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Embedding potentials for variational QC methods !

Embedding potential for  methods such as HF, MCSF, CI (embedded «interacting wavefunction»)!

question: “What local correlation potential do you have to
add to the Hartree-Fock equation so that the density is ex-
act.” In this work, we consider not only the Hartree-Fock
method but any method which treats the electron-electron
interactions exactly and uses a wave function comprising not
only one but any arbitrarily chosen number of determinants.
Moreover, the target electron density is not the exact ground-
state electron density, but the one which minimizes the
Hohenberg-Kohn energy functional keeping one component
of the total electron density constant in the present consider-
ations. The potential analyzed in this work is obtained using
the following steps:

!i" In all considerations, the environment of an embedded
system comprising 2NA electrons is represented by means of
a given electron density (!B!r!") and the Coulomb potential
generated by nuclei of the environment (vext

B !r!").
!ii" Two formal frameworks for obtaining the ground-state

electron density are considered. In the first one, the embed-
ded electron density is represented by means of embedded
Kohn-Sham orbitals, which are obtained from one-electron
equations #Eqs. !20" and !21" of Ref. #7$$. In these equations,
the total effective potential and its embedding component in
particular is expressed by means of explicit density function-
als. For the exact effective potential, these equations lead to
the density !Ao

1, which minimizes the Hohenberg-Kohn en-
ergy functional for a fixed !B !i.e., at "!B=0". The second
framework uses a multideterminantal wave function to rep-
resent the embedded electron density and treats the electron-
electron interactions exactly whereas the presence of envi-
ronment is accounted for by means of the operator V̂emb:

#T̂2NA
+ V̂2NA

ee + V̂ext
A + V̂emb$#A = EA#A, !1"

where the first three operators define the isolated subsystem.
!iii" The embedding operator is postulated to take the

form of a local potential,

V̂emb = %
i

2NA

vloc
emb!r!i" . !2"

The electron density !!Ao
2" obtained as an approximate solu-

tion of Eq. !1" by means of variational calculations using
trial wave functions of the multideterminantal form with a
fixed number of determinants, such as multiconfigurational
self consistent-field calculations !MCSCF" for instance, de-
pends on vloc

emb!r!i". By imposing that

!Ao
1 = !Ao

2 = !Ao
, !3"

vloc
emb!r!i" is constructed leading to the principal result of this

work—the relation between vloc
emb!r!i" and universal density

functionals.
Note that we take a particular perspective on the relation

between the wave-function-based methods and density-
functional theory. A multideterminantal wave function is
considered in this work as an auxiliary quantity used to ob-
tain the approximate solution of Eq. !1" and the correspond-
ing electron density by means of variational calculations,
whereas the relevant density functionals are considered to be

exact in the derivation of the basic relation. Approximate
functionals are considered only in the discussion part in view
of the prospects for practical calculations.

B. Key definitions and notation

The functionals are denoted with capital letters and the
quantities, on which they depend explicitly, are given within
square brackets !as in F#y$". Unless indicated by tildes, the
considered functionals are assumed to be exact. The formu-
las are given in atomic units for spin-compensated electron
densities.

For 2N electrons in an external potential vext!r!", the
Hohenberg-Kohn energy functional #1$ is defined as

EHK#!$ = FHK#!$ +& vext!r!" !!r!" dr! , !4"

where the constrained search definition of FHK#!$ #18$ reads

FHK#!$ = min
#→!

'#(T̂2N + V̂2N
ee (#) . !5"

The electron densities considered in the search for the
minimum of EHK#!$ are required to be N representable #16$.
In finite Coulomb systems, N representability can be easily
assured #16,17$. In this work, a stronger condition—the re-
quirement that ! is pure-state noninteracting v representable
#17$ !v representable in short" is also relevant. For electron
densities, which belong to this category !obtained from the
Kohn-Sham equations #2$ or other one-electron equations
with a multiplicative potential, for instance", additional ex-
plicit density functionals can be defined using the con-
strained search procedure #18$

Ts#!$ = min
*$i+→!

,2%
i

N -$i.−
1
2

!2.$i/0
= 2%

i

N -$i
o.−

1
2

!2.$i
o/ , !6"

where the search procedure is performed among the orbitals
*$i+ preserving the normalization !2%i

N ($i(2=!" and ortho-
normality !'$i ($ j)="ij" conditions.

Exc#!$ is subsequently defined in the following decompo-
sition of FHK#!$:

FHK#!$ = Ts#!$ + J#!$ + Exc#!$ , !7"

where J#!$ is the Coulomb repulsion integral

J#!$ =
1
2 & & !!r!"!!r!!"

(r! − r!!(
dr!!dr! . !8"

In this work, functionals depending on other quantities than
electron density are considered. In the Kohn-Sham frame-
work, which is based on a reference system of noninteracting
electrons, the total energy functional !%KS" depends on a set
of one-electron functions !*$i+"—the Kohn-Sham orbitals
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Variational methods to treat a many-electron system embedded in the environment, which is represented by
means of only its electron density, are considered. It is shown that the embedding operator is a local potential
in the case where the electron-electron repulsion is treated exactly and the trial embedded wave function takes
the multideterminantal form with a fixed number of determinants. The local embedding potential is constructed
by imposing that it leads to the same electron density as the one which minimizes the Hohenberg-Kohn
functional. For the limiting cases of single-determinant and configuration interaction forms of the embedded
wave function, the expressions for the local embedding potential using commonly known density functionals
are given. The relation between the derived local embedding potential and the effective embedding potential in
the case of the embedded Kohn-Sham system #T. A. Wesołowski and A. Warshel, J. Phys. Chem. 97, 8050
!1993"$ is discussed in detail.
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I. INTRODUCTION

Numerical simulations of condensed-matter systems at the
quantum-mechanics level face inevitably a dilemma of trad-
ing accuracy of the applied approximate method for the pos-
sibility of including a large number of atoms in the model.
The Hohenberg-Kohn-Sham formulation of density-
functional theory #1,2$ proved essential in moving the size
limits upwards. Indeed, the commonly used approximations
to the exchange-correlation !Exc#"$" energy are sufficiently
adequate because the errors due to the fact that they are not
exact are acceptable for a large number of problems and
systems. Nevertheless, some well-defined systems cannot be
described satisfactorily using common simple approxima-
tions to Exc#"$. Such cases include systems for which single-
determinantal wave function provides a qualitatively wrong
approximation of the exact one #3$. Development of such
beyond-Kohn-Sham formalisms, which are based on
Hohenberg-Kohn theorems but use other reference systems
than the noninteracting electrons, is currently the area of in-
tensive research #3,4$ motivated by these flaws. The wave-
function-based methods are free from such deficiencies but
are applicable only to systems of relatively small size. For a
particular type of problems, where the primary interests con-
cern details of the electronic structure which are well-
localized in real space, the size limits can be pushed further
by means of applying the embedding strategy. In this strat-
egy, the wave function or the Kohn-Sham orbitals are con-
structed for the selected subsystem, whereas the effects of
the environment are accounted for by means of a special
operator !embedding operator". In the simplest case, the em-
bedding operator takes into account only the electrostatic
contributions. In more refined approaches, effects of
quantum-mechanical origin are also represented using such
descriptors of the environment as pseudopotentials or orbit-
als #5,6$.

If the embedded system is described by means of embed-
ded Kohn-Sham orbitals, the exact effective potential can be
expressed using universal density functionals #7,8$. The part
of the whole effective potential taking into account the pres-

ence of the environment !orbital-free effective embedding
potential", does not require any information about the envi-
ronment besides its electron density and the electrostatic po-
tential generated by other electric charges !nuclei". It is ap-
pealing, therefore, to combine the density-functional-theory
derived orbital-free effective embedding potential of Ref. #7$
with a multideterminantal representation of the embedded
subsystem. Such a combination has a potential to overcome
two types of limitations of the Kohn-Sham-based methods
by pushing the size limit of amenable model systems up-
wards !when applicable" and the possibility of treating the
systems of multideterminantal character. Indeed, these ad-
vantages have been recognized by Carter, Wang, and col-
laborators who applied such an combination in numerical
simulations #9,10$. A straightforward application of such a
combination leads, however, to the risk of inconsistent treat-
ment of some energy components of the total energy and
even conceptual difficulties #11$. In this work, we address
these issues by identifying the assumptions and approxima-
tions involved. To this end, we derive the relation between
the exact local embedding operator and the quantities ex-
pressed by means of exact density functionals.

Finally, we stress that the common element in the present
considerations is the requirement that only electron density is
used as a descriptor of electrons in the environment. Possible
formal frameworks, in which the environment is described
using other quantities—pseudopotentials or orbitals for in-
stance #5,6$—lie outside of the scope of this work. The
orbital-free representation of the environment is of key im-
portance for applications of the resulting computational ap-
proach in the domain of nonempirical multiscale computer
simulations #8$ because the electron density is a well-defined
quantity at both microscopic and macroscopic scales.

II. EMBEDDING A MULTIDETERMINANTAL WAVE
FUNCTION IN AN ORBITAL-FREE ENVIRONMENT

A. Construction of the local embedding operator—outline

The strategy applied in this work follows the same gen-
eral lines as the ones used by others #12–15$ to answer the
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The search for the optimal density ρopt
AB

(�r) is not performed directly, i.e., among densities but
among auxiliary quantities - embedded wavefunctions Ψemb

A
.

ρAB(�r) = ρB(�r) +
�
Ψemb

A

���ΣNA
i=1δ(�r − �ri)

���Ψemb

A

�
(2)

Using conventional density functionals defined in Levy constrained search formulation of DFT:
Exc[ρ] for the exchange-correlation density functional and Ts[ρ] for the density functional for the
kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF

AB
[ΨA

, ρB]:

E
EWF

AB [ΨA
, ρB] = < ΨA|ĤA|ΨA

> +∆F
SC [ρA] +

+
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r (3)

+ T
nad

s [ρA, ρB] + E
nad

xc [ρA, ρB]

+ E
HK

vB
[ρB] +

�
ρB(�r)vA(�r)d�r,

where: E
nad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] and T

nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] −

Ts[ρB], whereas ĤA denotes a Hamiltonian for NA-electrons in the external potential vA(�r). The
decomposition of the total external potential vAB(�r) (usually Coulombic attractions by the nuclei)
into two components vA(�r) and vB(�r) in the above formula is arbitrary not affect the FDET results.

Turning back to the density functional ∆F
SC [ρ], it is also defined through the constrained search:

∆F
SC(WFT )[ρA] = min

ΨA−→ρA

�
ΨA

���T̂2NA + V̂
ee

2NA

���ΨA

�
(4)

− min
ΨWF
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�
ΨWF

A

���T̂2NA + V̂
ee

2NA

���ΨWF

A

�
,

where ΨWF

A
indicates a trial function used in the search procedure of the form admissible in the used

wavefunction based method, whereas, ΨA is a trial wavefunction from the wider class of functions
comprising all v-representable densities [4, 5]. It is bound from above by zero and by Ec[ρ] from below
[2]. In practical applications this functional is neglected and will not be considered here either.

Owing to this representation of the total density, optimization of the total density by means of
the Euler-Lagrange equations leads not only to the stationary density and the stationary energy but,
additionally, to the stationary wavefunction. Such function can be used for interpretation purposes
and for evaluation of observables using quantum-mechanical operators. Moreover, compared to the
density functional the energy functional EEWF

AB
[ρAB], the energy functional EEWF

AB
[ΨA

, ρB] can be
accurately approximated for practical applications.

The Euler-Lagrange equation for embedded wavefunction Ψemb

A
reads:

δEEWF

AB
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A
, ρB]

δΨemb
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− λΨemb

A = 0, (5)

where E
EWF

AB
[Ψemb

A
, ρB] is the total energy expressed as a functional depending on Ψemb

A
and ρB(�r),

where λ is the Lagrange multiplier associated with the normalization of the embedded wavefunction.
Eq. 5 takes the following alternative form better suited for the further discussions:

�
ĤA + v̂emb

�
Ψemb

A = �Ψemb

A , (6)

where v̂emb is the potential given by the following charge-density functional:
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�

ρB(�r�)

|�r� − �r|d�r
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δEnad
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δρA(�r)
. (7)

For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆F
SC [ρ]

is denoted with E
nad
xct [ρA, ρB] from here on.
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additionally, to the stationary wavefunction. Such function can be used for interpretation purposes
and for evaluation of observables using quantum-mechanical operators. Moreover, compared to the
density functional the energy functional EEWF

AB
[ρAB], the energy functional EEWF

AB
[ΨA

, ρB] can be
accurately approximated for practical applications.

The Euler-Lagrange equation for embedded wavefunction Ψemb

A
reads:

δEEWF

AB
[Ψemb

A
, ρB]

δΨemb

A

− λΨemb

A = 0, (5)

where E
EWF

AB
[Ψemb

A
, ρB] is the total energy expressed as a functional depending on Ψemb

A
and ρB(�r),

where λ is the Lagrange multiplier associated with the normalization of the embedded wavefunction.
Eq. 5 takes the following alternative form better suited for the further discussions:

�
ĤA + v̂emb

�
Ψemb

A = �Ψemb

A , (6)

where v̂emb is the potential given by the following charge-density functional:

vemb[ρA, ρB, vB](�r) = vB(�r) +
�

ρB(�r�)

|�r� − �r|d�r
� +

δEnad
xct [ρA, ρB]

δρA(�r)
. (7)

For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆F
SC [ρ]

is denoted with E
nad
xct [ρA, ρB] from here on.

2

vemb (r)=vemb[ρA,ρB,vB] (r) 
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Abstract

The Euler-Lagrange equations for the embedded wavefunction may lead to several solutions

in Frozen-Density Embedding Theory (FDET) [Wesolowski, Phys. Rev. A 77, 11444 (2008)].

Following the Levy-Perdew theorems [Perdew and Levy, Phys. Rev. B 31, 6264 (1985)] [1], other-

than ground state solutions can be associated with excited states. Due to the dependency of the

functional for the embedding potential on the embedded density (ρA), embedded wavefunctions for

different electronic states are not orthogonal. In practical calculations where the density functional

for the FDET embedding potential is approximation the deviations form orthogonality might be

enhanced. The orthogonality might be rigorously assured by means using linearized functionals

as proposed in our earlier work [Wesolowski, J. Chem. Phys. 140, 18A530 (2014)]. Linearization

consists of using some reference density (ρrefA ) instead of a state-dependent ρA in the embedding

potential and the addition of a self-consistency assuring term in the energy. The numerical values

presented in this work concern local excitations in model chromophores non-covalently bound to

the molecules in the environment. It is shown that practically the same excitation energies are

obtained using either linearized (i.e. independent on ρA) and the conventional (non-linear, i.e.,

depending on ρA) functionals.

1 Introduction - TW

Extension of the first part of the abstract

The present paper has the following structure. Sections 2-4 provide an overview of the relevant litera-

ture concerning studies of excited states of species embedded in a frozen density. The key elements of

the conventional formulation of FDET as given originally in Ref. [2]: the total energy functional, the

Euler-Lagrange equations for stationary embedded wavefunction, and the functional for the embed-

ding potential, in particular, are summarized in Section 2. The linearized version of FDET, proposed

in Ref. [3] for excited states, is given in Section 3). Section 4 provides a concise overview of common

approximations made in the literature seen as approximations to the conventional form of the FDET

or to their linearized version of FDET. In section 5 the numerical results obtained in the present study

by means of either versions of the FDET are discussed.

2 Frozen-Density Embedding Theory

Below we introduce the key elements of Frozen-Density Embedding Theory [2], which concerns the

search for the density minimizing the following density functional for a given ρB(�r):

EFDET
[ρB] = min

∀�r ρAB(�r) ≥ ρB(�r)�
ρ(�r)d�r = NAB

EHK

vAB
[ρ] = EHK

vAB
[ρopt

AB
] (1)

where EHK
vAB

[ρ] is the Hohenberg-Kohn total energy functional for NAB electrons in the external po-

tential vAB(�r).

1

The present work is organized as follows. We start with

a nutshell presentation of Frozen-Density Embedding
Theory which is followed by the overview of the literature

concerning the dependence of the FDET results on the

choice of the frozen density. A dedicated section deals with
the issue of electronic polarization of the environment seen

from the FDET perspective. The results section deals with

the dependence on energies of local excitations on the
chosen qB. In the first part, clusters consisting of cis-7-

hydroxyquinoline (7HQ) and from one-to three hydrogen-
bonded molecules are used to test three strategies to gen-

erate qB (superposition of atomic densities, superposition

of molecular densities, ground-state Kohn–Sham calcula-
tions for the whole environment). For these clusters, shifts

of the excitation energies obtained in gas-phase experi-

ments, benchmark quality EOM–FDET (for the smallest
ones only) and FDET/LR-TDDFT calculations are avail-

able (see data collected in Refs. [8, 47]). These three types

of shifts do not differ from each other significantly and
provide reference data to investigate the effect of the

choice of qB in the FDET/LR-TDDFT calculations. The

second part of the results section concerns larger systems,
for which the third strategy to generate the frozen density is

applied extensively and the effect of varying qB on the

calculated shifts is investigated in detail.

1.1 Frozen-Density Embedding Theory

Frozen-Density Embedding Theory [20–23] concerns

minimizing the total energy for a system comprising NAB

electrons in the external potential vðrÞ in the presence of
the constraint q# qB:

Eemb½qB% ¼ min
qðrÞ# qBðrÞ# 0R

qðrÞdr¼NAB

EHK
v ½q% ð1Þ

where EHK
v ½q% is the Hohenberg–Kohn functional of the

total energy [48] and qB is a given function.

There are no other constraints for qBðrÞ than the ones

given in Eq. 1. If the integral
R
qBðrÞdr is an integer

(denoted by NB) then the difference NA ¼ NAB ' NB is also

an integer, and the above definition can be written
alternatively:

Eemb½qB% ¼ min
qAðrÞ# 0R
qAðrÞdr¼NA

EHK
v ½qA þ qB% ð2Þ

We mention here the closely related formal framework

of partition DFT [49, 50], in which the integrals
R
qAðrÞdr

and
R
qBðrÞdr can be fractional numbers which add up to an

integer (NAB). In FDET, the integral
R
qBðrÞdr can be also a

fractional number. In such a case, however, the definition of

Eemb½qB% given in Eq. 2 is not applicable and Eemb½qB% is

only defined in Eq. 1. FDET provides a practical strategy to

perform such a search by constructing an appropriate
embedding potential (vembðrÞ) assuring satisfaction of the

constraint q# qB. The embedding potential is determined

uniquely by the following quantities: electron density of the
environment (denoted as qB throughout this work), electron

density of the embedded system (qAðrÞ ¼ qðrÞ ' qBðrÞ# 0

by construction), and the density of the positive charge of

the environment (qposB ðrÞ is usually the sum of nuclear

charges) which generates the electrostatics potential

vBðrÞ ¼
R qposB ðr0Þ

jr0'rj dr
0. The form of this correspondence was

derived for embedding various quantum mechanical

systems: reference system of non-interacting electrons

(the Kohn–Sham system [51]) [20, 21], interacting
wavefunction [22], and one-particle reduced density

matrix [23] and reads:2

vemb½qA; qB; vB%ðrÞ ¼ vBðrÞ þ
Z

qBðr0Þ
jr0 ' rj

dr0

þ dEnad
xc qA; qB½ %
dqAðrÞ

þ dTnad
s qA; qB½ %
dqAðrÞ

ð3Þ

The non-additive bi-functionals occurring in the last two
terms in the above equation are defined through the

functionals for the exchange-correlation energy Exc½q% and
for the kinetic energy in the non-interacting reference
system Ts½q% known in Kohn–Sham formulation of Density

Functional Theory [48, 51]. In particular, the constrained

search definition [53, 54] of the bi-functional Tnad
s ½qA; qB%

reads:

Tnad
s ½qA; qB% ¼ min

Ws!qAþqB
Ws T̂

!! !!Ws

" #

' min
Ws!qA

Ws T̂
!! !!Ws

" #
' min

Ws!qB
Ws T̂

!! !!Ws

" #

ð4Þ

where, Ws denotes a trial function of the form of a single-

determinant. The index s used in Ts½q% and all subsequently
defined quantities is used to indicate that the concerned

definitions involve the reference system of non-interacting

electrons for which the ground-state wavefunction has this
form.

In practice, the quality of calculated environment-

induced shifts of a given property of the embedded system
obtained from FDET-based multi-level simulations, which

is calculated either as the expectation value of the operator
associated to this property or from response theory-based

calculations using embedded wavefunction (like FDET/

2 In the case of embedded interacting wavefunction of the truncated
Configuration Interaction form, an additional term in the embedding
potential is needed [22] but it is a matter of convention whether this
term is considered a part of the embedding potential or the potential
for subsystem A (see also the relevant discussion in Ref. [52]).
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4) Functional for the local embedding potential 

 2) Energy as the functional of ρB  and ΨA 1)  Constraint for the total 
density (ρB – is arbitrary) 

FDET in capsule: variational method to obtain embedded wavefunction ΨA   

Attention:  
inhomogeneity of the “interaction energy functional” 

ground-state energy and density for the total system [3].

vemb[ρA, ρB;�r] = vB(�r) +
�

ρB(�r�)

|�r� − �r|d�r
�

+
δTnad

s [ρA, ρB]

δρA(�r)
+

δEnad
xc [ρA, ρB]

δρA(�r)
+

δ∆FMD [ρA]

δρA(�r)

3 Inhomogeneity of the ”Interaction Functional”

�
ρA(�r)vB(�r)d�r +

� �
ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r

+ Tnad
s [ρA, ρB] + Enad

xc [ρA, ρB] �=
�

ρA(�r)vemb[ρA, ρB;�r]d�r

�
ΨA|v̂emb|ΨA

�
=

�
ρA(�r)vemb[ρA, ρB;�r]d�r

�= Tnad
s [ρA, ρB] + Enad

xc [ρA, ρB] +
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r

3.1 Euler-Lagrange Equations for the embedded wavefunc-
tion: excited state

On the virtue of Perdew-Levy theorem on the stationary states of the

ground-state energy functional [22], other than ground-state solutions of

the FDET version of the Euler-Lagrange equations (Eq. ??), correspond to

excited states.

We underline that, all subsequent considerations concerning the excited

states apply strictly only if the density ρB is such that ρB < ρototal and

ρB < ρItotal, where ρototal and ρItotal denote the exact ground- and excited

state of the whole system, respectively. Only for such densities FDET leads

to exact solutions (energy and density). If the density ρB does not satisfy

these conditions, FDET leads to the upper bound of the ground-state energy

of the whole system. For excited states, however, interpreting the stationary

3
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The present work is organized as follows. We start with

a nutshell presentation of Frozen-Density Embedding
Theory which is followed by the overview of the literature

concerning the dependence of the FDET results on the

choice of the frozen density. A dedicated section deals with
the issue of electronic polarization of the environment seen

from the FDET perspective. The results section deals with

the dependence on energies of local excitations on the
chosen qB. In the first part, clusters consisting of cis-7-

hydroxyquinoline (7HQ) and from one-to three hydrogen-
bonded molecules are used to test three strategies to gen-

erate qB (superposition of atomic densities, superposition

of molecular densities, ground-state Kohn–Sham calcula-
tions for the whole environment). For these clusters, shifts

of the excitation energies obtained in gas-phase experi-

ments, benchmark quality EOM–FDET (for the smallest
ones only) and FDET/LR-TDDFT calculations are avail-

able (see data collected in Refs. [8, 47]). These three types

of shifts do not differ from each other significantly and
provide reference data to investigate the effect of the

choice of qB in the FDET/LR-TDDFT calculations. The

second part of the results section concerns larger systems,
for which the third strategy to generate the frozen density is

applied extensively and the effect of varying qB on the

calculated shifts is investigated in detail.

1.1 Frozen-Density Embedding Theory

Frozen-Density Embedding Theory [20–23] concerns

minimizing the total energy for a system comprising NAB

electrons in the external potential vðrÞ in the presence of
the constraint q# qB:

Eemb½qB% ¼ min
qðrÞ# qBðrÞ# 0R

qðrÞdr¼NAB

EHK
v ½q% ð1Þ

where EHK
v ½q% is the Hohenberg–Kohn functional of the

total energy [48] and qB is a given function.

There are no other constraints for qBðrÞ than the ones

given in Eq. 1. If the integral
R
qBðrÞdr is an integer

(denoted by NB) then the difference NA ¼ NAB ' NB is also

an integer, and the above definition can be written
alternatively:

Eemb½qB% ¼ min
qAðrÞ# 0R
qAðrÞdr¼NA

EHK
v ½qA þ qB% ð2Þ

We mention here the closely related formal framework

of partition DFT [49, 50], in which the integrals
R
qAðrÞdr

and
R
qBðrÞdr can be fractional numbers which add up to an

integer (NAB). In FDET, the integral
R
qBðrÞdr can be also a

fractional number. In such a case, however, the definition of

Eemb½qB% given in Eq. 2 is not applicable and Eemb½qB% is

only defined in Eq. 1. FDET provides a practical strategy to

perform such a search by constructing an appropriate
embedding potential (vembðrÞ) assuring satisfaction of the

constraint q# qB. The embedding potential is determined

uniquely by the following quantities: electron density of the
environment (denoted as qB throughout this work), electron

density of the embedded system (qAðrÞ ¼ qðrÞ ' qBðrÞ# 0

by construction), and the density of the positive charge of

the environment (qposB ðrÞ is usually the sum of nuclear

charges) which generates the electrostatics potential

vBðrÞ ¼
R qposB ðr0Þ

jr0'rj dr
0. The form of this correspondence was

derived for embedding various quantum mechanical

systems: reference system of non-interacting electrons

(the Kohn–Sham system [51]) [20, 21], interacting
wavefunction [22], and one-particle reduced density

matrix [23] and reads:2

vemb½qA; qB; vB%ðrÞ ¼ vBðrÞ þ
Z

qBðr0Þ
jr0 ' rj

dr0

þ dEnad
xc qA; qB½ %
dqAðrÞ

þ dTnad
s qA; qB½ %
dqAðrÞ

ð3Þ

The non-additive bi-functionals occurring in the last two
terms in the above equation are defined through the

functionals for the exchange-correlation energy Exc½q% and
for the kinetic energy in the non-interacting reference
system Ts½q% known in Kohn–Sham formulation of Density

Functional Theory [48, 51]. In particular, the constrained

search definition [53, 54] of the bi-functional Tnad
s ½qA; qB%

reads:

Tnad
s ½qA; qB% ¼ min

Ws!qAþqB
Ws T̂

!! !!Ws

" #

' min
Ws!qA

Ws T̂
!! !!Ws

" #
' min

Ws!qB
Ws T̂

!! !!Ws

" #

ð4Þ

where, Ws denotes a trial function of the form of a single-

determinant. The index s used in Ts½q% and all subsequently
defined quantities is used to indicate that the concerned

definitions involve the reference system of non-interacting

electrons for which the ground-state wavefunction has this
form.

In practice, the quality of calculated environment-

induced shifts of a given property of the embedded system
obtained from FDET-based multi-level simulations, which

is calculated either as the expectation value of the operator
associated to this property or from response theory-based

calculations using embedded wavefunction (like FDET/

2 In the case of embedded interacting wavefunction of the truncated
Configuration Interaction form, an additional term in the embedding
potential is needed [22] but it is a matter of convention whether this
term is considered a part of the embedding potential or the potential
for subsystem A (see also the relevant discussion in Ref. [52]).
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3) Euler-Lagrange equation 

The search for the optimal density ρopt
AB

(�r) is not performed directly, i.e., among densities but
among auxiliary quantities - embedded wavefunctions Ψemb

A
.

ρAB(�r) = ρB(�r) +
�
Ψemb

A

���ΣNA
i=1δ(�r − �ri)

���Ψemb

A

�
(2)

Using conventional density functionals defined in Levy constrained search formulation of DFT:
Exc[ρ] for the exchange-correlation density functional and Ts[ρ] for the density functional for the
kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF

AB
[ΨA

, ρB]:

E
EWF

AB [ΨA
, ρB] = < ΨA|ĤA|ΨA

> +∆F
SC [ρA] +

+
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r (3)

+ T
nad

s [ρA, ρB] + E
nad

xc [ρA, ρB]

+ E
HK

vB
[ρB] +

�
ρB(�r)vA(�r)d�r,

where: E
nad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] and T

nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] −

Ts[ρB], whereas ĤA denotes a Hamiltonian for NA-electrons in the external potential vA(�r). The
decomposition of the total external potential vAB(�r) (usually Coulombic attractions by the nuclei)
into two components vA(�r) and vB(�r) in the above formula is arbitrary not affect the FDET results.

Turning back to the density functional ∆F
SC [ρ], it is also defined through the constrained search:

∆F
SC(WFT )[ρA] = min

ΨA−→ρA

�
ΨA

���T̂2NA + V̂
ee

2NA

���ΨA

�
(4)

− min
ΨWF

A −→ρA

�
ΨWF

A

���T̂2NA + V̂
ee

2NA

���ΨWF

A

�
,

where ΨWF

A
indicates a trial function used in the search procedure of the form admissible in the used

wavefunction based method, whereas, ΨA is a trial wavefunction from the wider class of functions
comprising all v-representable densities [4, 5]. It is bound from above by zero and by Ec[ρ] from below
[2]. In practical applications this functional is neglected and will not be considered here either.

Owing to this representation of the total density, optimization of the total density by means of
the Euler-Lagrange equations leads not only to the stationary density and the stationary energy but,
additionally, to the stationary wavefunction. Such function can be used for interpretation purposes
and for evaluation of observables using quantum-mechanical operators. Moreover, compared to the
density functional the energy functional EEWF

AB
[ρAB], the energy functional EEWF

AB
[ΨA

, ρB] can be
accurately approximated for practical applications.

The Euler-Lagrange equation for embedded wavefunction Ψemb

A
reads:

δEEWF

AB
[Ψemb

A
, ρB]

δΨemb

A

− λΨemb

A = 0, (5)

where E
EWF

AB
[Ψemb

A
, ρB] is the total energy expressed as a functional depending on Ψemb

A
and ρB(�r),

where λ is the Lagrange multiplier associated with the normalization of the embedded wavefunction.
Eq. 5 takes the following alternative form better suited for the further discussions:

�
ĤA + v̂emb

�
Ψemb

A = �Ψemb

A , (6)

where v̂emb is the potential given by the following charge-density functional:

vemb[ρA, ρB, vB](�r) = vB(�r) +
�

ρB(�r�)

|�r� − �r|d�r
� +

δEnad
xct [ρA, ρB]

δρA(�r)
. (7)

For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆F
SC [ρ]

is denoted with E
nad
xct [ρA, ρB] from here on.

2

The search for the optimal density ρopt
AB

(�r) is not performed directly, i.e., among densities but
among auxiliary quantities - embedded wavefunctions Ψemb

A
.

ρAB(�r) = ρB(�r) +
�
Ψemb

A

���ΣNA
i=1δ(�r − �ri)

���Ψemb

A

�
(2)

Using conventional density functionals defined in Levy constrained search formulation of DFT:
Exc[ρ] for the exchange-correlation density functional and Ts[ρ] for the density functional for the
kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF

AB
[ΨA

, ρB]:

E
EWF

AB [ΨA
, ρB] = < ΨA|ĤA|ΨA
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kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF
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s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] −

Ts[ρB], whereas ĤA denotes a Hamiltonian for NA-electrons in the external potential vA(�r). The
decomposition of the total external potential vAB(�r) (usually Coulombic attractions by the nuclei)
into two components vA(�r) and vB(�r) in the above formula is arbitrary not affect the FDET results.

Turning back to the density functional ∆F
SC [ρ], it is also defined through the constrained search:
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where ΨWF

A
indicates a trial function used in the search procedure of the form admissible in the used

wavefunction based method, whereas, ΨA is a trial wavefunction from the wider class of functions
comprising all v-representable densities [4, 5]. It is bound from above by zero and by Ec[ρ] from below
[2]. In practical applications this functional is neglected and will not be considered here either.

Owing to this representation of the total density, optimization of the total density by means of
the Euler-Lagrange equations leads not only to the stationary density and the stationary energy but,
additionally, to the stationary wavefunction. Such function can be used for interpretation purposes
and for evaluation of observables using quantum-mechanical operators. Moreover, compared to the
density functional the energy functional EEWF

AB
[ρAB], the energy functional EEWF

AB
[ΨA

, ρB] can be
accurately approximated for practical applications.

The Euler-Lagrange equation for embedded wavefunction Ψemb

A
reads:
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δΨemb
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− λΨemb

A = 0, (5)

where E
EWF
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A
, ρB] is the total energy expressed as a functional depending on Ψemb

A
and ρB(�r),

where λ is the Lagrange multiplier associated with the normalization of the embedded wavefunction.
Eq. 5 takes the following alternative form better suited for the further discussions:
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ĤA + v̂emb

�
Ψemb

A = �Ψemb

A , (6)

where v̂emb is the potential given by the following charge-density functional:

vemb[ρA, ρB, vB](�r) = vB(�r) +
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ρB(�r�)

|�r� − �r|d�r
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δEnad
xct [ρA, ρB]

δρA(�r)
. (7)

For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆F
SC [ρ]

is denoted with E
nad
xct [ρA, ρB] from here on.
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FDET: case of ρo(r)≥ ρB(r) (for all r)  !

Target:!

    the grey density (ρtotal-ρB) as a ground-state of a NA electron system obtained !
    by adding a local potential to a NA-electron Hamiltonian!

Results: !

      ρo = ρtotal = ρB+ ρA
opt  and Eemb[ρB] = Eo !

ρo (NAB-electrons) 

ρB (NB-electrons) 



ρtotal (NAB-electrons) 

ρB (NB-electrons) 

  ρo ≠ ρtotal = ρB+ ρA
opt  !

  Eemb[ρB]≥ Eo !

FDET: case of ρo(r)< ρB(r) (in some domain of R3)  !



   FDET: What we gain? !

1)  The theory underlying any QM/MM method using local embedding potentials. !
!Instead of empirical parameters coupling QM with MM systems, FDET uses one 
descriptor ρB"

2) !Fully self-consistent expressions for:!
 !i) optimal energy (Eemb[ρB]), ii) embedded wavefunction, iii) embedded density.!

3) !Possibility to combine QM descriptors (ΨA) with any physical theory yielding electron 
density (nano- and macroscale)!

   FDET: What is the price? !
1)  Assured is only that (Eemb[ρB]≥ Eo) !

2)  The embedding potential depends on ρA (state) !

3)  Pandora’s box of challenges concerning approximations for the functional 
Exc

nad[ρA,ρB] and the functionals : !
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555 refs 80−83). The approximate version of eq 43, in which the
556 exact functionals Ts

nad[ρA,ρB] and Exc[ρ] are replaced by their
557 approximated counterparts, for the use in simulations, is the same
558 as the ones in the method by Senatore and Subbaswamy.84 In the
559 approximated case, the obtained energy may obviously lie below
560 the exact ground-state energy. Moreover, the localization of the
561 embedded orbitals is not only the result of constrained
562 optimization of the total energy but reflects also errors in the
563 used approximation to Ts

nad[ρA,ρB] (see section 4.1). Note also a
564 possible confusion with the term constrained DFT coined by an
565 Voorhis et al.85,86 It also concerns constraints imposed on
566 Kohn−Sham density (enforcing a particular charge occupancy
567 on selected parts through a strong constraint C[ρ] = 0) with the
568 constraint in FDET which is soft (∀r ⃗ ρ(r)⃗) ≥ ρB(r)⃗).
569 In the case of explicit treatment of the electron−electron
570 correlation in ĤA as in traditional variational methods of
571 wavefunction based quantum chemistry methods (WFT), the
572 role of the ΔFSC[ρA]term is different.
573 The ΔFSC(WFT)[ρA] term is defined by means of the
574 constrained search:

ρΔ = ⟨Ψ | ̂ + ̂ |Ψ ⟩

− ⟨Ψ | ̂ + ̂ |Ψ ⟩
ρ

ρ

Ψ →

Ψ →

F T V

T V

[ ] min

min

N N

N N

SC(WFT)
A A 2 2

ee
A

A
WF

2 2
ee

A
WF

A A
A A

A
WF

A
A A

575 (10)

576 whereΨA
WF indicates a trial function used in the search procedure

577 of the form admissible in the used wavefunction based method,
578 whereas ΨA is a trial wavefunction from the wider class of
579 functions comprising all v-representable densities.50,87 ΨA

WF can
580 take any form used in variational-principle conventional
581 wavefunction methods of quantum chemistry (see the textbooks
582 by Szabo and Ostlund,3,4 and by Helgaker, Olsen, and
583 Jorgensen,4 for instance) starting from as simple as a single
584 determinant (ΨA

SD) in the Hartree−Fock method, through the
585 forms in CASSCF or truncated CI methods, until the one in full
586 (CI) calculations.
587 ΔFSC(WFT)[ρA] is nonpositive, and it is bound from below by

ρΔ = ⟨Ψ | ̂ + ̂ |Ψ ⟩

− ⟨Ψ | ̂ + ̂ |Ψ ⟩
ρ

ρ

Ψ →

Ψ →

F T V

T V

[ ] min

min

N N

N N

SC(SD)
A A 2 2

ee
A

A
SD

2 2
ee

A
SD

A A
A A

A
SD

A
A A

588 (11)

589 ΔFSC(SD)[ρA] is just the correlation functional as introduced by
590 Baroni and Tuncel88 for treatment of correlation in generalized
591 Kohn−Sham framework using exchange energy evaluated using
592 100% of exact exchange (the idea mentioned already in the
593 original Kohn−Sham publication49). The zero value is reached
594 only in the limit of the embedded wavefunction of the full CI
595 form. For truncated CI forms of the embedded wavefunction, the
596 numerical values of this functional lie between the two limits.
597 Since theΔFSC(WFT)[ρA] functional depends on ρA(r)⃗ only (no
598 contribution from either ρB(r)⃗ or vB(r)⃗), it is a matter of
599 convention to consider it as an error in correlation energy for
600 truncated CI type of methods or to relate it to embedding (see
601 the relevant discussion in ref 62). Numerical tests show that this
602 term can bemost likely neglected in practice because of the use of
603 other approximations leading to larger errors.89 It is worthwhile
604 to mention here the DFT formulation by Savin77 (for further
605 recent formal developments see ref 90), where the electron−
606 electron interactions are represented in ĤA in a hybrid way
607 (explicitly or implicitly depending on the range). Accurate
608 numerical data indicate that limiting the orbital space can be

609efficiently compensated by a density functional.91 The
610interpretation of the ΔFSC[ρ] functional lies between that in
611two extreme model situations: that of Kohn−Sham formulation
612where the search in orbital space is limited to single-determinants
613andΔFSC[ρ] is needed to obtain exact energy expression and that
614in a full CI) where such term is not needed at all.
615Finally, we note that it is not the total energy, which is the
616target of FDET based simulations, but the difference between the
617total energy and the energy of the subsystem B. Once the external
618potential is partitioned into its vA and vB components, the latter is
619given as HvA

HK[ρB] which is constant if ρB(r)⃗ is frozen. If the
620investigated process involves changes in the charge densities in
621the environment, the corresponding changes in energy are not
622derived from FDET but from the method chosen to describe the
623environment: using atomic potentials in QM/MM methods,
624energy obtained from lower quality quantum mechanical
625method, using optimized orbitals obtained in subsystem DFT
626calculations, for instance.

2.2. More on Key Features of FDET

627In this section, the key quantities of FDET are discussed in more
628detail. We focus on their interpretation and relations with
629notions known in methods for multilevel simulations.
6302.2.1. Nonadditivity of the Density Functional for the
631Kinetic Energy. The bifunctional Ts

nad[ρA,ρB]is defined using
632the constrained search procedure:

ρ ρ

ρ ρ ρ ρ
ρ ρ
ρ ρ
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min min
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A B
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A(opt)
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s
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B(opt)

B

s A B

s A s B

633(12)

634where Ψs denotes an N-electron single-determinant trial
635wavefunction.
636The constrained search definition of Ts

nad[ρA,ρB] shows clearly
637why this bifunctional can be nonzero despite the fact that, for
638determinants constructed using a common set of orthogonal
639orbitals, the kinetic energy is strictly additive. The three
640constrained searches for the optimal wavefunctions used in the
641definition ofTs

nad[ρA,ρB] are independent and lead to three sets of
642orthogonal orbitals. The orbitals from different sets might,
643however, be nonorthogonal.
644For the pair ρA(r)⃗ and ρB(r)⃗, which are constants (uniform
645electron gas), the density of the nonadditive kinetic energy
646ts

nad[ρA,ρB](r)⃗ can be evaluated analytically. It is non-negative and
647reads

ρ ρ
ρ ρ ρ ρ

⃗
= ⃗ + ⃗ − ⃗ − ⃗

t r

C r r r r

[ , ]( )

(( ( ) ( )) ( ) ( ))
s
nad(TF)

A B

TF A B
5/3

A
5/3

B
5/3

648(13)

649with CTF = 2.871 in atomic units.
650The corresponding functional for Ts

nad[ρA,ρB] is obtained by
651integration of ts

nad[ρA,ρB](r)⃗

∫ρ ρ ρ ρ ρ ρ= + − − ⃗ ≥t C dr[ , ] (( ) ) 0s
nad(TF)

A B TF A B
5/3

A
5/3

B
5/3

652(14)
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work, we consider an alternative pathway to reach
self-consistency in the case of Eq. (1). The dominant
component of the embedding potential [the first
two terms in Eq. (3)] is constant and does not re-
quire reevaluation during the self-consistent proce-
dure. However, its exchange-correlation-and ki-
netic components need reevaluation each time !A
changes because each of them is the functional de-
rivative of a density functional which is not linear
in !A (for detailed discussion of nonlinearity of the
exact functional Exc [!] or Ts [!]), see Refs. [19, 20].
The above considerations on nonlinearity hold also
for common approximants to Ts [!] and Exc [!] used
in Eq. (3). Concerning nonlinearity of the kinetic
energy component, linearizing it by expanding
around reference density !A

0 chosen to be the den-
sity in the absence of environment was found to be
acceptable simplification [21]. For van der Waals
contacts, hydrogen bonds, and complexes involv-
ing cations the corresponding errors were found to
be numerically insignificant.

This work builds on the above observations and
the fact that, owing to similar analytic forms of the
kinetic-and the exchange-correlation components
of the orbital-free effective embedding potential,
the latter can be expected to be treated in a similar
way as that in the linearization scheme used previ-
ously for Ts

nad!!A,!B". Linearizing not only Ts
nad!!A,!B"

but also Exc
nad!!A,!B" leads to the embedding poten-

tial, which does not need to be recalculated each
time !A changes. Note that the electrostatic compo-
nent of the embedding potential does not depend
on !A at all. Therefore, an alternative numerical
procedures to solve Eq. (1) can be envisaged which
take advantage of the !A-independence of the total
embedding potential after linearization of its non-
linear components. In the present work, such an al-
ternative—splitSCF—is proposed. Compared to the
conventional self-consistent calculations, splitSCF
involves two self-consistent loops (Fig. 1). The inner
one uses linearized embedding potential whereas
the outer one assures that the linearized and exact
embedding potentials are the same in the end. The
splitSCF calculations provide, therefore, an alterna-
tive pathway to achieve self-consistency compared
to conventional calculations. Splitting the iterative
cycles opens also the possibility to introduce addi-
tional simplifications leading to reduction in time of
calculations.

A key element in the splitSCF calculations is the
linearized orbital-free embedding potential. For
any set of embedded orbitals, the associated elec-
tron density is !A " 2!i

NA"#i
A"2. Expanding the em-

bedding potential vemb
KSCED!!A,!B;r!" in a Taylor series

around some well-chosen reference density (!A
0 )

and truncating the series after the first non-disap-
pearing term leads to the potential referred to in
this work as linearized orbital-free effective embed-
ding potential:

vemb
KSCED!!A,!B;r!" # vemb

KSCED!!A
0 ,!B;r!" " vext

B #r!$ $ $ !B#r!$
"r! % % r"dr!

$
&Exc

nad!!,!B"

&!
"!&!A

0 $ vt!!A
0 ,!B"#r!$ (8)

The above potential is to be used in the inner loop
in the splitSCF calculations (see Fig. 1). The splitSCF
scheme to solve Eq. (1) brings another advantage.
We recall here that the last two terms in the poten-
tial given in Eq. (3) are density functionals. There-
fore, if the densities !A

0 and !A are the same, the
corresponding embedding potentials are the same
as well. If, however, they differ only slightly, skip-
ping the outer loop might be an acceptable approx-
imation (linearization approximation). If the lineariza-
tion approximation is applied in particular large-

ϑ [ ]+ϑ [ , ]KS emb A ρBρAA

i+1i

ρρ i

ϑ [ ]+ϑ [ρ , ]KS emb A ρBρAρA

i+1

ϑemb

i

=const]Bρ,Aρ[

j j+1

a)

b)

j−1j, i j, i

j−1

FIGURE 1. (a) The splitSCF scheme: In the inner loop
(i-index), the embedding potential vemb[!A, !B] is evalu-
ated for !A taken from the previous iteration in the
outer loop (j-index) and remains constant, whereas the
vKS[!A] component is recalculated as !A changes. (b)
The conventional SCF scheme: Both vKS[!A] and
vemb[!A, !B] are recalculated as !A changes.
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TOMASZ A. WESOŁOWSKI
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3.1. ELECTRON DENSITIES

We start the analysis of the effect of the lineariza-
tion approximation on electron density. To this end,
the geometrical distance (denoted by M) between the
electron density derived from either the Kohn–Sham
calculations or Eq. (1) is analyzed. M is defined as:

M !
1
N!" !"KS!r!" # !"A

KSCED!r!" $ "B!r!"""2dr! (9)

where N is the number of electrons in both sub-
systems, and "A

KSCED!r!" is the density obtained either
with or without linearization of the orbital-free em-
bedding potential.

Linearization errors in M are evaluated as differ-
ences between M obtained with and without linear-
ization approximation. M might be nonzero and
positive even if the linearization approximation is
not applied for two principal reasons. First of all,
the difference "KS!r!" # "B!r!" might be not pure-state
noninteracting %-representable. For instance, if the
assumed electron density "B is larger than "KS!r!" for
some r!. Secondly, even if "KS!r!" # "B!r!" is pure-state
noninteracting %-representable, replacing the exact

functional Ts
nad#"A,"B$ by an approximant in Eq. (1)

leads to an error in electron density. As a conse-
quence, the obtained density "A might differ from
"KS!r!" # "B!r!".

Since electron density is a local quantity com-
parisons between two densities are not straight-
forward. The use of a global quantity, M makes
the discussion of the effects of linearization errors
on density significantly simpler. The linearization
errors in M together with the reference values of
this quantity are collected in Tables I and II. The
quality of the densities is very good, both for
LDA and GGA approximants to the embedding
potential.

Comparison to the nonlinearized case reveals
that most of the differences are very small, typically
relative errors are in the range of 0.3 ppm. In the
case of H2O-Li%, strong polarization of the water
molecule due to the interaction with charged Li%

atom results in the slightly larger error than in other
molecules. Similarly, for the NH3-ClF molecule, the
deformation of the density because of the charge
transfer character of the interaction leads to the
relative linearization error reaching 3.15 ppm in the
case of the gradient-free approximant.
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FIGURE 2. The convergence of the outer-loop of the splitSCF procedure for various properties of the H2O molecule
in the H2O-H2O complex. The results of conventional self-consistent calculations are indicated by dashed lines.
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Split-SCF FDET calculations 
(embedded non-interacting reference system)!



1 Overview

1.1 Energy Expressions

1.1.1 FDET total energy
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For reasons of clarity both non-additive terms are summarized in the following expression throughout this document:
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1.1.2 Method B: Linearization
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1.2 FDET Calculations

First of all CASSCF calculations were carried out on the optimized A· · ·B geometry. As a next step only the isolated
system A was considered for another CASSCF run using the same active space. State-averaged CASSCF orbitals
obtained from the isolated case were used as input orbitals for the first CASCI run (pre-iteration) in the frozen
density embedding protocol. During the FDET calculation only one root was considered at a time by assigning 100%
weight to the selected root. The resulting wavefunction and orbitals are stored and serve as input for the following
CASCI calculations (see Figure 1).
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Figure 1: CASCI iteration cycles with regard to ρA updates.

1

Split-SCF FDET calculations for each electronic state 
(self-consistent potential and embedded wavefunction but non-orthogonal embedded 

wavefunctions for different states)!



2 System 1: Uracil

2.1 General Remarks
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Figure 2: Structural details of uracil and the uracil-H2O complexes.

2.1.1 Computational Details

All uracil-water complex geometries were optimized on the B3LYP/cc-pVDZ level of theory. With regards to CASSCF
calculations a state-averaging routine was employed in which roots 1-5 were given equal weights. For all CASSCF /
CASCI calculations the cc-pVTZ basis set was used. Following DeFusco’s, et al. [1] choice for the active space, seven
occupied orbitals (π(CC) and π(CO), π(N), n(O) for each peptide unit) and three unoccupied orbitals (π∗(CC) and
2 times π∗(CO)) were selected resulting in total to CAS(14,10).

Table 1: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2
mostly
π2(N)

→ π∗
ring

S3 n2(O) → π∗
2(CO)

S4
mostly
π1(N)

→ π∗
ring

2.2 Water complex U1

2.2.1 Method A

Table 2: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation energies
(off-diagonal elements) in eV.

E0 E1 E2 E3 E4

ρA,0 0.00 -2.74E-06 -2.39E-06 -2.50E-06 2.72E-09
ρA,1 2.52E-06 5.13 -8.16E-09 1.52E-07 2.56E-06
ρA,2 2.40E-06 -1.17E-07 6.44 3.27E-08 2.46E-06
ρA,3 2.54E-06 -2.23E-07 1.63E-07 6.77 2.59E-06
ρA,4 -1.69E-07 -2.90E-06 -2.56E-06 -2.42E-06 7.14
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Figure 2: Structural details of uracil and the uracil-H2O complexes.

2.1.1 Computational Details

All uracil-water complex geometries were optimized on the B3LYP/cc-pVDZ level of theory. With regards to CASSCF
calculations a state-averaging routine was employed in which roots 1-5 were given equal weights. For all CASSCF /
CASCI calculations the cc-pVTZ basis set was used. Following DeFusco’s, et al. [1] choice for the active space, seven
occupied orbitals (π(CC) and π(CO), π(N), n(O) for each peptide unit) and three unoccupied orbitals (π∗(CC) and
2 times π∗(CO)) were selected resulting in total to CAS(14,10).

Table 1: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2
mostly
π2(N)

→ π∗
ring

S3 n2(O) → π∗
2(CO)

S4
mostly
π1(N)

→ π∗
ring

2.2 Water complex U1

2.2.1 Method A

Table 2: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation energies
(off-diagonal elements) in eV.

E0 E1 E2 E3 E4

ρA,0 0.00 -2.74E-06 -2.39E-06 -2.50E-06 2.72E-09
ρA,1 2.52E-06 5.13 -8.16E-09 1.52E-07 2.56E-06
ρA,2 2.40E-06 -1.17E-07 6.44 3.27E-08 2.46E-06
ρA,3 2.54E-06 -2.23E-07 1.63E-07 6.77 2.59E-06
ρA,4 -1.69E-07 -2.90E-06 -2.56E-06 -2.42E-06 7.14

2

Embedded uracil 
(embedded CASCI reference system)!

Figure 3: Plot of wavefunction overlap matrix for 5× 5 states from the last iteration. The set of states corresponding to a state-specific
calculation are labelled in alphabetic order (A → S0, B → S1,etc.). White elements correspond to �Ψi|Ψj� = 0. For all other
matrix elements log10(δij) was used instead of δij .

Table 3: Wavefunction overlap matrix elements of self-consistent states.

Ψsc
0 Ψsc

1 Ψsc
2 Ψsc

3 Ψsc
4

Ψsc
0 1

Ψsc
1 1.00E-08 1

Ψsc
2 5.19E-06 -2.00E-08 1

Ψsc
3 1.25E-06 9.02E-05 -3.41E-05 1

Ψsc
4 7.10E-07 -4.00E-08 -2.47E-05 7.09E-05 1

2.2.2 Method B

Table 4: Self-consistent non-additive energies (exchange-correlation and kinetic), respective energies obtained by linearization (based on
the ground state density of the isolated molecule) and the difference of both in electronvolts.

State Enad
xc,T [ρ

sc
A , ρB ] Ẽnad

xc,T [ρ
ref
A , ρB ] ∆Enad

xc,T

[Hartree] [Hartree] [eV]

S0 0.0334024073 0.0334024159 2.34E-07
S1 0.0333856235 0.0333856870 1.73E-06
S2 0.0332257360 0.0332267578 2.78E-05
S3 0.0293551305 0.0294094330 1.48E-03
S4 0.0333213939 0.0333218012 1.11E-05
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3 System 2: Dipeptide

3.1 General Remarks

! "

(a) Distinction of peptide units (b) Dipeptide-H2O complex

Figure 9: Structural details of the dipeptide system.

3.1.1 Computational Details

The Dipeptide water complex geometry was optimized on the B3LYP/cc-pVTZ level of theory. With regards to the
CASSCF calculation a state-averaging routine was employed in which roots 1-7 were given equal weights. For all
CASSCF / CASCI calculations the cc-pVTZ basis set was used. As proposed by Serrano-Andrés and Fülscher [2], for
both peptide units the π(CO), π(N), n(O) and π∗(CO) orbitals together with the corresponding 6 electrons have
been included in the active space resulting in total to CAS(12,8).

Table 14: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2 n2(O) → π∗
2(CO)

S3
π1(CO)
π1(N)

→ π∗
2(CO)
π∗
1(N)

S4 π2(N) → π∗
2(CO)

S5
n1(O)
π1(N)

→ π∗
2(CO)
π∗
2(N)

S6 π1(N) → π∗
1(CO)

3.2 Method A

Table 15: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5 E6

ρA,0 0.00 -9.01E-07 2.93E-06 2.99E-06 -5.88E-07 3.04E-06 3.21E-06
ρA,1 6.23E-07 6.00 3.82E-06 3.56E-06 1.28E-07 3.84E-06 3.80E-06
ρA,2 -2.90E-06 -3.58E-06 6.51 -1.17E-07 -3.54E-06 1.36E-08 2.04E-07
ρA,3 -2.88E-06 -3.89E-06 1.31E-07 8.60 -3.58E-06 -2.99E-08 3.81E-08
ρA,4 4.63E-07 -2.20E-07 3.52E-06 3.48E-06 8.82 3.44E-06 3.69E-06
ρA,5 -2.73E-06 -3.72E-06 1.28E-07 1.28E-07 -3.42E-06 9.25 3.48E-07
ρA,6 -3.11E-06 -3.84E-06 1.01E-07 -2.34E-07 -3.66E-06 -5.99E-08 9.38
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3 System 2: Dipeptide

3.1 General Remarks

(a) Distinction of peptide units (b) Dipeptide-H2O complex

Figure 9: Structural details of the dipeptide system.

3.1.1 Computational Details

The Dipeptide water complex geometry was optimized on the B3LYP/cc-pVTZ level of theory. With regards to the
CASSCF calculation a state-averaging routine was employed in which roots 1-7 were given equal weights. For all
CASSCF / CASCI calculations the cc-pVTZ basis set was used. As proposed by Serrano-Andrés and Fülscher [2], for
both peptide units the π(CO), π(N), n(O) and π∗(CO) orbitals together with the corresponding 6 electrons have
been included in the active space resulting in total to CAS(12,8).

Table 14: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2 n2(O) → π∗
2(CO)

S3
π1(CO)
π1(N)

→ π∗
2(CO)
π∗
1(N)

S4 π2(N) → π∗
2(CO)

S5
n1(O)
π1(N)

→ π∗
2(CO)
π∗
2(N)

S6 π1(N) → π∗
1(CO)

3.2 Method A

Table 15: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5 E6

ρA,0 0.00 -9.01E-07 2.93E-06 2.99E-06 -5.88E-07 3.04E-06 3.21E-06
ρA,1 6.23E-07 6.00 3.82E-06 3.56E-06 1.28E-07 3.84E-06 3.80E-06
ρA,2 -2.90E-06 -3.58E-06 6.51 -1.17E-07 -3.54E-06 1.36E-08 2.04E-07
ρA,3 -2.88E-06 -3.89E-06 1.31E-07 8.60 -3.58E-06 -2.99E-08 3.81E-08
ρA,4 4.63E-07 -2.20E-07 3.52E-06 3.48E-06 8.82 3.44E-06 3.69E-06
ρA,5 -2.73E-06 -3.72E-06 1.28E-07 1.28E-07 -3.42E-06 9.25 3.48E-07
ρA,6 -3.11E-06 -3.84E-06 1.01E-07 -2.34E-07 -3.66E-06 -5.99E-08 9.38
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Embedded dipeptide 
(embedded CASCI reference system)!

Figure 10: Plot of wavefunction overlap matrix for 7×7 states from the last iteration. The set of states corresponding to a state-specific
calculation are labelled in alphabetic order (A → S0, B → S1,etc.). White elements correspond to �Ψi|Ψj� = 0. For all other
matrix elements log10(δij) was used instead of δij .

Table 16: Wavefunction overlap matrix elements of self-consistent states.

Ψsc
0 Ψsc

1 Ψsc
2 Ψsc

3 Ψsc
4 Ψsc

5 Ψsc
6

Ψsc
0 1

Ψsc
1 3.50E-07 1

Ψsc
2 1.90E-07 -1.60E-05 1

Ψsc
3 -5.20E-07 2.10E-07 -1.71E-04 1

Ψsc
4 2.45E-06 3.80E-07 -3.03E-06 4.44E-05 1

Ψsc
5 5.00E-08 -4.68E-06 -3.42E-05 9.50E-07 1.57E-05 1

Ψsc
6 -4.27E-06 -1.45E-06 -2.51E-05 1.17E-05 2.58E-06 1.03E-04 1

3.3 Method B

Table 17: Self-consistent non-additive energies (exchange-correlation and kinetic), respective energies obtained by linearization (based
on the ground state density of the isolated molecule) and the difference of both in electronvolts.

State Enad
xc,T [ρ

sc
A , ρB ] Ẽnad

xc,T [ρ
ref
A , ρB ] ∆Enad

xc,T

[Hartree] [Hartree] [eV]

S0 0.0293150837 0.0293150962 3.40E-07
S1 0.0294381029 0.0294382919 5.14E-06
S2 0.0256480315 0.0256836379 9.69E-04
S3 0.0293338156 0.0293368102 8.15E-05
S4 0.0294787949 0.0294780028 -2.16E-05
S5 0.0291155223 0.0291183138 7.60E-05
S6 0.0292734911 0.0292740827 1.61E-05
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4 System 3: Bromine

4.1 General Remarks

Figure 12: Br2-H2O complex.

4.1.1 Computational Details

The geometry for this system was optimized on the MP2/aug-cc-pVDZ level of theory. With regards to the CASSCF
calculation a state-averaging routine was employed in which roots 1-6 were given equal weights. For all CASSCF
/ CASCI calculations the aug-cc-pVDZ basis set was used. For the active space 7 occupied orbitals (σg,σu,σg and
doubly degenerate πu,πg) and one unoccupied σ∗

u orbital were selected resulting in CAS(14,8).

Table 19: Types of excitation determined by difference of ground state and excited state density. The z-axis is defined by the Br-Br
bond.

S0 → Character of excitation

S1 πx → σ∗
z

S2 πy → σ∗
z

S3 πx → σ∗
z

S4 πy → σ∗
z

S5 πxy → σ∗
z

4.2 Method A

Table 20: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5

ρA,0 0.00 1.99E-06 5.52E-07 1.93E-06 1.79E-06 -1.09E-07
ρA,1 -1.79E-06 3.23 -1.58E-06 -8.17E-09 -2.50E-07 -1.87E-06
ρA,2 -4.73E-07 1.50E-06 3.24 1.41E-06 1.21E-06 -4.63E-07
ρA,3 -1.73E-06 1.88E-07 -1.43E-06 4.92 -1.93E-07 -1.87E-06
ρA,4 -1.77E-06 1.12E-07 -1.55E-06 1.61E-07 4.93 -1.98E-06
ρA,5 7.67E-07 2.42E-06 6.99E-07 2.11E-06 1.89E-06 6.04
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4 System 3: Bromine

4.1 General Remarks

Figure 12: Br2-H2O complex.

4.1.1 Computational Details

The geometry for this system was optimized on the MP2/aug-cc-pVDZ level of theory. With regards to the CASSCF
calculation a state-averaging routine was employed in which roots 1-6 were given equal weights. For all CASSCF
/ CASCI calculations the aug-cc-pVDZ basis set was used. For the active space 7 occupied orbitals (σg,σu,σg and
doubly degenerate πu,πg) and one unoccupied σ∗

u orbital were selected resulting in CAS(14,8).

Table 19: Types of excitation determined by difference of ground state and excited state density. The z-axis is defined by the Br-Br
bond.

S0 → Character of excitation

S1 πx → σ∗
z

S2 πy → σ∗
z

S3 πx → σ∗
z

S4 πy → σ∗
z

S5 πxy → σ∗
z

4.2 Method A

Table 20: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5

ρA,0 0.00 1.99E-06 5.52E-07 1.93E-06 1.79E-06 -1.09E-07
ρA,1 -1.79E-06 3.23 -1.58E-06 -8.17E-09 -2.50E-07 -1.87E-06
ρA,2 -4.73E-07 1.50E-06 3.24 1.41E-06 1.21E-06 -4.63E-07
ρA,3 -1.73E-06 1.88E-07 -1.43E-06 4.92 -1.93E-07 -1.87E-06
ρA,4 -1.77E-06 1.12E-07 -1.55E-06 1.61E-07 4.93 -1.98E-06
ρA,5 7.67E-07 2.42E-06 6.99E-07 2.11E-06 1.89E-06 6.04
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Embedded bromine 
(embedded CASCI reference system)!

Figure 13: Plot of wavefunction overlap matrix for 6×6 states from the last iteration. The set of states corresponding to a state-specific
calculation are labelled in alphabetic order (A → S0, B → S1,etc.). White elements correspond to �Ψi|Ψj� = 0. For all other
matrix elements log10(δij) was used instead of δij .

Table 21: Wavefunction overlap matrix elements of self-consistent states.

Ψsc
0 Ψsc

1 Ψsc
2 Ψsc

3 Ψsc
4 Ψsc

5

Ψsc
0 1

Ψsc
1 1.09E-06 1

Ψsc
2 -7.00E-08 6.60E-07 1

Ψsc
3 6.00E-08 2.31E-05 0.00E+00 1

Ψsc
4 6.00E-08 0.00E+00 2.66E-05 2.90E-07 1

Ψsc
5 1.10E-06 -2.82E-06 2.60E-07 -6.85E-06 4.00E-07 1

4.3 Method B

Table 22: Self-consistent non-additive energies (exchange-correlation and kinetic), respective energies obtained by linearization (based
on the ground state density of the isolated molecule) and the difference of both in electronvolts.

State Enad
xc,T [ρ

sc
A , ρB ] Ẽnad

xc,T [ρ
ref
A , ρB ] ∆Enad

xc,T

[Hartree] [Hartree] [eV]

S0 0.0138840107 0.0138846411 1.72E-05
S1 0.0219387007 0.0219303639 -2.27E-04
S2 0.0219245121 0.0219161615 -2.27E-04
S3 0.0229063413 0.0228987591 -2.06E-04
S4 0.0229462160 0.0229387911 -2.02E-04
S5 0.0302733500 0.0302728965 -1.23E-05
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Partial conclusions (1): 

As a result of the ρA-dependence of the embedding potential, 
the other than lowest energy solutions of the Euler-Lagrange  
equation in FDET are not orthogonal to the lowest-energy solution. 

Is it important? 



Advances in electronic structure theory,  Paris, France, April. 27, 2015 

The issue of orthogonality in Frozen-Density Embedding Theory 

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski 
Department of Physical Chemistry, University of Geneva 

I.   Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET!
!FDET energy functional, Euler Lagrange Equations, ρA-dependency of the embedding potential!

II.   Non-orthogonal solutions!
!embedded function (CASCI form), double-SCF, <ΨA

k|ΨA
m> overlap!

III.   Orthogonal solutions from the linearized FDET energy functional!
!Linearized  FDET energy functional, ρA

ref-insensitivity of the excitation energies!

IV. (Lack-of) Homogeneity of the density functional for the interaction energy!
!expectation energy of the FDET embedding potential operator vs. FDET energies!

Département	
  de	
  Chimie	
  Physique 



 FDET !

The search for the optimal density ρopt
AB

(�r) is not performed directly, i.e., among densities but
among auxiliary quantities - embedded wavefunctions Ψemb

A
.

ρAB(�r) = ρB(�r) +
�
Ψemb

A

���ΣNA
i=1δ(�r − �ri)

���Ψemb

A

�
(2)

Using conventional density functionals defined in Levy constrained search formulation of DFT:
Exc[ρ] for the exchange-correlation density functional and Ts[ρ] for the density functional for the
kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF

AB
[ΨA

, ρB]:

E
EWF

AB [ΨA
, ρB] = < ΨA|ĤA|ΨA

> +∆F
SC [ρA] +

+
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r (3)

+ T
nad

s [ρA, ρB] + E
nad

xc [ρA, ρB]

+ E
HK

vB
[ρB] +

�
ρB(�r)vA(�r)d�r,

where: E
nad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] and T

nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] −

Ts[ρB], whereas ĤA denotes a Hamiltonian for NA-electrons in the external potential vA(�r). The
decomposition of the total external potential vAB(�r) (usually Coulombic attractions by the nuclei)
into two components vA(�r) and vB(�r) in the above formula is arbitrary not affect the FDET results.

Turning back to the density functional ∆F
SC [ρ], it is also defined through the constrained search:

∆F
SC(WFT )[ρA] = min

ΨA−→ρA

�
ΨA

���T̂2NA + V̂
ee

2NA

���ΨA

�
(4)

− min
ΨWF

A −→ρA

�
ΨWF

A

���T̂2NA + V̂
ee

2NA

���ΨWF

A

�
,

where ΨWF

A
indicates a trial function used in the search procedure of the form admissible in the used

wavefunction based method, whereas, ΨA is a trial wavefunction from the wider class of functions
comprising all v-representable densities [4, 5]. It is bound from above by zero and by Ec[ρ] from below
[2]. In practical applications this functional is neglected and will not be considered here either.

Owing to this representation of the total density, optimization of the total density by means of
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xct [ρA, ρB] the linearized approximation reads.

Enad
xct [ρA, ρB] ≈ Ẽnad
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Using the above linearized approximation leads to the following FDET embedding potential which is
ρA-independent:
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4 Related approaches: overview of the literature - AZ

papers using the expectation value of the embedding operator, papers using the Conventional method
(Double-SCF),papers using reference density and no linearization correction in the energy

4.1 Expectation value of the embedding operator

Table ?? collects the differences between Eint defined in Eq. 9 and the expectation values of the
embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
bromine complex up to 0.0035 mHartree in the uracil complexes and are system-dependent although
they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.

5 Results-AZ

5.1 Numerical Details

systems, methods, double-scf

5.1.1 Systems

For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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[2]. In practical applications this functional is neglected and will not be considered here either.
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ĤA + v̂emb

�
Ψemb

A = �Ψemb

A , (6)

where v̂emb is the potential given by the following charge-density functional:

vemb[ρA, ρB, vB](�r) = vB(�r) +
�

ρB(�r�)

|�r� − �r|d�r
� +

δEnad
xct [ρA, ρB]

δρA(�r)
. (7)

For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and∆F
SC [ρA]

is denoted with E
nad
xct [ρA, ρB] from here on.

E
nad

xct [ρA, ρB] = E
nad

xc [ρA, ρB] + T
nad

s [ρA, ρB] +∆F
SC [ρA] (8)

2

The corresponding expression for the energy functional reads:

E
EWF

AB [ΨA
, ρB] = < ΨA|ĤA|ΨA
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tum chemistry (see the textbooks by Szabo and Ostlund [6, 7], and by Helgaker, Olsen, and Jor-
gensen [7] , for instance) starting from as simple as a single determinant (ΨSD

A
) in the Hartree-Fock

method, through the forms in CASSCF or truncated CI methods, until the one in Full (CI ) calcula-
tions.

The apparent similarity between Eq. 6 and the eigenvalue problem in the conventional methods of
quantum chemistry might obscure the key features of FDET. The embedding potential given in Eq. 7
might be seen as an addition to the one-electron operator. If Eq. 6 has several solutions they, indeed,
can be associated with different electronic states but the investigators are not orthogonal due to the ρA-
dependency of the embedding potential. The present work focuses on this issue. The other qualitative
difference between the one-electron operators and the embedding potential in FDET is the relation
between the expectation value of the embedding operator and the corresponding components of the
total energy functional. The embedding potential is the functional derivative of the corresponding
energy terms (Eint defined below. As a result:
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In a large domain of applications of the approximated potential given in Eq. 7, the densities ρA
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Refs. [8, 9, 10, 11, 12]). In such a case, the electrostatic components of the embedding potential might
dominate. Since these classical energy components of the FDET energy functional (Eq. 3) are ρA-
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The homogeneity relations for Ts[ρ] are different for uniform electron gas (order 5/3) and for any
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2 System 1: Uracil

2.1 General Remarks

(a) Distinction of pep-
tide units

(b) U1 (c) U3 (d) U4

Figure 2: Structural details of uracil and the uracil-H2O complexes.

2.1.1 Computational Details

All uracil-water complex geometries were optimized on the B3LYP/cc-pVDZ level of theory. With regards to CASSCF
calculations a state-averaging routine was employed in which roots 1-5 were given equal weights. For all CASSCF /
CASCI calculations the cc-pVTZ basis set was used. Following DeFusco’s, et al. [1] choice for the active space, seven
occupied orbitals (π(CC) and π(CO), π(N), n(O) for each peptide unit) and three unoccupied orbitals (π∗(CC) and
2 times π∗(CO)) were selected resulting in total to CAS(14,10).

Table 1: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2
mostly
π2(N)

→ π∗
ring

S3 n2(O) → π∗
2(CO)

S4
mostly
π1(N)

→ π∗
ring

2.2 Water complex U1

2.2.1 Method A

Table 2: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation energies
(off-diagonal elements) in eV.

E0 E1 E2 E3 E4

ρA,0 0.00 -2.74E-06 -2.39E-06 -2.50E-06 2.72E-09
ρA,1 2.52E-06 5.13 -8.16E-09 1.52E-07 2.56E-06
ρA,2 2.40E-06 -1.17E-07 6.44 3.27E-08 2.46E-06
ρA,3 2.54E-06 -2.23E-07 1.63E-07 6.77 2.59E-06
ρA,4 -1.69E-07 -2.90E-06 -2.56E-06 -2.42E-06 7.14
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Using the above linearized approximation leads to the following FDET embedding potential which is
ρA-independent:
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4 Related approaches: overview of the literature - AZ

papers using the expectation value of the embedding operator, papers using the Conventional method
(Double-SCF),papers using reference density and no linearization correction in the energy

4.1 Expectation value of the embedding operator

Table ?? collects the differences between Eint defined in Eq. 9 and the expectation values of the
embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
bromine complex up to 0.0035 mHartree in the uracil complexes and are system-dependent although
they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.

5 Results-AZ

5.1 Numerical Details

systems, methods, double-scf

5.1.1 Systems

For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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functional Ẽnad
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Using the above linearized approximation leads to the following FDET embedding potential which is
ρA-independent:
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4.1 Expectation value of the embedding operator

Table ?? collects the differences between Eint defined in Eq. 9 and the expectation values of the
embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
bromine complex up to 0.0035 mHartree in the uracil complexes and are system-dependent although
they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.
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For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
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they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.
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Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
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they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.
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For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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3 System 2: Dipeptide

3.1 General Remarks

(a) Distinction of peptide units (b) Dipeptide-H2O complex

Figure 9: Structural details of the dipeptide system.

3.1.1 Computational Details

The Dipeptide water complex geometry was optimized on the B3LYP/cc-pVTZ level of theory. With regards to the
CASSCF calculation a state-averaging routine was employed in which roots 1-7 were given equal weights. For all
CASSCF / CASCI calculations the cc-pVTZ basis set was used. As proposed by Serrano-Andrés and Fülscher [2], for
both peptide units the π(CO), π(N), n(O) and π∗(CO) orbitals together with the corresponding 6 electrons have
been included in the active space resulting in total to CAS(12,8).

Table 14: Types of excitation determined by difference of ground state and excited state density.

S0 → Character of excitation

S1 n1(O) → π∗
1(CO)

S2 n2(O) → π∗
2(CO)

S3
π1(CO)
π1(N)

→ π∗
2(CO)
π∗
1(N)

S4 π2(N) → π∗
2(CO)

S5
n1(O)
π1(N)

→ π∗
2(CO)
π∗
2(N)

S6 π1(N) → π∗
1(CO)

3.2 Method A

Table 15: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5 E6

ρA,0 0.00 -9.01E-07 2.93E-06 2.99E-06 -5.88E-07 3.04E-06 3.21E-06
ρA,1 6.23E-07 6.00 3.82E-06 3.56E-06 1.28E-07 3.84E-06 3.80E-06
ρA,2 -2.90E-06 -3.58E-06 6.51 -1.17E-07 -3.54E-06 1.36E-08 2.04E-07
ρA,3 -2.88E-06 -3.89E-06 1.31E-07 8.60 -3.58E-06 -2.99E-08 3.81E-08
ρA,4 4.63E-07 -2.20E-07 3.52E-06 3.48E-06 8.82 3.44E-06 3.69E-06
ρA,5 -2.73E-06 -3.72E-06 1.28E-07 1.28E-07 -3.42E-06 9.25 3.48E-07
ρA,6 -3.11E-06 -3.84E-06 1.01E-07 -2.34E-07 -3.66E-06 -5.99E-08 9.38
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functional Ẽnad
xct [ρA, ρB] the linearized approximation reads.
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Using the above linearized approximation leads to the following FDET embedding potential which is
ρA-independent:

ṽemb[ρ
ref
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4 Related approaches: overview of the literature - AZ

papers using the expectation value of the embedding operator, papers using the Conventional method
(Double-SCF),papers using reference density and no linearization correction in the energy

4.1 Expectation value of the embedding operator

Table ?? collects the differences between Eint defined in Eq. 9 and the expectation values of the
embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
bromine complex up to 0.0035 mHartree in the uracil complexes and are system-dependent although
they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.

5 Results-AZ

5.1 Numerical Details

systems, methods, double-scf

5.1.1 Systems

For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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4 System 3: Bromine

4.1 General Remarks

Figure 12: Br2-H2O complex.

4.1.1 Computational Details

The geometry for this system was optimized on the MP2/aug-cc-pVDZ level of theory. With regards to the CASSCF
calculation a state-averaging routine was employed in which roots 1-6 were given equal weights. For all CASSCF
/ CASCI calculations the aug-cc-pVDZ basis set was used. For the active space 7 occupied orbitals (σg,σu,σg and
doubly degenerate πu,πg) and one unoccupied σ∗

u orbital were selected resulting in CAS(14,8).

Table 19: Types of excitation determined by difference of ground state and excited state density. The z-axis is defined by the Br-Br
bond.

S0 → Character of excitation

S1 πx → σ∗
z

S2 πy → σ∗
z

S3 πx → σ∗
z

S4 πy → σ∗
z

S5 πxy → σ∗
z

4.2 Method A

Table 20: Self-consistent excitation energies (diagonal elements) and differences of self-consistent and not self-consistent excitation
energies (off-diagonal elements) in eV.

E0 E1 E2 E3 E4 E5

ρA,0 0.00 1.99E-06 5.52E-07 1.93E-06 1.79E-06 -1.09E-07
ρA,1 -1.79E-06 3.23 -1.58E-06 -8.17E-09 -2.50E-07 -1.87E-06
ρA,2 -4.73E-07 1.50E-06 3.24 1.41E-06 1.21E-06 -4.63E-07
ρA,3 -1.73E-06 1.88E-07 -1.43E-06 4.92 -1.93E-07 -1.87E-06
ρA,4 -1.77E-06 1.12E-07 -1.55E-06 1.61E-07 4.93 -1.98E-06
ρA,5 7.67E-07 2.42E-06 6.99E-07 2.11E-06 1.89E-06 6.04
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functional Ẽnad
xct [ρA, ρB] the linearized approximation reads.
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xct [ρA, ρB] ≈ Ẽnad
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Using the above linearized approximation leads to the following FDET embedding potential which is
ρA-independent:
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4 Related approaches: overview of the literature - AZ

papers using the expectation value of the embedding operator, papers using the Conventional method
(Double-SCF),papers using reference density and no linearization correction in the energy

4.1 Expectation value of the embedding operator

Table ?? collects the differences between Eint defined in Eq. 9 and the expectation values of the
embedding potential. The differences are in the range from 0.0013 mHartree in the case of the
bromine complex up to 0.0035 mHartree in the uracil complexes and are system-dependent although
they seem not to vary significantly with the state. Their vary within 0.0001 mHartree at most for
all considered states in each investigated system. As a result, almost perfect compensation of these
contributions occurs for evaluation of the excitation energies. Approximation given in Eq. 10 appears
to be exceptionally good for evaluation of the excitation energies. This numerical examples show
that assuming a priori the approximation given in Eq. 10 as it was made in Refs. [?] is adequate
for this type of embedded situations. For the analysis of the potential dissociation energies, however,
no such compensation occurs (the embedding contributions to the energy are zero at dissociation by
construction). The error in the range of 0.003 mHartree although small is not negligible.

5 Results-AZ

5.1 Numerical Details

systems, methods, double-scf

5.1.1 Systems

For this investigation monohydrates of Uracil, a model dipeptide and Bromine were considered. Uracil
serves as a common example for local n → π∗ and π → π∗ excitations. Three different uracil monohy-
drates were employed in the embedding calculations, which will be referenced to as U1, U3 and U4
from here on.[?] The model dipeptide, which consists of two N -Methylacetamide units, was used as
an example for charge-transfer excitations.[?, ?]

Lastly the case of bromine monohydrate was chosen because of significant changes in the density
upon excitation of the bromine molecule.[?]

5.1.2 Methods

All FDE calculations were carried out with the CASSCF module of MOLCAS 8.1. However, in order to
study state-specificity of the embedding potential only one root was considered at a time by assigning
100% weight to the selected root and orbital optimization was disabled resulting in CASCI.

At the beginning the structure of the A· · ·B supermolecule is optimized at the CASSCF level of
theory. A subsequent state-averaged CASSCF calculation (same weight for each root) was carried
out considering only the active system (A) of the optimized supermolecule-structure. The resulting
orbitals were used as input orbitals for the first CASCI run (pre-iteration) in the frozen density
embedding protocol (see Fig. XX). In the first iteration the embedding potential is constructed using
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Partial conclusions (2): 

1) Linearization (in ρA) of the FDET energy as proposed in  
[Wesolowski, J. Chem. Phys.  140 (2014) 18A530] leads to 

-  excitation energies remarkably insensitive  to the choice of ρA
ref   

-  practically identical energies  conventional FDET results  (non-linearized) 

2) The orthogonality of all embedded wavefunctions is assured by construction without  
destroying the self-consistency between:  energy, embedded density,  and embedded wavefunctions  
(all come from the same Euler-Lagrange equation) 

3) One embedding calculations for ALL electronic states 

4) Linearized FDET can be applied for any approximation for Exct[ρA,ρB] 



Advances in electronic structure theory,  Paris, France, April. 27, 2015 

The issue of orthogonality in Frozen-Density Embedding Theory 

Alex Zech, Francesco Aquilante, Tomasz A. Wesolowski 
Department of Physical Chemistry, University of Geneva 

I.   Other-than-the-lowest solutions of the Euler-Lagrange Equation in FDET!
!FDET energy functional, Euler Lagrange Equations, ρA-dependency of the embedding potential!

II.   Non-orthogonal solutions!
!embedded function (CASCI form), double-SCF, <ΨA

k|ΨA
m>  overlap!

III.   Orthogonal solutions from the linearized FDET energy functional!
!Linearized  FDET energy functional, ρA

ref-insensitivity of the excitation energies!

IV. (Lack-of) Homogeneity of the density functional for the interaction energy!
!expectation energy of the FDET embedding potential operator vs. FDET energies!
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   The meaning of !

ΨWF
A can take any form used in variational-principle conventional wave-function methods of quan-

tum chemistry (see the textbooks by Szabo and Ostlund [6, 7], and by Helgaker, Olsen, and Jor-
gensen [7] , for instance) starting from as simple as a single determinant (ΨSD

A ) in the Hartree-Fock
method, through the forms in CASSCF or truncated CI methods, until the one in Full (CI ) calcula-
tions.

The apparent similarity between Eq. 6 and the eigenvalue problem in the conventional methods of
quantum chemistry might obscure the key features of FDET. The embedding potential given in Eq. 7
might be seen as an addition to the one-electron operator. If Eq. 6 has several solutions they, indeed,
can be associated with different electronic states but the investigators are not orthogonal due to the ρA-
dependency of the embedding potential. The present work focuses on this issue. The other qualitative
difference between the one-electron operators and the embedding potential in FDET is the relation
between the expectation value of the embedding operator and the corresponding components of the
total energy functional. The embedding potential is the functional derivative of the corresponding
energy terms (Eint defined below. As a result:

Eint =
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r + Enad
xct [ρA, ρB] �= �ΨA|v̂emb|ΨA� (8)

In a large domain of applications of the approximated potential given in Eq. 7, the densities ρA
and ρB do not overlap strongly (see Ref. [?] for our recent review or the relevant other reviews given in
Refs. [8, 9, 10, 11, 12]). In such a case, the electrostatic components of the embedding potential might
dominate. Since these classical energy components of the FDET energy functional (Eq. 3) are ρA-
independent, the use of the expectation value of the whole embedding operator as the approximation
to Eint:

Eint =
�

ρA(�r)vB(�r)d�r +
� �

ρA(�r)ρB(�r�)

|�r − �r�| d�r�d�r + Enad
xct [ρA, ρB] ≈ �ΨA|v̂emb|ΨA� (9)

might be acceptable. In the present work, we will analyze numerically also the adequacy of such an
approximation:

Eint ≈ �ΨA|v̂emb|ΨA� (10)

3 Linearized approximations to the density functional Enad
xct [ρA, ρB]

The functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆FSC [ρA, ρB] are not order one homogeneous in ρA.
For none of the ”parent” functionals Ts[ρ], Ex[ρ], and Ec[ρ], the energy can be obtained as integral of
the corresponding potential with density due to the following inequalities.

Ts[ρ] �=
�

ρ(�r)
δTs[ρ]

δρ(�r)
d�r, (11)

Ex[ρ] �=
�

ρ(�r)
δEx[ρ]

δρ(�r)
d�r,

Ec[ρ] �=
�

ρ(�r)
δEc[ρ]

δρ(�r)
d�r,

The homogeneity relations for Ts[ρ] are different for uniform electron gas (order 5/3) and for any
close-shell two-electron systems (order 1) (see [13]). TW Check it: The numerical studies by Tozer
and Borgoo [14] on their density scaling properties in molecular systems indicate that these functionals
are not homogeneous. There is no reason to assume, therefore, that Tnad

s [ρA, ρB] is homogeneous. In
fact, common approximations for Tnad

s [ρA, ρB], such as Local Density Approximation used originally
in Ref. [15], or the ones derived from gradient expansion approximation [16] or Generalized Gradient
Approximation [17] are evidently not-order one homogeneous. The situation is similar in case of the
Ex[ρ] and Ec[ρ] [13].

Following Ref. [3], we introduce here an approximation to the density functional Enad
xct [ρA, ρB] that

is order-one homogeneous in ρA. Using some reference density ρrefA , and an approximate non-linear
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Δk = Eint [ρk] - <Ψk|vemb[ρA,k]|Ψk>!

State (k) Δk [Hartree] Δk-Δo [eV] 

0 0.003528983 0.00 

1 0.003531545 0.11 

2 0.00348885 0.11 

3 0.003139088 0.11 

4 0.003508729 0.11 

   Uracil-water (conf U1)!



Δk = Eint [ρk] - <Ψk|vemb[ρA,k]|Ψk>!

State (k) Δk [Hartree] Δk-Δo [eV] 

0 0.003384143 0.00 

1 0.003000736 0.11 

2 0.003394293 0.10 

3 0.003392354 0.10 

4 0.003353285 0.10 

   Uracil-water (conf U3)!



Δk = Eint [ρk] - <Ψk|vemb[ρA,k]|Ψk>!

State (k) Δk [Hartree] Δk-Δo [eV] 

0 0.001836451 0.0 

1 0.001539419 0.10 

2 0.001862862 0.10 

3 0.001839301 0.10 

4 0.001832712 0.10 

   Uracil-water (conf U4)!



Δk = Eint [ρk] - <Ψk|vemb[ρA,k]|Ψk>!

State (k) Δk [Hartree] Δk-Δo [eV] 

0 0.002860501 0.0 

1 0.00286837 0.10 

2 0.002540398 0.10 

3 0.002841887 0.10 

4 0.002857505 0.10 

5 0.0028504210 0.10 

6 0.0028410620 0.10 

   dipeptide-water !



Δk = Eint [ρk] - <Ψk|vemb[ρA,k]|Ψk>!

State (k) Δk [Hartree] Δk-Δo [eV] 

0 0.001191772 0.0 

1 0.001345661 0.06 

2 0.00134587 0.06 

3 0.001372212 0.06 

4 0.001374507 0.06 

5 0.001598166 0.06 

   bromine-water !



Partial Conclusions (3): 

A very good approximation for evaluation of excitation energies (total energy differences) . 
Higher than linear (in ρA) terms in the energy functional  are almost constant (around 0.1 eV). 

ΨWF
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is order-one homogeneous in ρA. Using some reference density ρrefA , and an approximate non-linear
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Conclusions: 
1) ρA-dependency of the embedding potential is an undesired feature of 
FDET leading to non-orthogonal embedded wavefunctions  
associated  to different electronics states and the need to one calculation for 
each state. 

2) Orthogonality is respected in linearized FDET 
       [Wesolowski, J. Chem. Phys.  140 (2014) 18A530], in which: 
-      excitation energies remarkably insensitive  to the choice of ρA

ref   
-       practically identical energies as the ones obtained using  
       conventional (non-linearized) calculations, 
-      one calculation for ALL states, 
-      linearized FDET can be made with ANY approximation to Exct[ρA,ρB] 

3) Linearization preserves the structure of FDET  
 (Euler-Lagrange equations, local embedding potential). 

4) The use of expectation value of the embedding potential is a very good  
approximation in evaluation of excitation energies due to the small variation  of 
the  higher-than-linear in ρA terms in the FDET energy functional (typical magnitude 0.1 eV). 

Funding: Fonds National Suisse de la Recherche Scientifique 
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FDET related research topics at University of Geneva!

The search for the optimal density ρopt
AB

(�r) is not performed directly, i.e., among densities but
among auxiliary quantities - embedded wavefunctions Ψemb

A
.

ρAB(�r) = ρB(�r) +
�
Ψemb

A

���ΣNA
i=1δ(�r − �ri)

���Ψemb

A

�
(2)

Using conventional density functionals defined in Levy constrained search formulation of DFT:
Exc[ρ] for the exchange-correlation density functional and Ts[ρ] for the density functional for the
kinetic energy in the non-interacting reference system and, additionally, the functional ∆F

SC [ρ] (see
below), leads to the following expression for the functional EEWF

AB
[ΨA

, ρB]:
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where: E
nad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] and T

nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] −

Ts[ρB], whereas ĤA denotes a Hamiltonian for NA-electrons in the external potential vA(�r). The
decomposition of the total external potential vAB(�r) (usually Coulombic attractions by the nuclei)
into two components vA(�r) and vB(�r) in the above formula is arbitrary not affect the FDET results.

Turning back to the density functional ∆F
SC [ρ], it is also defined through the constrained search:
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where ΨWF

A
indicates a trial function used in the search procedure of the form admissible in the used

wavefunction based method, whereas, ΨA is a trial wavefunction from the wider class of functions
comprising all v-representable densities [4, 5]. It is bound from above by zero and by Ec[ρ] from below
[2]. In practical applications this functional is neglected and will not be considered here either.

Owing to this representation of the total density, optimization of the total density by means of
the Euler-Lagrange equations leads not only to the stationary density and the stationary energy but,
additionally, to the stationary wavefunction. Such function can be used for interpretation purposes
and for evaluation of observables using quantum-mechanical operators. Moreover, compared to the
density functional the energy functional EEWF

AB
[ρAB], the energy functional EEWF

AB
[ΨA

, ρB] can be
accurately approximated for practical applications.

The Euler-Lagrange equation for embedded wavefunction Ψemb

A
reads:
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where E
EWF

AB
[Ψemb

A
, ρB] is the total energy expressed as a functional depending on Ψemb

A
and ρB(�r),

where λ is the Lagrange multiplier associated with the normalization of the embedded wavefunction.
Eq. 5 takes the following alternative form better suited for the further discussions:
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where v̂emb is the potential given by the following charge-density functional:
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For the sake of compactness, the sum of the three functionals Enad
xc [ρA, ρB], Tnad

s [ρA, ρB], and ∆F
SC [ρ]

is denoted with E
nad
xct [ρA, ρB] from here on.
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