The VB reading of MO-based wave functions

Paris VB workshop

J-P Malrieu and Celestino Angeli

Targets and content

- How to define a Valence space?
- Which basis to the valence space? The orthogonality problem
- Localized MOs, Bond MOs, Atom-centered Orbitals
-e.g. the aromatic contribution to the energy
- The physical analysis of the non-dynamical correlation energy: reading the CASSCF functions
-single bond
-multiple bond
- Beyond the valence space: the content of dynamical correlation -the dynamical polarization effect and the impact of the dynamical correlation on the valence wave function
. Diabatization of chemical reactions
General considerations about the relations between VB and MObased approaches

We consider that quantum chemistry has two tasks:

-reach accurate precisions (numbers), but also
-furnish pictorial interpretations.

The notion of Valence MOs and Valence configurations

History: molecules from atoms, hence a leading role of the outermost (valence) atomic orbitals of the atoms \longrightarrow minimal basis set descriptions

Introduction of extended basis sets, at HF and Cl levels

Question: is the valence basis set a meaningless concept?

A posteriori justification of the concept of valence monoelectronic orbitals

Whatever the level of correlation, one may calculate a density matrix of the ground state, $\quad \boldsymbol{R}=\sum_{k, l} \boldsymbol{a}_{k}^{+} \boldsymbol{a}_{k} \quad R_{0}=\left\langle\Psi_{0}\right| R\left|\Psi_{0}\right\rangle$
diagonalize $R_{0} \rightarrow$ naturals MOs (NOs). $\quad R_{0} \varphi_{k}=n_{k} \varphi_{k}$
If the molecule has M bonds and N core and lone pairs,

- M+N NOs have occupation numbers close to 2 , they look like the canonical HF MOs
- M other have occupation numbers of an order of magnitude close to 0.1 , they are essentially on valence AOs, have the same phases as the virtual MOs in a minimal basis set,
- others have smaller occupation numbers, and are essentially supported by nonvalence AOs

Constructivist justification : the valence CASSCF step

- The valence CASSCF defines an «optimal » valence only wave function
- optimal core
- optimal bonding, non-bonding and anti-bonding MOs
- optimal linear combination of valence configurations (i.e. a full Cl of the valence electrons in valence bonding and anti-bonding MOs)
- Warrants a correct dissociation into atoms or fragments
- Truncated CAS: in practice the valence CAS may be too large to be performed but one may always get local CASSCF for one or a few bonds:
entering a CASSCFcalculation from guess bonding and antibonding active MOs on a given chemical bond, one obtains a CASSCF solution for this bond, even when other bonds are more correlated (Evangelisti et al). One finds a CASSCF(2e-/2OM) solution for each bond. Which confirms the legitimacy of the Lewis' bond e- pair beyond HF.

Maynau et al, J. Chem. Phys. 116, 10060 (2002)

From symmetry-adapted to local orbitals

Natural MOs are symmetry-adapted

Unitary localizing transformation of the $\mathrm{M}+\mathrm{N}$ most occupied NOs \rightarrow core, bond and lone pair Orbitals
Unitary transformation of the $2 \mathrm{M}+\mathrm{N}$ most occupied $\mathrm{NOs} \rightarrow$ atom-centered core and valence Orbitals

CASSCF MOs define a space of valence monoelectronic wave functions φ_{i} The canonical MOs are symmetry-adapted but one define many other basis of this space of projector $\quad P_{0}=\sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$

Direct localization techniques of the active MOs:
-Rotations maximizing a localization criterion: Boys, Pipek-Mezey
\rightarrow Orthogonal Atom-centered Orbitals
Then on may express the active space in terms of anti-symmetrized products of these OAOs: Orthogonal VB determinants
The CASSCF wave function may be re-expressed in this basis set
\rightarrow OVB reading of the CASSCF function

a

b

c

Projection techniques

-Project guess MOs (fragment MOs , Bond $\mathrm{MOs}, \mathrm{AOs}$) in the valence space e.g.: start from a valence orbital of an atom, X_{p}, then

$$
\left|\chi_{p}^{\prime}\right\rangle=P_{0}\left|\chi_{p}\right\rangle=\sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i} \mid \chi_{p}\right\rangle
$$

is an atom-centered CASSCF MO, they are not orthogonal, but have tails on adjacent atoms

One may build determinants products of these orbitals,
\rightarrow VB-CASSCF determinants which span the CASSCF space, and express the CASSCF function in this basis
\rightarrow VB reading of the CASSCF wave function.

Other approach: diagonalize the restriction of the density matrix to the orbitals of the atom P , gives molecularly-adapted atomic orbitals: the most occupied, $\widetilde{\chi}_{p}$ may be used in place of the isolated atom AOs

Eventually orthogonalize the set $X_{p}^{\prime} \rightarrow X{ }_{p}{ }_{p}$ through $\mathrm{S}^{-1 / 2}$ or hierarchically, gives a basis of orthogonal atom-centered CASSCF MOs, again \rightarrow OVB reading of the CASSCF function

Trivial problems: homonuclear diatomic molecules
Single bonds:
$\mathrm{H}_{2}, 2 \mathrm{e}^{-}$in 2 MOs CASSCF, g and u and $\Psi=\lambda|\mathrm{g} \bar{g}|-\mu|u \bar{u}|$ with $\lambda \mu>0$
g and u define 2 OAO, centered on atoms A and B respectively,

$$
\begin{gathered}
a=(g+u) / \sqrt{2}, \\
b=(g-u) / \sqrt{2}, \\
\Psi=(a \bar{b}+b \bar{b})(\lambda+\mu) / 2+(a \bar{a}+b \bar{b})(\lambda-\mu) / 2
\end{gathered}
$$

with an s/p/d optimal hybridization, and optimal ionic/valence ratio...
F_{2}, same CAS, same localizing rotation for the lone pairs
Multiple bonds:
N_{2} : 6 e- in 6 MOs CAS, rotation of σ_{g} and $\sigma_{\mathrm{u}} \rightarrow \sigma_{\mathrm{A}}, \sigma_{\mathrm{B}}$

$$
\pi_{\mathrm{u}}{ }^{\mathrm{x}} \text { and } \pi_{\mathrm{U}}{ }^{\mathrm{x}} \rightarrow \pi_{\mathrm{A}}{ }^{\mathrm{x}}, \pi_{\mathrm{B}}{ }^{\mathrm{x}}
$$

Status of valence CASSCF versus VBSCF wave-functions

A unique set of valence orbitals, like in HSW (Hiberty Shaik Wu) VB but without constraint of strict locality, hence
$\mathrm{E}_{\text {CASSCF }}<\mathrm{E}_{\text {HSW-VB }}$
Less flexibility than in BO-VB which uses different orbitals for different VB determinants, hence one may expect (despite a locality constraint)
$\mathrm{E}_{\mathrm{BO}-\mathrm{VB}}<\mathrm{E}_{\text {CASSCF }}$
What about GVB Perfect-Pairing? No locality constraint of mono-electronic functions but if one only takes "neutral" VB structures, it will depend on the problem (identical for single bonds)

The orthogonality/non-orthogonality problem

General remark: to establish the respective role of two categories, better to have an exclusive definition of these categories: either/ or. What is the respective role of neutral (covalent) versus ionic components if they overlap?

The 2 e- in 2 orbital problem
Non-orthogonal AOs a' and b', with <a'|b'>=S Orthogonal, a and b

$$
a=\left(a^{\prime}(\sqrt{1+S}+\sqrt{1-S})-b^{\prime}(\sqrt{1+S}-\sqrt{1-S})\right) /\left(2\left(1-S^{2}\right)\right)
$$

Orthogonalization tail of a on b'
a and b are not local?

But what is neutral and what is ionic? $\left\langle a^{\prime} \overline{b^{\prime}} \mid a^{\prime} \overline{a^{\prime}}\right\rangle=S$

The triplet state is neutral in both basis

$$
|g u|=|a b|=\left|a^{\prime} b^{\prime}\right| /\left(1-S^{2}\right)
$$

The singlet state of u symmetry is ionic in both basis

$$
(|g \bar{u}|+|u \bar{g}|) / \sqrt{2}=(|a \bar{a}|-|b \bar{b}|) / \sqrt{2}=\left(\left|a^{\prime} \overline{a^{\prime}}\right|-\left|b^{\prime} \overline{b^{\prime}}\right|\right) /\left(\sqrt{2}\left(1-S^{2}\right)\right)
$$

The energy of the neutral OVB function $\Psi_{N}=(|a \bar{b}|+|a \bar{b}|) / \sqrt{2}$ only differs from that of the triplet by small exchange integral $2 \mathrm{~K}_{\mathrm{ab}}$

The energy of the ionic OVB function $\quad \Psi_{I}=(|a \bar{a}|+|b \bar{b}|) / \sqrt{2}$ only differs from that of the ionic state of u symmetry by $2 \mathrm{~K}_{\mathrm{ab}}$

In general

- Larger contribution of the ionic VB structures in OVB (CASSCF) decomposition
- Never been performed: a non-orthogonal VB reading of the CASSCF functions
- Electronic order (correlation) between two bonds

The double bond, one σ and one π, with the corresponding antibonding MOs
$H F=|\sigma \underline{\sigma} \pi \underline{\pi}|$
CASSCF, 4 e- in 4 MOs , also provides one σ^{*} and one π^{*} antibondond Mos, hence 4 OAOs a and b in σ, a^{\prime} and b^{\prime} in π, from which one builds a basis of 16 OVB determinants one may express the HF and CASSCF wave functions in this OVB basis
5 types of determinants in HF wff. neutral with single orbitalar occup. respecting Hu

The multiple bonds: the N_{2} molecule at equilibrium

At HF level all coefficients of 64 OVB determinants are equal to 0.125
Diminution of the fluctuation of the atomic charge Increase of the fluctuation of the atomic spin momentum

This illustrates the electronic disorder of the independant particle model,
. priority to the delocalization,
. neglect of the preferences of the atoms for neutrality, e-spread in degenerate orbitals and for the highest spin multiplicity

The non-dynamical correlation partly satisfies these preferences of the atoms
Four types of double excitations

1) intra-bond double excitations ($\sigma \sigma \rightarrow \sigma^{*} \sigma^{*}$) or $\left(\pi \pi \rightarrow \pi^{*} \pi^{*}\right)$ diminish the weight of ionic components in each bond, but independantly, leaving an equal weight to doubly ionic et pseudo-dionic.
Interaction $\left\langle\Phi_{0}\right| H\left|\Phi^{*}\right\rangle=K_{\sigma 0^{*}}=\left(\mathrm{J}_{\mathrm{aa}} \mathrm{J}_{\mathrm{ab}}\right) / 2$
2) inter-bond double excitation ${ }^{1}\left(\sigma \rightarrow \sigma^{*}\right) .{ }^{1}\left(\pi \rightarrow \pi^{*}\right)$, product of 2 singlet single excitations in σ and in π, diminishes the doubly ionic, increases the pseudo-dionic components.
Interaction $<\Phi_{0}|H| \Phi^{*}>=\left(\sigma \sigma^{*}, \pi \pi^{*}\right)=\left(J_{a_{a^{\prime}}}-J_{a b^{\prime}}\right) / 2$,
 when a distribution $A^{-} \mathrm{B}^{+}$appears in σ, a distribution $\mathrm{A}^{+} \mathrm{B}^{-}$tends to appear in π.
3) inter-bond double excitation ${ }^{1}{ }^{3}\left(\sigma \rightarrow \sigma^{*}\right) \cdot{ }^{3}\left(\pi \rightarrow \pi^{*}\right)$), singlet product of 2 triplet single excitations in σ and in π, increases the weight of neutral Hund-compatible components.
This Singlet is $\left(\mathrm{T}^{+}{ }_{\sigma \sigma^{*}} \cdot \mathrm{~T}^{-}{ }_{\pi \pi^{*}}+\mathrm{T}_{\sigma \sigma^{*}} \cdot \mathrm{~T}^{+}{ }_{\pi \pi^{*}}-2 \mathrm{~T}_{\sigma \sigma^{*}}^{0} \cdot \mathrm{~T}^{0}{ }_{\pi \pi^{*}}\right) / \mathrm{V} 6$
Interaction $\left\langle\Phi_{0}\right| \mathrm{H}\left|\Phi^{*}\right\rangle=\mathrm{V} 3\left(\sigma \pi^{*}, \pi \sigma^{*}\right)=\left(\mathrm{K}_{\mathrm{aa}^{\prime}}-\left(\mathrm{ba}{ }^{\prime}, \mathrm{ab}^{\prime}\right)\right) \mathrm{V} 3 / 2$
The 2nd integral is negligible. The working factor is the mono-centric exchange integral, dynamical spin polarization, phenomenon existing in closed-shell systems!
3) Double excitations ($\sigma \sigma \rightarrow \pi^{*} \pi^{*}$) or ($\pi \pi \rightarrow \sigma^{*} \sigma^{*}$), putting 4 e- in one bond, zero in the other one, of negligible weight

Beyond the CAS description: role of the dynamical correlation

- Effect of the charge fluctuation of the active e- on the inactive e- : the dynamical polarization

Ex: the F_{2} diatom, single bond, $2 \mathrm{e}-$ in 2 MOs , surrounded by 3 lone pairs on each atom, $2 s^{2} 2 p_{x}^{2}$
$2 p_{\mathrm{y}}{ }^{2}$ the bond being essentially formed by the $2 p_{z}$ orbitals.

- In the ionic OVB determinants ($\mathrm{A}^{-} \mathrm{B}^{+}$),
the lone pairs on the negative centre
expand spacially (breathing, excitations to OAOs of same I),
lean towards the positive centre (dynamical hybridization through
excitations to OAOs of ($(+/-1$) value)
the lone pairs on the positive centre
contract (respiration, (breathing, excitations to OAOs of same I),
lean off the negative centre (dynamical hybridization, same type of excitations)

- (Hypo-)Thesis: the main effect of the dynamical correlation on the binding energy is due to the dynamical polarization, i.e. to the single excitations on the various determinants of the CAS (1hole 1particle excitations on the CAS) $=C A S+S=B O V B$

Examples:

F_{2}, De at HF-1.32 eV, at CASSCF 0.40 eV , at CAS+Singles 1.40 eV (exp: 1.40 eV)
Cr_{2}, De at CASSCF 12 e- in $12 \mathrm{OM},-1.6 \mathrm{eV}$, CAS+Singles in NEVPT2 1.49 eV (exp. 1.47 eV) despite the fact that single excitations only bring 10% of the dynamical correlation.
Thesis developed by Hiberty and Shaik who proposed a BO-VB calculation with optimal relaxation of the valence AOs of each VB determinant .

Other dynamical correlation effect: radial and angular correlation in the doubly occupied orbitals in ionic VB components (double excitations, not in BOVB)

Physical effect : lowering of the effective energy of the VB ionic components / their value when described with the mean-field OAOs, hence, as a side effect, a small re-increase of the weight of these components due to the dynamical correlation: too large at the HF step, slightly too weak at the CASSCF level (cf. N_{2}, cf. slide 17)

Evaluation of the cyclic delocalization energy in aromatic or antiaromatic rings

Recipe: illustrated on a 6-membered ring

1) Start from a full π CASSCF \rightarrow valence MOs
2) Localize them to get valence atom-centered orbitals $\chi_{1}, \chi_{2}, \ldots, \chi_{6}$
3) Build fully localized bonding and antibonding MOs

$$
\begin{aligned}
& \varphi_{1}=\left(\chi_{1}+\chi_{2}\right) / \sqrt{2}, \\
& \varphi_{1}^{*}=\left(\chi_{1}-\chi_{2}\right) / \sqrt{2} \\
& \varphi_{2}=\left(\chi_{3}+\chi_{4}\right) / \sqrt{2}, \\
& \text { etc... }
\end{aligned}
$$

4) Define a Kékulé type strongly localized determinant

$$
\Phi_{0}=\left|\varphi_{1} \bar{\varphi}_{1} \varphi_{2} \bar{\varphi}_{2} \varphi_{3} \bar{\varphi}_{3}\right|
$$

5) Perturb it by the effect of single excitations from a bonding MO to antibonding MOs of adjacent bond
$2^{\text {nd }}$ order: back and forth delocalization

$$
\left\langle\Phi_{0}\right| H\left|a_{j^{*}}^{+} a_{i} \Phi_{0}\right\rangle=F_{i j^{*}}
$$

$$
\varepsilon^{(2)}=\sum_{i, j^{*}} \frac{F_{i j^{*}} F_{j^{*} i}}{F_{i i}-F_{j j^{*}}}
$$

$3^{\text {rd }}$ order : cyclic movements along the ring
$\varepsilon^{(3)}=\sum_{i, j^{*}, k^{*}} \frac{F_{i j^{*}} F_{j^{*} k^{*}} F_{k^{*} i}}{\left(F_{i i}-F_{j^{*} j^{*}}\right)\left(F_{i i}-F_{k^{*} k^{*}}\right)}-\sum_{i, j^{*}, k^{*}} \frac{F_{i j^{*}} F_{i k} F_{j^{*} k}}{\left(F_{i i}-F_{j^{*} j^{*}}\right)\left(F_{k k}-F_{j^{*} j^{*}}\right)}$

A direct estimate of the cyclic contribution to the energy: $20 \mathrm{kcal} / \mathrm{mole}$
One may show that this cyclic contribution fights against the bond alternation, maximum for equal bond lengths

a
 High quality. High impact.

Evolutions of the π-delocalization energy (right side scale, \times symbols, dashed line) and of the cyclic π-delocalization energy (left side scale, + symbols, full line). δ is the displacement from the equilibrium geometry (regular hexagon): for the short bond r CC $=$ $1.396-\delta$, for the long bond $r C C=1.396+\delta$.

Effective valence Hamiltonians from extended (post-CAS) CI wave functions

If you have calculated M valence eigenstates $\Psi_{k} \quad H \Psi_{k}=E_{k} \Psi_{k}$ and have defined M VB leading configurations Φ_{I} which constitute a model space of projector

$$
P_{\text {OVB }}=\sum_{I}\left|\Phi_{I}\right\rangle\left\langle\Phi_{I}\right| \quad P_{V B}=\sum_{I}\left|\Phi_{I}\right\rangle\left(S^{-1}\right)_{I J}\left\langle\Phi_{J}\right|
$$

Project the eigenstates in the VB model space

$$
\bar{\Psi}_{k}=P_{(0) V B} \Psi_{k}
$$

Orthogonalize the projections through $\mathrm{S}^{-1 / 2} \rightarrow \bar{\Psi}_{k}^{\prime}$
Define an effective hamiltonian in the model space by the conditions

$$
H^{\text {eff }}\left|\bar{\Psi}_{k}^{\prime}\right\rangle=E_{k}\left|\bar{\Psi}_{k}^{\prime}\right\rangle
$$

Exact energies, projections of the exact eigenvectors in the VB space. Then

$$
\left\langle\Phi_{I}\right| H^{e f f}\left|\Phi_{J}\right\rangle=\sum_{k} E_{k}\left\langle\Phi_{I} \mid \bar{\Psi}_{k}^{\prime}\right\rangle\left\langle\bar{\Psi}_{k}^{\prime} \mid \Phi_{J}\right\rangle
$$

Example: Possible modelization of chemical reactions in terms of a few interacting configurations from CAS or post-CAS CI wave functions

Example 1: mixed valence compounds and charge exchange $A^{-}+B \rightarrow A+B$.

Modelization through an effective Hamiltonian

$$
\begin{aligned}
& \bar{\Psi}_{A B} \\
& \bar{\Psi}_{A B^{-}}
\end{aligned}\left|\begin{array}{cc}
H_{A A}^{e f f} & H_{A B}^{e f} \\
H_{B A}^{e f f} & H_{B B}^{e f f}
\end{array}\right|
$$

$$
A^{-}+B \quad A+B^{-}
$$

Strategy:

-start from a state average CASSCF 1-electron in 2 LUMO (or 5 electrons in 2 HOMO and 2 LUMO),
-localize the active MOs on A and B, -define localized reference functions

```
\Psi (A-B 秋 }\mp@subsup{\Psi}{A\mp@subsup{B}{}{-}}{
``` -project the 2 lowest eigenfunctions (CAS or post-CAS) on the model space, -apply effective Hamiltonian Theory of Bloch and get the desired \(2 \times 2\) matrix

Adiabatic eigenstates \(\Psi_{1}, \Psi_{2}\), of energies \(\mathrm{E}_{1}, \mathrm{E}_{2}\)
Express the vectors as \(\Psi_{1}=\lambda \Psi_{A^{-B}}+\mu \Psi_{A B^{-}}+\ldots . \rightarrow \bar{\Psi}_{1}=\lambda \Psi_{A^{-B}}+\mu \Psi_{A B^{-}}\)
\[
\Psi_{2}=-\mu \Psi_{A^{-B}}+\lambda \Psi_{A B^{B}}+\ldots \rightarrow \bar{\Psi}_{2}=-\mu \Psi_{A^{-B}}+\lambda \Psi_{A B^{B}}
\]

By definition \(\quad H^{\text {eff }}=E_{1}\left|\bar{\Psi}_{1}\right\rangle\left\langle\bar{\Psi}_{1}\right|+E_{2}\left|\bar{\Psi}_{2}\right\rangle\left\langle\bar{\Psi}_{2}\right|\)
\[
\begin{aligned}
\left\langle\Psi_{A^{-B}}\right| H^{\text {eff }}\left|\Psi_{A^{-B}}\right\rangle & =E_{1} \lambda^{2}+E_{2} \mu^{2} \\
\left\langle\Psi_{A^{-} B}\right| H^{\text {eff }}\left|\Psi_{A B^{B}}\right\rangle & =\left(E_{1}-E_{2}\right) \lambda \mu \\
\left\langle\Psi_{A B^{-}}\right| H^{\text {eff }}\left|\Psi_{A B^{-}}\right\rangle & =E_{1} \mu^{2}+E_{2} \lambda^{2}
\end{aligned}
\]

The most rigorous reduction of information, exact energies projections of the exact eigenvectors in the model space

\section*{CONCLUSIONS}

VB is a crucial way of analyzing the wavefunctions and physics
One may always provide a VB analysis from CAS (or MR belonging to a CAS) (+dynam. correl.)

Possible construction of an OVB or VB effective Hamiltonian by projection techniques from any MO-CI wave functions

Advantages:
- efficient standard MRCI or MRPT techniques,
- no locality restriction on the active MOs,
- the projection of the eigenvectors on the model space is easier when the eigenvectors and the model space vectors are expressed in the same MO basis,
- the active MOs may be delocalized, for instance in organic systems (e.g. in the electron transfer problem, \(A=\) naphtalene , \(B=\) anthracene, or magnetic orbitals in conjugated diradicalar hydrocarbons)

Drawbacks:
-need for more configurations than in non orthogonal VB? To be studied.
-the CASSCF active MOs may present defects: the magnetic MOs given by CASSCF calculations are more localized than the Natural magnetic MOs

Caveat: the minimal CASSCF functions may be biased

ROHF

UDFT

CAS(Full valence \(\pi\))SCF

The two communities, VB and MO ones, should get closer!
In this spirit, thanks for the invitation and thanks for your attention!

Acknowledgements :
to Celestino Angeli
to my colleagues working on magnetic systems
-Toulouse: Nathalie Guihéry, Nicolas Suaud, Georges Trinquier
-Tarragona: Rosa Caballol, Coen de Graaf
-Sevilla: Carmen Calzado
-Mulheim: Frank Neese```

