 \triangleright σ – Bonds : For VB-type description appropriate are the (non-orthogonal) PNAOs, or, better, the PNHOs.

Note : The NBOs are appropriate for both π – Bonds and σ – Bonds.

[1] K. Hirao, H. Nakano, K. Nakayama *J. Chem. Phys*. 1997, *107*, 9966

[2] P. Papanikolaou, P. Karafiloglou *J. Phys. Chem. A* 2008, *112 8839* P. Karafiloglou, J. P. Launay *J. Phys. Chem. A* 1998, *102*, 8004

An intriguing Epistemological problem:

Although the chemical formula has been introduced before the development of Quantum Theory, remains (and will remain) a basic stone for Chemical Sciences !

Question*: In which degree the traditional chemical formula describes correctly the physical (quantum) reality* [1] ?

Quantum Probabilities for chemical formulae:

In each chemical formula we associate a Quantum Probability, $P_{N;0}$, i.e. a factor ranging to $[0,1]$:

> $\mathbf{P}_{\mathbf{N};0}$ \rightarrow 1 Chemical formula **→** Physical Reality

 $[11]$ [A **NBO-based probability, P_{N:0}**, provides a <u>quantitative</u> measure of this degree]

A reminder:

The Coulomb correlations included in valence NAO or (PNAO) is negative

The Coulomb correlations between two valence in valence NAO or (PNAO) of a bond is positive

 \Rightarrow The Coulomb correlations, $C(\omega^{\alpha} \omega^{\beta})$, included in bonding NBO, ω , is **small**.

- (A) For a totally localized (isolated) bond, $C(\omega^{\alpha} \omega^{\beta}) = 0$ (the more localized is the bonding orbital, ω , the closer to zero is Coulomb correlation included in ω .)
- (B) Since a NBO is Natural in the Lowdin sense \Rightarrow it has the maximum occupation that a bonding orbital can have inside a given molecular environment.
- (A) and (B) => The Coulomb correlation included in a NBO is $\frac{\text{maximum}}{\text{maximum}}$ The NBO Lewis structure is a quantum description which is the closest possible to the chemical formula

The probability of finding an electron pair in NBO ω_1 simultaneously and electron pair in ω_2 ... an electron pair in $\omega_{N/2}$, is obtained from NPEPA:

 $P_{N;0}$ ($\omega_1 \omega_1 \omega_1 \omega_1 \dots \omega_{N/2} \omega_{N/2}$) = $\langle \Psi | \hat{\rho}_{NBO} | \Psi \rangle$

Example: 14 electrons, 7 pairs:

Spin-dependent or spin-independent Population Analysis?

Closed shell systems:

Only for the 1-RDM (and for closed shell systems) one can use spin-free populations For higher order RDM it is worthwhile to use spin-dependent populations

Information provided by PEPA and VB methods

1. **VB** : Spin-independent structures $\left(\right)$ \Leftarrow spin-eigenfunctions)

PEPA: Spin-dependent structures $\left(\right)$ \Leftarrow single Slater determinants)

2. **VB** : Provides a weight of a N-electron structure (N= total number of electrons)

PEPA: Provides a sum of weights of N-electron structures

$$
P_{2;0} (\mu, \overline{\mu} ; 0) = \sum_{K}^{(\mu, \overline{\mu})} W(\Phi_K)
$$

