XDMParametrizationSublimation enthalpiesEE in solutionElectridesGraphite stepsSummary000000000000000000000000000

Dispersion Interactions from the Exchange-Hole Dipole Moment.

Alberto Otero-de-la-Roza and Erin R. Johnson

School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA

XDM ●00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O
XDM	I, basics					

$$E_{disp} = -\frac{1}{2} \sum_{ij} \frac{C_6 f_6(R_{ij})}{R_{ij}^6} + \left[\frac{C_8 f_8(R_{ij})}{R_{ij}^8} + \frac{C_{10} f_6(R_{ij})}{R_{ij}^{10}} + \dots \right]$$

comes from perturbation theory:

$$E^{(2)} = \frac{\langle \hat{V}_{\rm int}^2 \rangle}{\Delta E}$$

where:

- Interaction between neutral fragments (classical electrostatic interactions already captured at semilocal level).
- Asymptotic expression.

Johnson, E. R. and Becke, A. D., J. Chem. Phys. **123** (2005) 024101 Becke, A. D. and Johnson, E. R., J. Chem. Phys. **122** (2005) 154104, **127** (2007) 154108

XDM

The e	exchange	hole model				
XDM 0●000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps	Summary O

The exchange hole:

$$h_{x\sigma}(\mathbf{1},\mathbf{2}) = -rac{|
ho_{1\sigma}(\mathbf{1},\mathbf{2})|^2}{
ho_{1\sigma}(\mathbf{1})}$$

- Probability of exclusion of same-spin electron.
- On-top depth condition: $h_{x\sigma}(\mathbf{1},\mathbf{1}) = -\rho_{1\sigma}(\mathbf{1})$
- Normalization: $\int h_{x\sigma}(1,2)d2 = -1$ for all 1.
- $\rho_{1\sigma}(\mathbf{1}, \mathbf{2}) = \sum_{i}^{\sigma} \psi_{i}^{*}(\mathbf{1}) \psi_{i}(\mathbf{2})$

The exchange-hole model

- Model for dispersion: interaction of electron-hole dipoles.
- Dipole: $d_{x\sigma}(\mathbf{r}) = \int \mathbf{r}' h_{x\sigma}(\mathbf{r}, \mathbf{r}') d\mathbf{r}' \mathbf{r}$
- Assumption: dipole oriented to nearest nucleus.

$$\langle M_l^2 \rangle_i = \sum_{\sigma} \int \omega_i(\mathbf{r}) \rho_{\sigma}(\mathbf{r}) [r_i^l - (r_i - d_{X\sigma})^l]^2 d\mathbf{r} .$$

Becke, A. D. and Johnson, E. R., J. Chem. Phys. 122 (2005) 154104

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 000
 0000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

The Becke-Roussel model of exchange-hole

• Becke-Roussel model of *h_x*. (PRA **39** (1989) 3761)

Parameters (A,a,b) obtained:

- Normalization
- Value at reference point.
- Curvature at reference point (reqs. kinetic energy density).

Advantages:

- Semilocal model of the dipole $(d_x = b)$.
- **2** XDM dispersion model \longrightarrow meta-GGA.
- Better performance than exact hole (HF) version in molecules.

Becke, A. D. and Roussel, M. R., Phys. Rev. A 39 (1989) 3761

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 000000
 000
 000
 000
 00
 0
 0

The XDM equations: interaction coefficients

Multipole moments

$$\langle M_l^2 \rangle_i = \sum_{\sigma} \int \omega_i(\mathbf{r}) \rho_{\sigma}(\mathbf{r}) [r_i^l - (r_i - d_{X\sigma})^l]^2 d\mathbf{r}$$

use Hirshfeld atomic partition:

$$\omega_i(\mathbf{r}) = rac{
ho_i^{
m at}(\mathbf{r})}{\sum_j
ho_j^{
m at}(\mathbf{r})}$$

Non-empirical dispersion coefficients. *n*-body and any order. For instance:

$$C_{6,ij} = rac{lpha_i lpha_j \langle M_1^2
angle \langle M_1^2
angle_j}{\langle M_1^2
angle lpha_j + \langle M_1^2
angle_j lpha_i}$$

We include: two-body terms C_6 , C_8 and C_{10} .

Johnson, E. R. and Becke, A. D., J. Chem. Phys. 124 (2006) 174104

Imple	ementatio	n for molecu	امد			
XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O

XDM implemented post-**Gaussian 09** using the **postg** program. Also **nwchem** (available upon request).

From the wfn file, **postg** gives:

- XDM dispersion coefficients, volumes, polarizabilities
- XDM dispersion energy
- forces for geometry optimization (fixed coefficients)
- second derivatives for frequencies
- Hirshfeld charges

Download **postg** from the XDM page at: http://faculty1.ucmerced.edu/ejohnson29

Kannemann, F. O. and Becke, A. D., *J. Chem. Theory Comput.* **6** (2010) 1081 Otero-de-la-Roza, A. and Johnson, E. R., *J. Chem. Phys.* **138** (2013) 204109

Impl	montotio	n for colida				
00000	0000000	000000	000	000	00	0
XDM	Parametrization	Sublimation enthalpies	EE in solution	Electrides	Graphite steps	Summary

Implementation for solids

- PS/PW (Quantum ESPRESSO)
- Solids Uniform 3D grid:
 - $d_{x\sigma}$, valence τ , ρ .
 - ω_i , all-electron ρ , ρ_{at} .
- Computational cost.
 - Comparable to DFT-D.
 - E_{disp} fast compared to E_{DFT} .

• Optimization: atomic forces and stresses.

Insensitive to grid density (CO ₂)							
$n_{\rm grid} =$	64	80	120				
<i>C</i> ₆ (C-C)	22.300	22.425	22.426				
<i>C</i> ₆ (O-O)	11.580	11.627	11.627				
$E_{\rm disp}$ (Ry)	-0.062965	-0.063374	-0.063374				

Otero-de-la-Roza, A. and Johnson, E. R., J. Chem. Phys. 136 (2012) 174109

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 0000000
 000
 000
 000
 000
 00
 0

Damping function parametrization

$$E_{disp} = -\frac{1}{2} \sum_{ij} \frac{C_6 f_6(R_{ij})}{R_{ij}^6} + \left[\frac{C_8 f_8(R_{ij})}{R_{ij}^8} + \frac{C_{10} f_6(R_{ij})}{R_{ij}^{10}} + \dots \right]$$
$$f_n(R_{ij}) = \frac{R_{ij}^n}{R_{ij}^n + (\mathbf{a_1} R_{ij,c} + \mathbf{a_2})^n}$$

Supercell calculations.

Domo		000000	000	000	00	0
Para	metrizatio	n set				

49 gas-phase dimers from Kannemann and Becke; JCTC 6 (2010) 1081.

Statis	stics of the	e fit (solids)				
XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O

	Training	set (KB-	49)					
B86bPBE PW86PBE BLYP								
a_1	0.684	0.407	0.934	0.267	0.774			
$a_2(\AA)$	1.368	2.415	0.965	2.227	0.839			
MAE (kcal/mol)	0.41	0.46	0.42	0.41	0.31			
MAPE	11.3	13.8	11.8	14.3	<i>9</i> .8			
<u>S22</u>								
MAE (kcal/mol)	0.43	0.46	0.35	0.32	0.22			
MAPE	7.00	8.12	5.92	8.24	4.85			

Statis	tics of the	e fit (molecul	es)			
XDM 00000	Parametrization 00000000	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O

XDM with aug-cc-pVTZ; mean absolute errors in kcal/mol.

Pure functionals:

Quantity	BLYP	PW86	PBE
MAE	0.31	0.40	0.50
MA%E	<i>9</i> .8	11.8	14.3

Hybrid and range-separated functionals:

Quantity	B3LYP	BH&HLYP	PBE0	CAM-B3LYP	LC - ωPBE
MAE	0.28	0.37	0.41	0.39	0.28
MA%E	6.7	7.8	10.2	<i>8.3</i>	7.8

XDM 00000	Parametrization 00000000	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O
Role	of exchan	ge				

- The exact exchange potential decays as -1/r far from a molecule.
- In terms of the exchange hole, h_X remains on the molecule as the reference point moves away from it.
- The -1/r asymptotic dependence was used to design the B88 exchange functional.
- Functionals based on B88 or range-separated hybrids with the full exact-exchange limit (LC- ω PBE) give more accurate intermolecular exchange contributions.

XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O
Benc	hmark set	S				

Mean absolute errors in XDM binding energies with aug-cc-pVTZ

(kcal/mol)	BLYP	PW86	B3LYP	LC - ωPBE
<i>S22</i>	0.22	0.35	0.31	0.31
S66	0.22	0.29	0.25	0.20
HSG	0.20	0.17	0.12	0.23

S22 and HSG reference data: Marshall *et al.* JCP **135** (2011) 194102.
S66 reference data: Rezac *et al.* JCTC **7** (2011) 2427.
See JCP **138** (2013) 204109 for additional data.

Gron	hita					
00000	0000000	00000	000	000	00	0
XDM	Parametrization	Sublimation enthalpies	EE in solution	Electrides	Graphite steps	Summary

Otero-de-la-Roza, A. and Johnson, E. R., J. Chem. Phys. 136 (2012) 174109

A. Otero & E. Johnson (UC Merced)

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 0000000
 000
 000
 000
 000
 00
 0

Prediction of sublimation enthalpies

Benchmark:

- No reference wave-function data.
- Experimental sublimation enthalpies not directly comparable.

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010

> William Acree, Jr. Department of Chemistry, University of North Texas, Denton, Texas 76203

James S. Chickos^{a)} Department of Chemistry and Biochemistry. University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121

(Received 14 January 2010; accepted 15 January 2010; published online 4 October 2010)

- 21 crystals, small systems, low polymorphism.
- Well known sublimation enthalpies at or below room temperature.
- Different intermolecular interactions.

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 0000
 00000000
 000
 000
 000
 000
 00
 00

 $\Delta H_{\rm sub}$: zero-point and thermal correction

$$\Delta H_{sub}(V,T) = E_{el}^{mol} + E_{trans} + E_{rot} + E_{vib}^{mol} + pV - \left(E_{el}^{crys} + E_{vib}^{crys}\right)$$

- $E_{\rm el}^{\rm crys} \longrightarrow \rm DFT+dispersion$
- $E_{\rm el}^{\rm mol} \longrightarrow \rm DFT+dispersion$, supercell
- $E_{\text{trans}} + E_{\text{rot}} + pV \longrightarrow 4RT (7/2RT)$
- Rigid molecule approximation $E_{vib}^{mol} = E_{vib}^{crys}$ for intramolecular
- Intermolecular $E_{\text{vib}}^{\text{crys}} \longrightarrow \text{Dulong-Petit } 6RT (5RT)$
- Zero-point vibrational contributions neglected
- Approximations tested for CO_2 crystal. Average experimental accuracy ≈ 1 kcal/mol.

Subl	imation e	nthalpies				
XDM 00000	Parametrization	Sublimation enthalpies	EE in solution 000	Electrides 000	Graphite steps 00	Summary O

Otero-de-la-Roza, A. and Johnson, E. R. J. Chem. Phys. 137 (2012) 054103

XDM

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 00000000

 Dura di ottion
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000

Prediction of crystal structures

• Vibrational Helmholtz free energy:

$$F_{\text{vib}}(V,T) = \sum_{j=1}^{3n} \left[\frac{\omega_j}{2} + k_B T \ln \left(1 - e^{-\omega_j/k_B T} \right) \right]$$

Relax the crystal under negative pressure p_{th}

~						
		000000				
XDM	Parametrization	Sublimation enthalpies	EE in solution	Electrides	Graphite steps	Summary

Crystal structures

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 0000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

Enantiomeric excess of amino-acids

A. Otero & E. Johnson (UC Merced)

 XDM
 Parametrization
 Sublimation enthalpies
 EE in solution
 Electrides
 Graphite steps
 Summary

 00000
 0000000
 0000
 000
 000
 000
 000

Enantiomeric excess of amino-acids

A simple model

- Same solvation energies.
- Same crystal temperature effects.
- $\Delta E = E_{dl} E_l$
- Predicted ee:

$$ee = \frac{\beta^2 - 1}{\beta^2 + 1} \times 100$$

 $\beta = e^{-\Delta E/RT}$

Amino acid	DFT	Expt.
Serine	100.0	100.0
Histidine	93.5	93.7
Leucine	92.2	87.9
Alanine	67.1	60.4
Cysteine	69.2	58.4
Tyrosine	70.6	51.7
Valine	62.3	44.1
Proline	0.0	39.7
Aspartic acid	0.0	0.0
Glutamic acid	0.0	0.0

00000	00000000	000000	000	000	00	0
XDM	Parametrization	Sublimation enthalpies	EE in solution	Electrides	Graphite steps	Summary

Enantiomeric excess

XDM 00000	0000000000000	Sublimation enthalples	OOO	●00	00	0 O
Elec	trides					

An electride is an ionic substance in which a localized electron acts as an anion.

Existing electrides require a cage like structure to stabilise the cation: crown ethers and cryptands.

High magnetic susceptibilities, variable conductivities, very strong reducing agents.

XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary O
Elect	rides					

Use the NCI index to visualize the electrons - JACS 132 (2010) 6498.

Plots regions with low electron density and reduced density gradient.

00000	00000000	000000	000	00•	00 00	0
Elect	rides					

J. L. Dye used van der Waals radii to generate approximate channels and vacancies of electrons - JACS 1996, **118** (1996) 7329.

Cuert						
00000	0000000	000000	000	000	•0	0
XDM	Parametrization	Sublimation enthalpies	EE in solution	Electrides	Graphite steps	Summary

Graphite step edges

Ye, Zhijiang et al. Appl. Phys. Lett., (2013) (in press).

00000	0000000	000000	000	000		Ŭ
XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps	Summary O

XDM 00000	Parametrization	Sublimation enthalpies	EE in solution	Electrides 000	Graphite steps 00	Summary •
Summary						

- XDM implemented for gas-phase and solid-state.
- Excellent benchmarking results.
- Very accurate lattice energies and crystal geometries.
- Accurate enough to predict ee in solution.
- More: electrides, tribology,...

Download **postg**, QE+XDM, and CRITIC2 from:

http://faculty1.ucmerced.edu/ejohnson29