

Unravelling Non Covalent Interactions within Flexible Biomolecules: from electron density topology to gas phase spectroscopy

Benoît de Courcy

Topological Approches to Intermolecular interactions Paris, june 28th 2013

Common Binding Patterns within Proteins.

Ac-(Ala)₂-O-Bzl: experimental data:

Jet cooled, double resonance (UV/IR), gas phase spectroscopy

Gloaguen, E., de Courcy, B., Piquemal, J.-P., et al. (2010) J. Am. Chem. Soc. (Comm.), 132, 11860.

 $[\]gamma_L(g+)$ conformer of N-Acetyl-Phenylalanyl-Amide (NAPA)

Application of the NCI index to flexible molecule: 2D NCI-plot

The β -strand: an example of constrained C5 NH---OC bonds

γ -turns, as examples of intramolecular C7 rings

$NH-\pi$ interactions

 $\gamma_L(g+)$ conformer of N-Acetyl-Phenylalanyl-Amide (NAPA)

Ac-(Ala)₂-OBzl

Example of a large β turn conformation

More H-bond Types within β - and γ -peptides

Baquero, E. E.; James, W. H.; Choi, S. H.; Gellman, S. H.; Zwier, T. S. *J.Am. Chem.Soc*. 2008, *130*, 4784 Baquero, E. E.; James, W. H., III; Choi, S. H.; Gellman, S. H.; Zwier, T. S. *J. Am. Chem. Soc*. 2008, *130*, 4795

Aminoalcohols as Examples to Consider the OH stretch Probe

Chiral recognition: specific interactions in diastereomer complexes

Homochiral complex

Heterochiral complex

Chaudret, R.; de Courcy, B.; Contreras-Garcia, J.; Gloaguen, E.; Zehnacker-Rentien, A.; Mons, M.; Piquemal, J.-P. *PCCP* 2013 (*submitted*)

Chiral recognition: specific interactions in diastereomer complexes

Correlation Between ρ and Experimental Frequencies

S

Plotting ρ vs NH Stretch Frequencies

NH Stretch Frequencies (cm⁻¹)

Plotting ρ vs NH Stretch Frequencies, Disregarding NH- π Interactions

NH Stretch Frequencies (cm⁻¹)

Topological Analysis: the ELF function

 $\begin{array}{l} M1, x(\Omega) \) \ - \int \Omega \ (x - Xc) F(\boldsymbol{r}) \ \boldsymbol{dr} \\ M1, y(\Omega) \) \ - \int \Omega \ (y - Yc) F(\boldsymbol{r}) \ \boldsymbol{dr} \\ M1, z(\Omega) \) \ - \int \Omega \ (z - Zc) F(\boldsymbol{r}) \ \boldsymbol{dr} \end{array}$

Distributed Electrostatic Moments based on the ELF Partition (DEMEP)

Pilmé, J.; Piquemal, J.-P. J Comput Chem 2008, 29, 1440.

Plotting M1 vs NH Stretch Frequencies

NH Stretch Frequencies (cm⁻¹)

Plotting Average M1 vs Average NH Stretch Frequencies

Average NH Stretch Frequencies (cm⁻¹)

Average M1 (D)

More H-bond Types within β - and γ -peptides

Baquero, E. E.; James, W. H.; Choi, S. H.; Gellman, S. H.; Zwier, T. S. *J.Am. Chem.Soc*. 2008, *130*, 4784 Baquero, E. E.; James, W. H., III; Choi, S. H.; Gellman, S. H.; Zwier, T. S. *J. Am. Chem. Soc*. 2008, *130*, 4795

Conclusion

To – partially at least – answer Andrea's questions:

Quantum Chemical Topology Techniques, we have used here, provide both qualitative and quantitative results.

Qualitative ones clearly highlight the capability of a quantum interpretative technique to help the experimentalists to unveil key interactions influencing the geometries and vibrational frequencies in systems difficult to interpret.

The quantitative use of such quantum interpretative techniques is aimed to facilitate the spectroscopic assignments.

Acknowledgements

Jean-Philip Piquemal Julia Contreras-Garcia

Robin Chaudret

Anne Zehnacker-Rentien

Michel Mons

Eric Gloaguen

LCT LCT

IFP

ISMO Orsay

CEA Saclay CEA Saclay

