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Targets and content 

• How to define a Valence space? 

• Which basis to the valence space? The orthogonality problem 

• Localized MOs, Bond MOs,  Atom-centered Orbitals 

      -e.g. the aromatic contribution to the energy  

• The physical analysis of the non-dynamical correlation energy: 
reading the CASSCF functions 

      -single bond 

      -multiple bond 

.   Beyond the valence space: the content of dynamical correlation 

      -the dynamical polarization effect and the impact of the dynamical 
correlation on the valence wave function 

 



. Diabatization of chemical reactions 
 
General considerations about the relations between VB and MO-
based approaches 

We consider that quantum chemistry has two tasks: 
 
-reach accurate precisions (numbers), but also 
 

-furnish  pictorial interpretations. 



The notion of Valence MOs and Valence configurations 

History: molecules from atoms, hence a leading role of the outermost 
(valence) atomic orbitals of the atoms          minimal basis set descriptions 

Original VB (Heitler 
London on H2) 

Minimal basis set LCAO, Huckel, EHT, 
CNDO,Hartree-Fock 

Possible molecular optimization of 
the minimal basis set (H2) 

Question: is the valence basis set a meaningless concept? 

Introduction of extended basis sets, 
at HF and CI  levels 



Whatever the level of correlation, one may calculate a density matrix of the ground 
state,  
 
diagonalize R0 naturals MOs (NOs).  
 
If the molecule has M bonds and N core and lone pairs, 
 - M+N NOs have occupation numbers close to 2, they look like the canonical HF 
MOs 
 - M other have occupation numbers of an order of magnitude close to 0.1, they are 
essentially on valence AOs, have the same phases as the virtual MOs in a minimal 
basis set, 
 - others have smaller occupation numbers, and are essentially supported by non-
valence AOs 
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A posteriori  justification of the concept of valence monoelectronic orbitals 



• The valence CASSCF defines an « optimal » valence only wave function 

- optimal core 

- optimal bonding, non-bonding and anti-bonding MOs 

- optimal  linear combination of valence configurations (i.e. a full CI of the valence 
electrons in valence bonding and anti-bonding MOs) 

 

• Warrants a correct dissociation into atoms or fragments 
 

• Truncated CAS: in practice the valence CAS may be too large to be performed but 
one may always get local CASSCF for one or a few bonds: 

         entering a CASSCFcalculation from guess bonding and antibonding active MOs on a given 
chemical bond, one obtains a CASSCF solution for this bond, even when other bonds are 
more correlated (Evangelisti et al). One finds a CASSCF(2e-/2OM) solution for each bond. 
Which confirms the legitimacy of the Lewis’ bond e- pair beyond HF. 

        

 

 

Constructivist  justification : the valence CASSCF step 



 Maynau et al, J. Chem. Phys. 116, 10060 (2002) 



Unitary localizing transformation of the M+N most occupied NOscore, bond 
and lone pair Orbitals 
Unitary transformation  of the 2M+N most occupied NOsatom-centered 
core and valence Orbitals 

From symmetry-adapted to local orbitals 

Natural MOs are symmetry-adapted 

CASSCF MOs define a space of valence monoelectronic wave functions φi 
The canonical MOs are symmetry-adapted but one define many other basis of 
this space of projector 

Direct localization techniques of the active MOs: 
-Rotations maximizing a localization criterion: Boys, Pipek-Mezey 
   Orthogonal Atom-centered Orbitals 
Then on may express the active space in terms of anti-symmetrized products 
of these OAOs: Orthogonal VB determinants 
The CASSCF wave function may be re-expressed in this basis set 
  OVB reading of the CASSCF function   
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One may build determinants products of these orbitals,  
VB-CASSCF determinants which span the CASSCF space,  
and express the CASSCF function in this basis 
VB reading of the CASSCF wave function.  
 

Other approach: diagonalize the restriction of the density matrix to the orbitals of 
the atom P, gives molecularly-adapted atomic orbitals: the most occupied, 
may be used in place of the isolated atom AOs   

pχ~

-Project guess MOs (fragment MOs, Bond MOs, AOs) in the valence space 
e.g.: start from a valence orbital of an atom, χp, then 
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is an atom-centered CASSCF MO, they are not orthogonal, but have tails 
on adjacent atoms  

Projection techniques 

Eventually orthogonalize the set  χ’p χ ’’p  through S-1/2 or hierarchically,  gives 
a basis of orthogonal atom-centered CASSCF MOs,  
again  OVB reading of the CASSCF function   



 Single bonds: 
 H2, 2 e- in 2 MOs CASSCF, g and u and                             with λμ>0 
 
          g and u define 2 OAO, centered on atoms A and B respectively, 
 
 
 
 
 
 
with an s/p/d optimal hybridization, and optimal ionic/valence ratio… 
 
 F2, same CAS, same localizing rotation for the lone pairs  
 
Multiple bonds: 
 N2: 6 e- in 6 MOs CAS, rotation of σg and σu  σA , σB  
                                                         πu

x  and πu
x  πA

x , πB
x   

 
 

Trivial problems: homonuclear diatomic molecules 

,2u)/(ga +=
,2u)/-(gb =

μ)/2)(λbba(aμ)/2)(λabb(aΨ −++++=

uuμggλΨ −=



Status of valence CASSCF versus VBSCF wave-functions  

A unique set of valence orbitals, like in HSW (Hiberty Shaik Wu) VB 
 but without constraint of strict locality , hence  
ECASSCF< EHSW-VB 
 
Less flexibility than in BO-VB which uses different orbitals for different VB 
determinants, hence one may expect (despite a locality constraint) 
EBO-VB< ECASSCF 
 
What about GVB Perfect–Pairing? No locality constraint  of mono-electronic 
functions but if one only takes “neutral” VB structures, it will depend on the 
problem (identical for single bonds) 
 
 
  



The orthogonality/non-orthogonality problem 

General remark: to establish the respective role of two categories, better to 
have an exclusive definition of these categories: either/ or. What is the 
respective role of neutral (covalent ) versus ionic components if they overlap?  

The 2 e- in 2 orbital problem 
Non-orthogonal  AOs a’ and b’, with <a’|b’>=S 
Orthogonal, a and b  

))1(2/())11(')11('( 2SSSbSSaa −−−+−−++=

Orthogonalization tail of a on b’ 

a and b are not local? 

But what is neutral and what is ionic?  Saaba =''''



The triplet state is neutral in both basis 

)1/('' 2Sbaabgu −==

The singlet state of u symmetry is ionic in both basis 

))1(2/()''''(2/)(2/)( 2Sbbaabbaaguug −−=−=+

2/)( babaN +=ΨThe energy of the neutral OVB function 

only differs from that of the triplet by small exchange integral  2Kab  

The energy of the ionic OVB function 2/)( bbaaI +=Ψ

only differs from that of the ionic state of u symmetry by 2Kab  
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In general 
- Larger contribution of the ionic VB structures in OVB (CASSCF) 
decomposition 
- Never been performed: a non-orthogonal VB reading of the CASSCF 
functions 

Minimal basis set 
descriptions 



• Electronic order (correlation) between two bonds  
      The double bond, one σ and one π, with the corresponding antibonding MOs 

      HF = │ σσππ│ 

      CASSCF, 4 e- in 4 MOs, also provides one σ* and one π* antibondond Mos, hence 4 OAOs 

               a and b in σ, a’ and b’ in π , from which one builds a basis of 16 OVB determinants 

       one may express the HF and CASSCF wave functions in this OVB basis 

 

       5 types of determinants in HF wf  . neutral  with single orbitalar occup. respecting Hund, ΦN,H 

                                                                     ‘’                ‘’               ‘’              violating Hund, ΦN,nH 

        of increasing energy                          ‘’       with double orbitalar occup., ΦPsdI 

                                                              .  singly ionic, either in σ or in π, ΦsI 

       with the same coeff. 1/ 4                .  doubly ioinic, ΦdI 

 

 

 
 

a’ b’ 

a 
    a           b ΦN,H ΦN,nH 

ΦsI ΦdI ΦPsdI 



The multiple bonds: the N2 molecule at equilibrium   

N1    N2 

px1 

py1 

pz1 

Neutral Hund 
.1786             .1760 
 
 
Neutral non-Hund 
.1637            .1650 
.1564            .1555 
 
 
Mono ion. in σ, Hund 
.1535            .1546 
 
 
 
Mono ion. in σ, non-H 
.1404            .1408 
 
 
 
Neutral , 2 transfert  
.1352            .1326     
 
 
Mono ion. in π, Hund 
.1244            .1 266 
 

Mono ion., 2 transferts 
.1196            .1203 
 
 
Mono ion. in π, n-H 
.1192            .1196 
 
 
Di ion., in πσ 
.0888           .0896 
 
Mono ion., in π .0864           
.0850 
 
 
Di  ion., in π 
.0633          .0617 
 
 
 
Tri ionic 
.0378         .0359 

px2 

py2 

pz2 

At HF level all coefficients of 64 OVB determinants are equal to 0.125  

Coefficients of the OVB  
determinants in the GS  
CASSCF and CAS.SD 
wf  

Diminution of the fluctuation of the atomic charge 
Increase of the fluctuation of the atomic spin momentum 

CAS              CASSD CAS              CASSD 

J. Comp. Chem, 
28, 35 (2007) 



This illustrates the electronic disorder of the independant particle model,  

    . priority to the delocalization,  

    . neglect of the preferences of the atoms for neutrality, e- spread in degenerate orbitals and for 
the highest spin multiplicity 

 

The non-dynamical correlation partly satisfies these preferences of the atoms 
    Four types of double excitations  

 

1)  intra-bond double excitations (σσ    σ*σ*) or (ππ    π*π*) diminish the weight of ionic components in each 
bond, but  independantly, leaving an equal weight to doubly ionic et pseudo-dionic. 

       Interaction <Φ0│H│Φ*> = Kσσ* = (Jaa-Jab)/2 
2) inter-bond double excitation 1(σ    σ*).1(π    π*), product of 2 singlet single excitations in σ and in π, 

diminishes the doubly ionic, increases the pseudo-dionic components. 

       Interaction <Φ0│H│Φ*> = (σσ*, ππ*) =(Jaa’ – Jab’)/2,  
       when a distribution A-B+ appears in σ, a distribution A+B-  tends to appear in π. 

3) inter-bond double excitation 1(3(σ    σ*).3(π    π*)), singlet product of 2 triplet single excitations in σ and in π, 
increases the weight of neutral Hund-compatible components. 

       This Singlet is (T+
σσ*.T- 

ππ* + T-
σσ*.T+ 

ππ* -2 T0
σσ*.T0 

ππ* )/ √6 

       Interaction <Φ0│H│Φ*> = √3(σπ*, πσ*) =(Kaa’ – (ba’,ab’)) √3 /2 
       The 2nd integral is negligible. The working factor is the mono-centric exchange integral, dynamical spin 

polarization, phenomenon existing in closed-shell systems! 

4) Double excitations (σσ    π*π*) or (ππ    σ*σ*), putting 4 e- in one bond, zero in the other one, of negligible 
weight  

  



• Effect of the charge fluctuation of the active e- on the inactive e- : the dynamical 
polarization 
 

Ex: the F2 diatom, single bond, 2e- in 2MOs, surrounded by 3 lone pairs on each atom, 2s2 2px
2 

2py
2 the bond being essentially formed by the 2pz orbitals. 

        - In the ionic OVB determinants (A- B+),  

       the lone pairs on the negative centre 

                             expand spacially (breathing, excitations to OAOs of same l),            

                             lean towards the positive centre (dynamical hybridization through 

                             excitations to OAOs of (l+/-1) value) 

       the lone pairs on the positive centre 

                              contract (respiration, (breathing, excitations to OAOs of same l),            

                              lean off the negative centre (dynamical hybridization, same type of excitations) 

     

 

 

 

         A-                          B+                                        

 

Beyond the CAS description: role of the dynamical correlation 



• (Hypo-)Thesis: the main effect of the dynamical correlation on the binding energy 
is due to the dynamical polarization, i.e. to the single excitations on the various  
determinants of the CAS (1hole 1particle excitations on the CAS) =CAS+S=BOVB 

      Examples: 

F2,  De at HF -1.32 eV, at CASSCF 0.40 eV,  at CAS+Singles 1.40 eV (exp: 1.40 eV) 

Cr2, De at CASSCF 12 e- in 12 OM,  -1.6eV, CAS+Singles in NEVPT2 1.49 eV (exp. 1.47 eV) despite 
the fact that  single excitations only bring 10% of the dynamical  correlation. 

      Thesis developed by Hiberty and Shaik who proposed a BO-VB calculation with optimal 
relaxation of the valence AOs of each VB determinant . 

 

Other dynamical correlation effect: radial and angular correlation in the doubly 
occupied orbitals in ionic VB components (double excitations, not in BOVB) 

 

Physical effect : lowering of the effective energy of the VB ionic components / their 
value when described with the mean-field OAOs, hence, as a side effect, a small 
re-increase of the weight of these components due to the dynamical correlation: 
too large at the HF step, slightly too weak at the CASSCF level (cf.  N2 , cf. slide 17)                    



Evaluation of the cyclic delocalization energy in aromatic or anti-
aromatic rings 

Recipe: illustrated on a 6-membered ring 
 
1) Start from a full π CASSCF valence MOs 
2) Localize them to get valence atom-centered orbitals  
3) Build fully localized bonding and antibonding MOs 

 
 
 
 
 

4) Define a Kékulé type strongly localized determinant 
 
 

5) Perturb it by the effect of single excitations from a bonding MO to antibonding 
MOs of adjacent bond 

         2nd order: back and forth delocalization 
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 3rd order : cyclic movements along the ring 
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A direct estimate of the cyclic contribution to the energy: 20 kcal/mole 
 
One may show that this cyclic contribution fights against the bond 
alternation, maximum for equal bond lengths 





Evolutions of the π-delocalization energy (right side scale, × symbols, dashed line) and of the cyclic π-delocalization energy (left 
side scale, + symbols, full line). δ is the displacement from the equilibrium geometry (regular hexagon): for the short bond rCC = 
1.396 − δ, for the long bond rCC = 1.396 + δ. 

Published in: Celestino Angeli; Jean-Paul Malrieu; J. Phys. Chem. A  2008, 112, 11481-11486. 
DOI: 10.1021/jp805870r 
Copyright © 2008 American Chemical Society 



Effective valence Hamiltonians from extended (post-CAS) CI wave 
functions 

If you have calculated M valence eigenstates 
   and have defined  M VB leading configurations 
   which constitute a model space of projector   

kΨ
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Project the eigenstates in the VB model space 

kVBOk P Ψ=Ψ )(

Orthogonalize the projections through S-1/2 
'
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Define an effective hamiltonian in the model space by the conditions 
''
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 Example: Possible  modelization  of chemical reactions in terms of a few 
interacting configurations from CAS or post-CAS CI wave functions 

Example 1: mixed valence compounds and charge exchange A- + B A + B-.                   
 
 
 
                   
 

A- + B            A + B- 

Modelization through an effective 
Hamiltonian 
 

−

−

Ψ
Ψ

AB

BA

eff
BB

eff
BA

eff
AB

eff
AA

HH
HH

-start from a state average CASSCF 1-electron in 2 LUMO (or 5 electrons in 2 
HOMO and 2 LUMO) ,  
-localize the active MOs on A and B,  
-define localized reference functions            and 
-project  the 2 lowest eigenfunctions (CAS or post-CAS)  on the model space, 
-apply effective Hamiltonian Theory  of Bloch and get the desired  2x2 matrix 

BA−Ψ −Ψ BA

Strategy: 



Adiabatic eigenstates              , of energies E1, E2 
Express the vectors as  
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The most rigorous reduction of information, exact energies projections of 
the exact eigenvectors in the model space 



CONCLUSIONS 

One may always provide a VB analysis from CAS  (or MR belonging to a 
CAS) (+dynam. correl.) 
 
Possible construction of an OVB or VB effective Hamiltonian by projection 
techniques from any MO-CI wave functions  
 
Advantages: 
- efficient standard MRCI or MRPT techniques, 
- no locality restriction on the active MOs,  
- the projection of the eigenvectors on the model space is easier when the 
eigenvectors and the model space vectors are expressed in the same MO 
basis,  
- the active MOs may be delocalized, for instance in organic systems  
(e.g. in the electron transfer problem, A= naphtalene , B=anthracene,  
        or magnetic orbitals in conjugated diradicalar hydrocarbons) 
 
 

VB is a crucial way of analyzing the wavefunctions and physics   



Caveat: the minimal CASSCF functions may be biased 

Drawbacks: 
-need for more configurations than in non orthogonal VB? To be studied. 
 
-the CASSCF active MOs may present defects: the magnetic MOs given 
by CASSCF calculations are more localized than the Natural magnetic 
MOs 
 



 
The two communities, VB and MO ones, should get closer!  
 
In this spirit, thanks for the invitation and thanks for your attention!  
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