The issue of orthogonality in Frozen-Density Embedding Theory

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski

Department of Physical Chemistry, University of Geneva
I. Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET

FDET energy functional, Euler Lagrange Equations, ρ_{A}-dependency of the embedding potential
II. Non-orthogonal solutions
embedded function (CASCI form), double-SCF, $\left\langle\Psi_{\mathrm{A}}{ }^{k} \mid \Psi_{\mathrm{A}}{ }^{m}\right\rangle$ overlap
III. Orthogonal solutions from the linearized FDET energy functional

Linearized FDET energy functional, $\rho_{A}{ }^{\text {ref-insensitivity of the excitation energies }}$
IV. (Lack-of) Homogeneity of the density functional for the interaction energy expectation energy of the FDET embedding potential operator vs. FDET energies

Embedding potentials for variational QC methods

Embedding potential for methods such as HF, MCSF, CI (embedded «interacting wavefunction»)

PHYSICAL REVIEW A 77, 012504 (2008)
Embedding a multideterminantal wave function in an orbital-free environment
Tomasz A. Wesołowski
Département de Chimie Physique, 30 quai Ernest-Ansermet, Université de Genève, CH-1211 Genève 4, Switzerland (Received 3 October 2006; revised manuscript received 15 October 2007; published 11 January 2008)

$$
\begin{aligned}
& \rho_{A B}(\vec{r})=\rho_{B}(\vec{r})+\left\langle\Psi_{A}^{e m b}\right| \Sigma_{i=1}^{N_{A}} \delta\left(\vec{r}-\vec{r}_{i}\right)\left|\Psi_{A}^{e m b}\right\rangle \\
& E^{F D E T}\left[\rho_{B}\right]=\min _{\substack{\forall \vec{r} \\
\rho_{A B}(\vec{r}) \geq \rho_{B}(\vec{r}) \\
\int \rho(\vec{r}) d \vec{r}=N_{A B}}} E_{v_{A B}}^{H K}[\rho]=E_{v_{A B}}^{H K}\left[\rho_{A B}^{o p t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{\mathrm{emb}}\left[\rho_{B}\right]= \min _{\substack{ \\
(\mathbf{r}) \geq \rho_{B}(\mathbf{r}) \geq 0}} E_{v}^{\mathrm{HK}}[\rho] \\
& \int \rho(\mathbf{r}) \mathrm{d} \mathbf{r}=N_{A B}
\end{aligned}
$$

$$
\frac{\delta E_{A B}^{E W F}\left[\Psi_{A}^{e m b}, \rho_{B}\right]}{\delta \Psi_{A}^{e m b}}-\lambda \Psi_{A}^{e m b}=0
$$

$$
\left(\hat{H}_{A}+\hat{v}_{e m b}\right) \Psi_{A}^{e m b}=\epsilon \Psi_{A}^{e m b}
$$

$$
v_{e m b}(r)=v_{e m b}\left[\rho_{A}, \rho_{B}, v_{B}\right](r)
$$

Note that we take a particular perspective on the relation between the wave-function-based methods and densityfunctional theory. A multideterminantal wave function is considered in this work as an auxiliary quantity used to obtain the approximate solution of Eq. (1) and the corresponding electron density by means of variational calculations, whereas the relevant density functionals are considered to be
exact in the derivation of the basic relation.

FDET in capsule: variational method to obtain embedded wavefunction Ψ_{A}

1) Constraint for the total density (ρ_{B} - is arbitrary)

$$
E_{\mathrm{emb}}\left[\rho_{B}\right]=\min _{\rho(\mathbf{r}) \geq \rho_{B}(\mathbf{r}) \geq 0} E_{v}^{\mathrm{HK}}[\rho]
$$

$$
\int \rho(\mathbf{r}) \mathrm{dr}=N_{A B}
$$

2) Energy as the functional of ρ_{B} and Ψ_{A}

$$
\begin{aligned}
E_{A B}^{E W F}\left[\Psi^{A}, \rho_{B}\right] & =<\Psi^{A}\left|\hat{H}_{A}\right| \Psi^{A}>+\Delta F^{S C}\left[\rho_{A}\right]+ \\
& +\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{|\vec{r}-\vec{r}|} d \vec{r}^{\prime} d \vec{r} \\
& +T_{s}^{n a d}\left[\rho_{A}, \rho_{B}\right]+E_{x c}^{n a d}\left[\rho_{A}, \rho_{B}\right] \\
& +E_{v_{B}}^{H K}\left[\rho_{B}\right]+\int \rho_{B}(\vec{r}) v_{A}(\vec{r}) d \vec{r},
\end{aligned}
$$

3) Euler-Lagrange equation

$$
\frac{\delta E_{A B}^{E W F}\left[\Psi_{A}^{e m b}, \rho_{B}\right]}{\delta \Psi_{A}^{e m b}}-\lambda \Psi_{A}^{e m b}=0
$$

4) Functional for the local embedding potential

$$
v_{e m b}\left[\rho_{A}, \rho_{B}, v_{B}\right](\vec{r})=v_{B}(\vec{r})+\int \frac{\rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|} d \vec{r}^{\prime}+\frac{\delta E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]}{\delta \rho_{A}(\vec{r})}
$$

Attention:

inhomogeneity of the "interaction energy functional"

$$
\begin{aligned}
& \left\langle\Psi^{A}\right| \hat{v}_{e m b}\left|\Psi^{A}\right\rangle=\int \rho_{A}(\vec{r}) v_{e m b}\left[\rho_{A}, \rho_{B} ; \vec{r}\right] d \vec{r} \\
& \neq T_{s}^{n a d}\left[\rho_{A}, \rho_{B}\right]+E_{x c}^{n a d}\left[\rho_{A}, \rho_{B}\right]+\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime} d \vec{r}
\end{aligned}
$$

[^0]
FDET: case of $\rho_{0}(r) \geq \rho_{B}(r)$ (for all r)

Target:

the grey density ($\rho_{\text {total }}-\rho_{B}$) as a ground-state of a N_{A} electron system obtained by adding a local potential to a N_{A}-electron Hamiltonian

Results:

$$
\rho_{\mathrm{o}}=\rho_{\text {total }}=\rho_{\mathrm{B}}+\rho_{\mathrm{A}} \text { opt and } \mathrm{E}_{\mathrm{emb}}\left[\rho_{\mathrm{B}}\right]=\mathrm{E}_{\mathrm{o}}
$$

FDET: case of $\rho_{o}(r)<\rho_{B}(r)$ (in some domain of \mathbb{R}^{3})

$$
\begin{aligned}
& \rho_{\mathrm{o}} \neq \rho_{\text {total }}=\rho_{\mathrm{B}}+\rho_{\mathrm{A}}^{\mathrm{opt}} \\
& \mathrm{E}_{\text {emb }}\left[\rho_{\mathrm{B}}\right] \geq \mathrm{E}_{\mathrm{o}}
\end{aligned}
$$

FDET: What we gain?

1) The theory underlying any $\mathrm{QM} / \mathrm{MM}$ method using local embedding potentials. Instead of empirical parameters coupling QM with MM systems, FDET uses one descriptor ρ_{B}
2) Fully self-consistent expressions for: i) optimal energy ($\mathrm{E}_{\text {emb }}\left[\rho_{\mathrm{B}}\right]$), ii) embedded wavefunction, iii) embedded density.
3) Possibility to combine QM descriptors (Ψ_{A}) with any physical theory yielding electron density (nano- and macroscale)

FDET: What is the price?

1) Assured is only that $\left(E_{e m b}\left[\rho_{B}\right] \geq E_{o}\right)$
2) The embedding potential depends on ρ_{A} (state)
3) Pandora's box of challenges concerning approximations for the functional $\mathrm{E}_{\mathrm{xc}}{ }^{\mathrm{nad}}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$ and the functionals :

$$
\begin{aligned}
\Delta F^{S C(W F T)}\left[\rho_{A}\right] & =\min _{\Psi_{A} \rightarrow \rho_{A}}\left\langle\Psi_{A}\right| \hat{T}_{2 N_{A}}+\hat{V}_{2 N_{A}}^{e e}\left|\Psi_{A}\right\rangle \\
& -\min _{\Psi_{A}^{W F} \rightarrow \rho_{A}}\left\langle\Psi_{A}^{W F}\right| \hat{T}_{2 N_{A}}+\hat{V}_{2 N_{A}}^{e e}\left|\Psi_{A}^{W F}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& T_{s} \operatorname{mad}_{s}\left[\rho_{A}, \rho_{\mathrm{B}}\right] \\
&=\min _{\Psi_{s} \rightarrow \rho_{\mathrm{A}}+\rho_{\mathrm{B}}}\left\langle\Psi_{s}\right| \hat{T}\left|\Psi_{s}\right\rangle \\
& \quad-\min _{\Psi_{s} \rightarrow \rho_{\mathrm{A}}}\left\langle\Psi_{s} \hat{T} \mid \Psi_{s}\right\rangle-\min _{\Psi_{s} \rightarrow \rho_{\mathrm{B}}}\left\langle\Psi_{s}\right| \hat{T}\left|\Psi_{s}\right\rangle
\end{aligned}
$$

The issue of orthogonality in Frozen-Density Embedding Theory

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski

Department of Physical Chemistry, University of Geneva
I. Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET

FDET energy functional, Euler Lagrange Equations, ρ_{A}-dependency of the embedding potential
II. Non-orthogonal solutions
embedded function (CASCI form), double-SCF, $\left\langle\Psi_{\mathrm{A}}{ }^{\mathrm{k}} \mid \Psi_{\mathrm{A}}{ }^{m}\right\rangle$ overlap
III. Orthogonal solutions from the linearized FDET energy functional

Linearized FDET energy functional, $\rho_{A}{ }^{\text {ref-insensitivity of the excitation energies }}$
IV. (Lack-of) Homogeneity of the density functional for the interaction energy expectation energy of the FDET embedding potential operator vs. FDET energies

Split-SCF FDET calculations

 (embedded non-interacting reference system)
b)

FIGURE 1. (a) The splitSCF scheme: In the inner loop (i-index), the embedding potential $v_{\text {emb }}\left[\rho_{A}, \rho_{B}\right]$ is evaluated for ρ_{A} taken from the previous iteration in the outer loop (j-index) and remains constant, whereas the $v_{K S}\left[\rho_{A}\right]$ component is recalculated as ρ_{A} changes. (b) The conventional SCF scheme: Both $v_{K s}\left[\rho_{A}\right]$ and $v_{\text {emb }}\left[\rho_{A}, \rho_{B}\right]$ are recalculated as ρ_{A} changes.

FIGURE 2. The convergence of the outer-loop of the splitSCF procedure for various properties of the $\mathrm{H}_{2} \mathrm{O}$ molecule in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ complex. The results of conventional self-consistent calculations are indicated by dashed lines.

Split-SCF FDET calculations for each electronic state
(self-consistent potential and embedded wavefunction but non-orthogonal embedded wavefunctions for different states)

Figure 1: CASCI iteration cycles with regard to ρ_{A} updates.

Embedded uracil

 (embedded CASCI reference system)
(a) Distinction of pep-

(b) U1

(c) U3

(d) U4

$\mathrm{S}_{0} \rightarrow$	Character of excitation		
S_{1}	$n_{1}(O)$	\rightarrow	$\pi_{1}^{*}(C O)$
S_{2}	mostly $\pi_{2}(N)$	\rightarrow	$\pi_{\text {ring }}^{*}$
$\mathrm{~S}_{3}$	$n_{2}(O)$	\rightarrow	$\pi_{2}^{*}(C O)$
S_{4}	mostly $\pi_{1}(N)$	\rightarrow	$\pi_{\text {ring }}^{*}$

Table 3: Wavefunction overlap matrix elements of self-consistent states.

	$\Psi_{0}^{s c}$	$\Psi_{1}^{s c}$	$\Psi_{2}^{s c}$	$\Psi_{3}^{s c}$	$\Psi_{4}^{s c}$
$\Psi_{0}^{s c}$	1			$<\Psi_{\mathrm{A}} \mathrm{k}^{s c} \mid \Psi_{\mathrm{A}} \mathrm{m}_{>}$	
$\Psi_{1}^{s c}$	$1.00 \mathrm{E}-08$	1			
$\Psi_{2}^{s c}$	$5.19 \mathrm{E}-06$	$-2.00 \mathrm{E}-08$	1	1	
$\Psi_{3}^{s c}$	$1.25 \mathrm{E}-06$	$9.02 \mathrm{E}-05$	$-3.41 \mathrm{E}-05$	1	
$\Psi_{4}^{s c}$	$7.10 \mathrm{E}-07$	$-4.00 \mathrm{E}-08$	$-2.47 \mathrm{E}-05$	$7.09 \mathrm{E}-05$	1

Embedded dipeptide
(embedded CASCI reference system)

$\mathrm{S}_{0} \rightarrow$	Character of excitation		
S_{1}	$n_{1}(O)$	\rightarrow	$\pi_{1}^{*}(C O)$
S_{2}	$n_{2}(O)$	\rightarrow	$\pi_{2}^{*}(C O)$
S_{3}	$\pi_{1}(C O)$ $\pi_{1}(N)$	\rightarrow	$\pi_{2}^{*}(C O)$ $\pi_{1}^{*}(N)$
S_{4}	$\pi_{2}(N)$	\rightarrow	$\pi_{2}^{*}(C O)$
S_{5}	$n_{1}(O)$ $\pi_{1}(N)$	\rightarrow	$\pi_{2}^{*}(C O)$ $\pi_{2}^{*}(N)$
S_{6}	$\pi_{1}(N)$	\rightarrow	$\pi_{1}^{*}(C O)$

(b) Dipeptide- $\mathrm{H}_{2} \mathrm{O}$ complex

Table 16: Wavefunction overlap matrix elements of self-consistent states.

	$\Psi_{0}^{s c}$	$\Psi_{1}^{s c}$	$\Psi_{2}^{s c}$	$\Psi_{3}^{s c}$	$\Psi_{4}^{s c}$	$\Psi_{5}^{s c}$	$\Psi_{6}^{s c}$
$\Psi_{0}^{s c}$	1						
$\Psi_{1}^{s c}$	$3.50 \mathrm{E}-07$	1					
$\Psi_{2}^{s c}$	$1.90 \mathrm{E}-07$	$-1.60 \mathrm{E}-05$	1			$<\Psi_{\mathrm{A}} \mathrm{k}^{s c} \mid \Psi_{\mathrm{A}} \mathrm{m}_{>}$	
$\Psi_{3}^{s c}$	$-5.20 \mathrm{E}-07$	$2.10 \mathrm{E}-07$	$-1.71 \mathrm{E}-04$	1			
$\Psi_{4}^{s c}$	$2.45 \mathrm{E}-06$	$3.80 \mathrm{E}-07$	$-3.03 \mathrm{E}-06$	$4.44 \mathrm{E}-05$	1		
$\Psi_{5}^{s c}$	$5.00 \mathrm{E}-08$	$-4.68 \mathrm{E}-06$	$-3.42 \mathrm{E}-05$	$9.50 \mathrm{E}-07$	$1.57 \mathrm{E}-05$	1	
$\Psi_{6}^{s c}$	$-4.27 \mathrm{E}-06$	$-1.45 \mathrm{E}-06$	$-2.51 \mathrm{E}-05$	$1.17 \mathrm{E}-05$	$2.58 \mathrm{E}-06$	$1.03 \mathrm{E}-04$	1

Embedded bromine

 (embedded CASCI reference system)

Figure 12: $\mathrm{Br}_{2}-\mathrm{H}_{2} \mathrm{O}$ complex.

$\mathrm{S}_{0} \rightarrow$	Character of excitation		
S_{1}	π_{x}	\rightarrow	σ_{z}^{*}
$\mathrm{~S}_{2}$	π_{y}	\rightarrow	σ_{z}^{*}
$\mathrm{~S}_{3}$	π_{x}	\rightarrow	σ_{z}^{*}
$\mathrm{~S}_{4}$	π_{y}	\rightarrow	σ_{z}^{*}
$\mathrm{~S}_{5}$	$\pi_{x y}$	\rightarrow	σ_{z}^{*}

Table 21: Wavefunction overlap matrix elements of self-consistent states.

	$\Psi_{0}^{s c}$	$\Psi_{1}^{s c}$	$\Psi_{2}^{s c}$	$\Psi_{3}^{s c}$	$\Psi_{4}^{s c}$	$\Psi_{5}^{s c}$
$\Psi_{0}^{s c}$	1					
$\Psi_{1}^{s c}$	$1.09 \mathrm{E}-06$	1			$\left\langle\Psi_{\mathrm{A}}{ }^{\mathrm{k}}\right\| \Psi_{\mathrm{A}} \mathrm{m}_{>}>$	
$\Psi_{2}^{s c}$	$-7.00 \mathrm{E}-08$	$6.60 \mathrm{E}-07$	1			
$\Psi_{3}^{s c}$	$6.00 \mathrm{E}-08$	$2.31 \mathrm{E}-05$	$0.00 \mathrm{E}+00$	1		
$\Psi_{4}^{s c}$	$6.00 \mathrm{E}-08$	$0.00 \mathrm{E}+00$	$2.66 \mathrm{E}-05$	$2.90 \mathrm{E}-07$	1	
$\Psi_{5}^{s c}$	$1.10 \mathrm{E}-06$	$-2.82 \mathrm{E}-06$	$2.60 \mathrm{E}-07$	$-6.85 \mathrm{E}-06$	$4.00 \mathrm{E}-07$	1

Partial conclusions (1):

As a result of the ρ_{A}-dependence of the embedding potential, the other than lowest energy solutions of the Euler-Lagrange equation in FDET are not orthogonal to the lowest-energy solution.

Is it important?

The issue of orthogonality in Frozen-Density Embedding Theory

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski

Department of Physical Chemistry, University of Geneva
I. Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET

FDET energy functional, Euler Lagrange Equations, ρ_{A}-dependency of the embedding potential
II. Non-orthogonal solutions
embedded function (CASCI form), double-SCF, $\left\langle\Psi_{\mathrm{A}}{ }^{k} \mid \Psi_{\mathrm{A}}{ }^{m}\right\rangle$ overlap
III. Orthogonal solutions from the linearized FDET energy functional

Linearized FDET energy functional, ρ_{A} ref-insensitivity of the excitation energies
IV. (Lack-of) Homogeneity of the density functional for the interaction energy expectation energy of the FDET embedding potential operator vs. FDET energies

$$
\left(\hat{H}_{A}+\hat{v}_{e m b}\right) \Psi_{A}^{e m b}=\epsilon \Psi_{A}^{e m b}
$$

FDET

[Wesolowski, Phys. Rev.A. 77 (2008) 012504]

$$
\begin{aligned}
E_{A B}^{E W F}\left[\Psi^{A}, \rho_{B}\right] & =<\Psi^{A}\left|\hat{H}_{A}\right| \Psi^{A}>+\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime} d \vec{r} \\
& +E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]+E_{v_{B}}^{H K}\left[\rho_{B}\right]+\int \rho_{B}(\vec{r}) v_{A}(\vec{r}) d \vec{r}
\end{aligned}
$$

$$
E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]=E_{x c}^{n a d}\left[\rho_{A}, \rho_{B}\right]+T_{s}^{n a d}\left[\rho_{A}, \rho_{B}\right]+\Delta F^{S C}\left[\rho_{A}\right]
$$

$$
\left.\tilde{v}_{e m b}\left[\rho_{A}^{r e f}, \rho_{B}, v_{B}\right] \vec{r}=v_{B}(\vec{r})+\int \frac{\rho_{B}\left(\vec{r}^{\prime}\right)}{|\vec{r}-\vec{r}|} d \vec{r}^{\prime}+\frac{\delta \tilde{E}_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]}{\delta \rho_{A}(\vec{r})}<\Psi_{\mathrm{A}} k \right\rvert\, \Psi_{\mathrm{A}} \mathrm{~m}_{\mathrm{k}}>\neq \delta_{\mathrm{km}}
$$

Linearized FDET [Wesolowski, J. Chem. Phys. 140 (2014) 18A530]

$$
E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \approx \tilde{E}_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \approx \tilde{E}_{x c t}^{n a d(l i n)}\left[\rho_{A}, \rho_{B}\right]=\tilde{E}_{x c t}^{n a d}\left[\rho_{A}^{r e f}, \rho_{B}\right]+\left.\int\left(\rho_{A}-\rho_{A}^{r e f}\right) \frac{\delta \tilde{E}_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]}{\delta \rho_{A}(\vec{r})}\right|_{\rho_{A}=\rho_{A}^{r e f}} d \vec{r}
$$

$$
\tilde{v}_{e m b}\left[\rho_{A}^{r e f}, \rho_{B}, v_{B}\right] \vec{r}=v_{B}(\vec{r})+\int \frac{\rho_{B}\left(\vec{r}^{\prime}\right)}{|\vec{r} \vec{r}-\vec{r}|} d \vec{r}^{\prime}+\left.\frac{\delta \tilde{E}_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]}{\delta \rho_{A}(\vec{r})}\right|_{\rho_{A}=\rho_{A}^{r e f}}
$$

$$
<\Psi_{A}^{k \mid \Psi_{A}^{m}>=\delta_{k m}}
$$

Embedded uracil (Linearized FDET excitation energies)

Differences between FDET and linearized FDET excitation energies (in eV) for different reference densities (FDET excitation energies are given on the diagonal)

	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}
$\rho_{A, 0}$	$\mathbf{0 . 0 0}$	$-2.74 \mathrm{E}-06$	$-2.39 \mathrm{E}-06$	$-2.50 \mathrm{E}-06$	$2.72 \mathrm{E}-09$
$\rho_{A, 1}$	$2.52 \mathrm{E}-06$	$\mathbf{5 . 1 3}$	$-8.16 \mathrm{E}-09$	$1.52 \mathrm{E}-07$	$2.56 \mathrm{E}-06$
$\rho_{A, 2}$	$2.40 \mathrm{E}-06$	$-1.17 \mathrm{E}-07$	$\mathbf{6 . 4 4}$	$3.27 \mathrm{E}-08$	$2.46 \mathrm{E}-06$
$\rho_{A, 3}$	$2.54 \mathrm{E}-06$	$-2.23 \mathrm{E}-07$	$1.63 \mathrm{E}-07$	$\mathbf{6 . 7 7}$	$2.59 \mathrm{E}-06$
$\rho_{A, 4}$	$-1.69 \mathrm{E}-07$	$-2.90 \mathrm{E}-06$	$-2.56 \mathrm{E}-06$	$-2.42 \mathrm{E}-06$	$\mathbf{7 . 1 4}$

Other Uracil-water complexes

Embedded dipeptide (embedded CASCI reference system)

Differences between FDET and linearized FDET excitation energies (in eV) for different reference densities (FDET excitation energies are given on the diagonal)

	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}
$\rho_{A, 0}$	$\mathbf{0 . 0 0}$	$-9.01 \mathrm{E}-07$	$2.93 \mathrm{E}-06$	$2.99 \mathrm{E}-06$	$-5.88 \mathrm{E}-07$	$3.04 \mathrm{E}-06$	$3.21 \mathrm{E}-06$
$\rho_{A, 1}$	$6.23 \mathrm{E}-07$	$\mathbf{6 . 0 0}$	$3.82 \mathrm{E}-06$	$3.56 \mathrm{E}-06$	$1.28 \mathrm{E}-07$	$3.84 \mathrm{E}-06$	$3.80 \mathrm{E}-06$
$\rho_{A, 2}$	$-2.90 \mathrm{E}-06$	$-3.58 \mathrm{E}-06$	$\mathbf{6 . 5 1}$	$-1.17 \mathrm{E}-07$	$-3.54 \mathrm{E}-06$	$1.36 \mathrm{E}-08$	$2.04 \mathrm{E}-07$
$\rho_{A, 3}$	$-2.88 \mathrm{E}-06$	$-3.89 \mathrm{E}-06$	$1.31 \mathrm{E}-07$	$\mathbf{8 . 6 0}$	$-3.58 \mathrm{E}-06$	$-2.99 \mathrm{E}-08$	$3.81 \mathrm{E}-08$
$\rho_{A, 4}$	$4.63 \mathrm{E}-07$	$-2.20 \mathrm{E}-07$	$3.52 \mathrm{E}-06$	$3.48 \mathrm{E}-06$	$\mathbf{8 . 8 2}$	$3.44 \mathrm{E}-06$	$3.69 \mathrm{E}-06$
$\rho_{A, 5}$	$-2.73 \mathrm{E}-06$	$-3.72 \mathrm{E}-06$	$1.28 \mathrm{E}-07$	$1.28 \mathrm{E}-07$	$-3.42 \mathrm{E}-06$	$\mathbf{9 . 2 5}$	$3.48 \mathrm{E}-07$
$\rho_{A, 6}$	$-3.11 \mathrm{E}-06$	$-3.84 \mathrm{E}-06$	$1.01 \mathrm{E}-07$	$-2.34 \mathrm{E}-07$	$-3.66 \mathrm{E}-06$	$-5.99 \mathrm{E}-08$	$\mathbf{9 . 3 8}$

Embedded bromine (embedded CASCI reference system)

Differences between FDET and linearized FDET excitation energies (in eV) for different reference densities (FDET excitation energies are given on the diagonal)

	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
$\rho_{A, 0}$	$\mathbf{0 . 0 0}$	$1.99 \mathrm{E}-06$	$5.52 \mathrm{E}-07$	$1.93 \mathrm{E}-06$	$1.79 \mathrm{E}-06$	$-1.09 \mathrm{E}-07$
$\rho_{A, 1}$	$-1.79 \mathrm{E}-06$	$\mathbf{3 . 2 3}$	$-1.58 \mathrm{E}-06$	$-8.17 \mathrm{E}-09$	$-2.50 \mathrm{E}-07$	$-1.87 \mathrm{E}-06$
$\rho_{A, 2}$	$-4.73 \mathrm{E}-07$	$1.50 \mathrm{E}-06$	$\mathbf{3 . 2 4}$	$1.41 \mathrm{E}-06$	$1.21 \mathrm{E}-06$	$-4.63 \mathrm{E}-07$
$\rho_{A, 3}$	$-1.73 \mathrm{E}-06$	$1.88 \mathrm{E}-07$	$-1.43 \mathrm{E}-06$	$\mathbf{4 . 9 2}$	$-1.93 \mathrm{E}-07$	$-1.87 \mathrm{E}-06$
$\rho_{A, 4}$	$-1.77 \mathrm{E}-06$	$1.12 \mathrm{E}-07$	$-1.55 \mathrm{E}-06$	$1.61 \mathrm{E}-07$	$\mathbf{4 . 9 3}$	$-1.98 \mathrm{E}-06$
$\rho_{A, 5}$	$7.67 \mathrm{E}-07$	$2.42 \mathrm{E}-06$	$6.99 \mathrm{E}-07$	$2.11 \mathrm{E}-06$	$1.89 \mathrm{E}-06$	$\mathbf{6 . 0 4}$

Partial conclusions (2):

1) Linearization (in ρ_{A}) of the FDET energy as proposed in
[Wesolowski, J. Chem. Phys. 140 (2014) 18A530] leads to

- excitation energies remarkably insensitive to the choice of $\rho_{A}{ }^{\text {ref }}$
- practically identical energies conventional FDET results (non-linearized)

2) The orthogonality of all embedded wavefunctions is assured by construction without destroying the self-consistency between: energy, embedded density, and embedded wavefunctions (all come from the same Euler-Lagrange equation)
3) One embedding calculations for ALL electronic states
4) Linearized FDET can be applied for any approximation for $E_{x c t}\left[\rho_{A}, \rho_{B}\right]$

The issue of orthogonality in Frozen-Density Embedding Theory

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski

Department of Physical Chemistry, University of Geneva
I. Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET

FDET energy functional, Euler Lagrange Equations, ρ_{A}-dependency of the embedding potential
II. Non-orthogonal solutions
embedded function (CASCl form), double-SCF, $\left\langle\Psi_{\mathrm{A}}{ }^{\mathrm{k}} \mid \Psi_{\mathrm{A}}{ }^{m}\right\rangle$ overlap
III. Orthogonal solutions from the linearized FDET energy functional

Linearized FDET energy functional, $\rho_{A}{ }^{\text {ref-insensitivity of the excitation energies }}$
IV. (Lack-of) Homogeneity of the density functional for the interaction energy expectation energy of the FDET embedding potential operator vs. FDET energies

The meaning of $\left\langle\Psi_{A}\right| \hat{v}_{e m b}\left|\Psi_{A}\right\rangle$

$$
E_{\text {int }}=\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime} d \vec{r}+E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \neq\left\langle\Psi_{A}\right| \hat{v}_{e m b}\left|\Psi_{A}\right\rangle
$$

$$
\begin{aligned}
& T_{s}[\rho] \neq \int \rho(\vec{r}) \frac{\delta T_{s}[\rho]}{\delta \rho(\vec{r})} d \vec{r}, \\
& E_{x}[\rho] \neq \int \rho(\vec{r}) \frac{\delta E_{x}[\rho]}{\delta \rho(\vec{r})} d \vec{r}, \\
& E_{c}[\rho] \neq \int \rho(\vec{r}) \frac{\delta E_{c}[\overrightarrow{ }]}{\delta \rho(\vec{r})} d \vec{r},
\end{aligned}
$$

$$
E_{i n t}=\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime} d \vec{r}+E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \approx\left\langle\Psi_{A}\right| \hat{v}_{e m b}\left|\Psi_{A}\right\rangle
$$

Uracil-water (conf U1)

$$
\Delta_{k}=E_{i n t}\left[\rho_{k}\right]-\left\langle\Psi_{k}\right| v_{e m b}\left[\rho_{A, k}\right] \mid \Psi_{k}>
$$

State (k)	Δ_{k} [Hartree]	$\Delta_{k} \Delta_{o}$ [eV]
0	0.003528983	0.00
1	0.003531545	0.11
2	0.00348885	0.11
3	0.003139088	0.11
4	0.003508729	0.11

Uracil-water (conf U3)

$$
\Delta_{k}=E_{i n t}\left[\rho_{k}\right]-\left\langle\Psi_{k}\right| v_{e m b}\left[\rho_{A, k}\right] \mid \Psi_{k}>
$$

State (k)	Δ_{k} [Hartree]	$\Delta_{k} \Delta_{0}[\mathrm{eV}]$
0	0.003384143	0.00
1	0.003000736	0.11
2	0.003394293	0.10
3	0.003392354	0.10
4	0.003353285	0.10

Uracil-water (conf U4)

$$
\Delta_{\mathrm{k}}=E_{\text {int }}\left[\rho_{\mathrm{k}}\right]-\left\langle\Psi_{\mathrm{k}}\right| v_{\text {emb }}\left[\rho_{\mathrm{A}, \mathrm{k}}\right]\left|\Psi_{\mathrm{k}}\right\rangle
$$

State (k)	$\Delta_{k}[$ Hartree $]$	$\Delta_{k-} \Delta_{0}[\mathrm{eV}]$
0	0.001836451	0.0
1	0.001539419	0.10
2	0.001862862	0.10
3	0.001839301	0.10
4	0.001832712	0.10

dipeptide-water

$\Delta_{k}=E_{i n t}\left[\rho_{k}\right]-\left\langle\Psi_{k}\right| v_{e m b}\left[\rho_{A, k}\right]\left|\Psi_{k}\right\rangle$

State (k)	Δ_{k} [Hartree]	$\Delta_{k} \Delta_{0}[\mathrm{eV}]$
0	0.002860501	0.0
1	0.00286837	0.10
2	0.002540398	0.10
3	0.002841887	0.10
4	0.002857505	0.10
5	0.0028504210	0.10
6	0.0028410620	0.10

bromine-water

$$
\Delta_{k}=E_{i n t}\left[\rho_{k}\right]-\left\langle\Psi_{k}\right| v_{e m b}\left[\rho_{A, k}\right]\left|\Psi_{k}\right\rangle
$$

State (k)	Δ_{k} [Hartree]	$\Delta_{k-} \Delta_{o}[\mathrm{eV}]$
0	0.001191772	0.0
1	0.001345661	0.06
2	0.00134587	0.06
3	0.001372212	0.06
4	0.001374507	0.06
5	0.001598166	0.06

Partial Conclusions (3):

$$
\int \rho_{A}(\vec{r}) v_{B}(\vec{r}) d \vec{r}+\iint \frac{\rho_{A}(\vec{r}) \rho_{B}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime} d \vec{r}+E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \approx\left\langle\Psi_{A}\right| \hat{v}_{e m b}\left|\Psi_{A}\right\rangle
$$

A very good approximation for evaluation of excitation energies (total energy differences). Higher than linear (in ρ_{A}) terms in the energy functional are almost constant (around 0.1 eV).

Conclusions:

1) ρ_{A}-dependency of the embedding potential is an undesired feature of FDET leading to non-orthogonal embedded wavefunctions associated to different electronics states and the need to one calculation for each state.
2) Orthogonality is respected in linearized FDET
[Wesolowski, J. Chem. Phys. 140 (2014) 18A530], in which:

- excitation energies remarkably insensitive to the choice of $\rho_{A}{ }^{\text {ref }}$
- practically identical energies as the ones obtained using conventional (non-linearized) calculations,
- one calculation for ALL states,
- linearized FDET can be made with ANY approximation to $\mathrm{E}_{\mathrm{xct}}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$

3) Linearization preserves the structure of FDET (Euler-Lagrange equations, local embedding potential).
4) The use of expectation value of the embedding potential is a very good approximation in evaluation of excitation energies due to the small variation of the higher-than-linear in ρ_{A} terms in the FDET energy functional (typical magnitude 0.1 eV).

Funding: Fonds National Suisse de la Recherche Scientifique

Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure

${ }_{3}$ Tomasz A. Wesolowski,* Sapana Shedge, and Xiuwen Zhou
s Department of Physical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland

${ }_{6}$ CONTENTS

8 1. Introduction
9 2. Frozen-Density Embedding Theory
10 2.1. Statement of the Problem: Basic Equations
2.2. More on Key Features of FDET
2.2. More on Key Features of FDET
2.2.1. Nonadditivity of the Density Functional for the Kinetic Energy
2.2.2. Relation between the FDET Embedding Potential and Projectors in the Pseudopotential Theory
2.2.3. Polarization of the Environment by the Embedded Species
2.2.4. Charge-Transfer between Subsystems
2.2.5. v-Representability of the Optimal Em bedded Density $\rho_{\mathrm{A}}^{\text {opt }(r)}$
2.2.6. Exact Properties of the Nonadditive unctionals
3. Extensions and Formalisms Related to FDET Energy E_{0}
3.2. Extension of Ground-State FDET to Excited States
3.2.1. High Symmetry Cas
3.2.2. Other than the Lowest-Energy Solutions of the Euler-Lagrange Equations
3.2.3. Time-Dependent Linear-Response Theory for Noninteracting System Em
33 Beyond Density Embedding
3.3. Beyond Density Embedding for Coupled Chromophores
Approximations in FDET for Multilevel Simulations
4.1. Approximations for Density Functionals
4.1.1. Explicit Approximations for $T_{s}^{\text {nad }}\left[\rho_{A}\right.$ and $E_{\mathrm{xc}}^{\text {nad }}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$
4.1.2. Spin-Density Generalization of $T_{\mathrm{S}}^{\text {nad }}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$ 4.1.3. Linearization of the Functionals 14. $T_{s}^{\text {nad }}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$ and $E_{\mathrm{xc}}^{\text {nad }}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right]$
4.1.4. Embedding Potentials from Numerical Inversion Procedures
4.2. Generation of $\rho_{\mathrm{B}}(r)$

Q Special Issue: Calculations on Large Systems Received: September 12, 2014
4.2.1. $\rho_{\mathrm{B}}(r)$ As a Ground-State Density from the Quantum-Mechanical Calculations for the Whole Environment
4.2.2. Superposition of Densities of Fragments 4.2.3. Optimized $\rho_{\mathrm{B}}(r)$ from Subsystem DFT Calculations
4.2.4. Polarized $\rho_{\mathrm{B}}(r)$
4.2.5. Average $\left\langle\rho_{\mathrm{B}}\right\rangle(r)$ from Statistical Ensembles for Structurally Flexible Environments
4.3. FDET-Like Approximate Methods Based on the ONIOM Strategy
4.3.1. Independent variables
4.3.2. The total ONIOM electron density
4.3.3. The embedded wavefunction in FDET vs the ONIOM wavefunction
4.3.4. The total energy of the whole system in exact case
4.3.5. Variational principle
5. Numerical Simulations Using Approximated FDET Embedding Potentials
5.1.1. Solvatochromism
5.1.2. Chromophores in Biological Environments
5.1.3. Local Excitations in Solid-State Environments
5.1.4. Induced Circular Dichroism in GuestHost Complexes
5.1.5. Coupled Chromophores and ChargeTransfer Excitations from Excited-State

5.2. NMR

5.3. ESR
5.4. Multipole Moments and Polarizabilities
5.5. Density Analysis
5.6. Properties of the Ground-State Potential Energy Surface
5.6.1. Chemical Reactions in Condensed Phase 5.6.2. Intermolecular Complexes
5.6.3. Solids and Interfaces
5.6.4. Simulations of Statistical Ensembles for

FDET related research topics at University of Geneva

Analytically solvable model systems

Savin \& Wesolowski Prog. Theor. Chem. \& Phys, 19 (2009) 327: De Silva \& Wesolowski, J. Chem. Phys. 137 (2012) 094110

Approximations for $T_{s}{ }^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

 Wesolowski, J. Chem. Phys. 106, 1997, 8516; Garcia Lastra et al., J. Chem. Phys. 129 (2008) 074107: Bernard et al. J. Phys. A. 41 (2008) 055302; Savin \& Wesolowski, in "Recent Progress in OF-DFT", WORLD SCIENTIFIC 2013Multi-level FDET based continnum solvent model Kaminski et al., J. Phys. Chem A, 114 (2010) 6082; Zhou et al., Phys.Chem.Chem.Phys., 13 (2011) 10565

FDET based mullti-level
ρ_{A} dependency of $V_{\text {emb }}{ }^{\text {FDET }}\left[\rho_{A}, \rho_{B} ; r\right]$ linearization
Dulak et al., Intl. J. Quant. Chem., 109 (2009) 1883 state-dependency for excited states
Wesolowski, J. Chem. Phys, 140, (2014) 18A530

Algorithms and code developments eveluation of particular properties, ρ_{B}-generation, deMon, deMon2K, ADF, MOLCAS

$$
\frac{\delta E_{A B}^{E W F}\left[\Psi_{A}^{e m b}, \rho_{B}\right]}{\delta \Psi_{A}^{e m b}}-\lambda \Psi_{A}^{e m b}=0
$$

models of molecular environments

 UV/Vis, ESR, NMR
clusters:

Fradelos et al., J. Phys. Chem. A 113 (2009) 9766 porous solids:
Zhou et al., Phys. Chem. Chem. Phys, 15, (2013) 159 proteins:
Zhou et al., J. Am. Chem. Soc., 136, (2014) 2723

Extracting chemical information from electron density
(single exponential decay detector, SEDD) de Silva et al, ChemPhysChem, 13,(2012) 3462: J. Chem. Phys., 140, (2014) 164301

[^0]: T.A. Wesolowski, A. Warshel, J. Phys. Chem. 1993, 97, 8050 T.A. Wesolowski, One-electron equations for embedded orbitals In: Computational Chemistry: Reviews of current trends,
 J. Leszczynski Ed. Vol 10 (2006) 1-83
 T.A. Wesolowski, Phys. Rev. A, 2008,77, 012504
 K. Pernal and T.A. Wesolowski, Intl.J. Quant. Chem. 2009, 109, 2520

