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Nondynamic (static) correlation

• In the dissociation limit one-electron methods break down! 

• Static correlation is missing.
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APSG model

• The APSG ansatz (antisymmetrized product of strongly orthogonal geminals) 
for a closed-shell N-electron system reads

A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc. R. Soc. London, Ser. A 220, 446 (1953).
W. Kutzelnigg, J. Chem. Phys. 97, 1474 (1964).
V. A. Rassolov, J. Chem. Phys. 117, 5978 (2002).

• Originally formulated for closed shell systems but extensions to the open-
shell systems are available.

where each geminal is normalized  and antisymmetric

In the dissociation limit
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Ecorr = E
FCI  EHF
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APSG function is a determinant for Be

(x1; x2; x3; x4) =
1
p
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1(x1; x2) 1(x3; x4)
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where

P (x1; x2) = P (x2; x1)

II. ELECTRON-ELECTRON INTERACTION FROM THE FLUCTUATION-

DISSIPATION THEOREM

Consider the electron-electron interaction given by the pair density

Eee =
1

2

Z Z
(2)(x1; x2)jr1  r2j1dx1dx2 (1)

where

(2)(x1; x2) =

̂(2)(x1; x2)


(2)

The pair-density operator can be written in terms of the density áuctuation operator

̂(x) = ̂(x) h̂(x)i

Consequently, one obtains

(2)(x1; x2) = h̂(x1)̂(x2)i+ (x1)(x2) (x1  x2)(x1) (3)

The term h̂(x1)̂(x2)i represents áuctuation of the density at x1 tied to áuctuation at x2.

This term gives rise to correlation. Since we are interested in inter-geminal correlation we

consider only contributions from pairs of the geminals P;Q


(2)
intercorr(x1; x2) =

1

2

X

P;Q
P>Q

[h̂Q(x1)̂P (x2)i+ h̂P (x2)̂Q(x1)i]
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APSG model

T. Arai,  J. Chem. Phys. 33, 95 (1960). 

• In the APSG model each geminal is a two-electron FCI function, i.e.

!"x1¯xN#!Â$
P!1

N/2

%P"x2P"1 ,x2P#, "6#

where Â is an antisymmetrizer "including the appropriate
normalization constant# and %P is the Pth normalized gemi-

nal given by

%P"x1 ,x2#!2"1/2&
p!P

cp'p"r1#'p
*"r2#()"s1#*"s2#

")"s2#*"s1#+ , "7#

with all the coefficients ,cp- being real-valued
15 "here and in

the following the upper- and lower-case subscripts are em-

ployed to index geminals and orbitals, respectively#. The
strong orthogonality requirement

#
Q.P

#
x1 ,x1!

! %P"x1 ,x2#%Q"x1! ,x2#dx2!0, "8#

implies that #pp!P⇒#Q.P p"Q , i.e., the sets of orbitals

belonging to individual geminals are disjoint.16 The

electron–electron repulsion energy corresponding to the

APSG ansatz is given by the expression

Vee!&
P

&
p,r!P

cpcrKpr$ &
P.Q

&
p!P

&
q!Q

"cpcq#
2"2Jpq"Kpq#. "9#

The usefulness of the APSG theory in the derivation of

approximate one-matrix functionals stems from the fact that

the one-matrix pertaining to the wave function "6# is diago-
nal in the basis of ,'p-, the occupation numbers being di-
rectly related to ,cp-,

np!2cp
2. "10#

Thus, combining Eqs. "9# and "10# and comparing the result-
ing expression with Eq. "2# produces

Apq"n#!" npnq if p and q belong to different geminals

0 otherwise
"11#

and

Bpq"n#

!" "1/2#npnq if p and q belong to different geminals

" f p f q"npnq#
1/2 otherwise,

"12#

where , f p- is a set of phase factors, each equal to "1 or 1,
chosen in such a way that Vee is minimized. The JK-only

expression for Vee with ,Apq(n)- and ,Bpq(n)- given by the
above equations (which trivially satisfy the condition "5#+
constitutes a straightforward generalization of the Kutzelnigg

functional,17 which is exact for singlet ground-state two-

electron systems. Note that due to the normalization of indi-

vidual geminals, the APSG-derived functional is defined

only for one-matrices with occupation numbers that conform

to the sum rule

#
P
&
p!P

np!2. "13#

III. JK-ONLY FUNCTIONAL FROM AN AUGMENTED
APSG ANSATZ

Neglecting intergeminal correlation, the APSG ansatz re-

produces only a fraction of correlation energy in typical

many-electron systems.14 For this reason, several attempts

have been made at improving upon the APSG theory while

retaining its desirable property of size extensivity.18–20 Un-

fortunately, due to the presence of geminals describing the

so-called nonsymmetrical singlet states15 in the pertinent

wave functions, none of those improvements gives rise to

one-matrices that are diagonal in the basis of ,'p-.
On the other hand, consider the following augmented

ansatz

!"x1¯xN#
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N/2
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N/2
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"14#

where
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p!P

dp'p"r1#'p
*"r2#

%()"s1#*"s2#")"s2#*"s1#+ , "15#

with the real-valued coefficients ,dp- constrained by the re-
quirements that %̃P is normalized and has a vanishing over-

lap with %P . Although Eq. "15# does not constitute the most
general expression for a geminal orthogonal to %P , it assures

the diagonal character of one-matrix in the basis of ,'p-,
yielding the occupation numbers

np!2("1"AP
2 #cp

2$AP
2 dp

2$2A0APcpdp+ , p!P , "16#

and the electron–electron repulsion energy

Vee!&
P

&
p ,r!P

("1"AP
2 #cpcr$AP

2 dpdr

$A0AP"cpdr$dpcr#+Kpr

$ &
P.Q
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p!P
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q!Q

("1"2AQ
2 #"cpcq#

2$2AQ
2 "cpdq#

2

$4A0AQcp
2cqdq$2APAQcpdpcqdq+"2Jpq"Kpq#.

"17#

Solving Eq. "16# for dp yields

dp!AP
"1 f p"np/2#

1/2("1"BP/p
2#1/2"A0/p+ , p!P ,

"18#

where

BP!1"A0
2"AP

2 , "19#

/p! f p"np/2#
"1/2cp , "20#

6444 J. Chem. Phys., Vol. 119, No. 13, 1 October 2003 Cioslowski, Pernal, and Buchowiecki

Downloaded 23 Sep 2003 to 141.5.13.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

!"x1¯xN#!Â$
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• The strong orthogonality requirement 
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implies that the sets of orbitals belonging to individual geminals are disjoint.
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Ground state energy functional in the APSG model

• In the representation of the natural spinorbitals 

where Ip stands for the index of a geminal which the pth orbital belongs to. 

• The spin-summed expression for the electron energy takes a simple form

I. APSG ANSATZ

In APSG the energy for a closed shell N -electron system is given by (all indices pertain

to orbitals, summations with respect to orbitals)

EAPSG = 2
X

p

nphpp +
X

I

X

pq
Ip=Iq=I

cpcq hppjqqi+
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi]

where I = 1; :::; N=2 indicates the index of a geminal and

np = c2p

8I
X

p
Ip=I

c2p = 1

The energy is minimized with respect to cp under the above condition that leads to

8I;p 2cphpp +
X

q
Iq=I

cq hppjqqi+ 2cp
X

J 6=I

X

q
Iq=J

nq[2 hpqjpqi  hpqjqpi] = Icp

8I;p 2
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nphpp +
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I
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pq
Ip=Iq=I

cpcq hppjqqi+ 2
X

I 6=J
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pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi] =
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Therefore

EAPSG =
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I

I 
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I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi]

The variational equations for the orbitals derived under condition that the orbitals are

orthonormal reads

E

'p
'q


= 2nphqp + 2cp

X

r
Ir=I

cr hqpjrri+ 2np
X

J 6=I

X

r
Ir=J

nr[2 hqrjpri  hqrjrpi] = pq

8 p6=q
Ip=Iq

(cp + cq)hqp +
X

r
Ir=I

cr hqpjrri+ (cp + cq)
X

J 6=I

X

r
Ir=J

nr[2 hqrjpri  hqrjrpi] = 0

Altogether

8 p;q
Ip=Iq

(cp+cq)hqp+
X

r

IpIrcr hqpjrri+(cp+cq)
X

r

(1IrIp)nr[2 hqrjprihqrjrpi] = Ipcppq

or if the orbitals p and q belong to di§erent geminals Ip 6= Iq (so p 6= q)

nphqp + cp
X
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X
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X

r;Ir 6=Iq

nr[2 hqrjpri  hqrjrpi]
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Ground state energy functional in the APSG model

• In the representation of the natural spinorbitals 

where Ip stands for the index of a geminal which the pth orbital belongs to. 

• The spin-summed expression for the electron energy takes a simple form

I. APSG ANSATZ

In APSG the energy for a closed shell N -electron system is given by (all indices pertain

to orbitals, summations with respect to orbitals)

EAPSG = 2
X

p

nphpp +
X

I

X

pq
Ip=Iq=I

cpcq hppjqqi+
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi]

where I = 1; :::; N=2 indicates the index of a geminal and

np = c2p

8I
X

p
Ip=I

c2p = 1

The energy is minimized with respect to cp under the above condition that leads to

8I;p 2cphpp +
X

q
Iq=I

cq hppjqqi+ 2cp
X

J 6=I

X

q
Iq=J

nq[2 hpqjpqi  hpqjqpi] = Icp

8I;p 2
X

p

nphpp +
X

I

X

pq
Ip=Iq=I

cpcq hppjqqi+ 2
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi] =
X

I

I

Therefore

EAPSG =
X

I

I 
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi]

The variational equations for the orbitals derived under condition that the orbitals are

orthonormal reads

E

'p
'q


= 2nphqp + 2cp

X

r
Ir=I

cr hqpjrri+ 2np
X

J 6=I

X

r
Ir=J

nr[2 hqrjpri  hqrjrpi] = pq

8 p6=q
Ip=Iq

(cp + cq)hqp +
X

r
Ir=I

cr hqpjrri+ (cp + cq)
X

J 6=I

X

r
Ir=J

nr[2 hqrjpri  hqrjrpi] = 0

Altogether

8 p;q
Ip=Iq

(cp+cq)hqp+
X

r

IpIrcr hqpjrri+(cp+cq)
X

r

(1IrIp)nr[2 hqrjprihqrjrpi] = Ipcppq

or if the orbitals p and q belong to di§erent geminals Ip 6= Iq (so p 6= q)

nphqp + cp
X

r;Ir=Ip

cr hqpjrri+ np
X

r;Ir 6=Ip

nr[2 hqrjpri  hqrjrpi]

= nqhqp + cq
X
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• In the representation of the natural spinorbitals 

where Ip stands for the index of a geminal which the pth orbital belongs to. 

• The spin-summed expression for the electron energy takes a simple form

I. APSG ANSATZ

In APSG the energy for a closed shell N -electron system is given by (all indices pertain

to orbitals, summations with respect to orbitals)
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X
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npnq[2 hpqjpqi  hpqjqpi]
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only Coulomb and exchange interactions between geminals

• The ground state energy is obtained upon minimization with respect to the 
orbitals and the coefficients cp under constraints of orbitals orthogonality and 
normalization of the coefficients.
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Example: asymmetric water dissociation with APSG

In APSG a large portion of dynamic correlation is missing but static correlation 
is accounted for.
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• The APSG model

P.R. Surján, Top. Curr. Chem. 203, 63–88 (1999).
V. Rassolov, J. Chem. Phys. 117, 5978 (2002) and the references cited therein.
P.R. Surján, A. Szabados, P. Jeszenszki, and T. Zaboki, J Math Chem. 50, 534 (2012).

• exact ground state energy of singlet two-electron systems,

• a qualitative picture of a single bond dissociation,
• size-extensive,

• geminals localized on two-electron bonds or lone pairs,

• computationally efficient: (Mbasis)4Mgeminal scaling,
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P.R. Surján, Top. Curr. Chem. 203, 63–88 (1999).
V. Rassolov, J. Chem. Phys. 117, 5978 (2002) and the references cited therein.
P.R. Surján, A. Szabados, P. Jeszenszki, and T. Zaboki, J Math Chem. 50, 534 (2012).

• exact ground state energy of singlet two-electron systems,

• a qualitative picture of a single bond dissociation,
• size-extensive,

• geminals localized on two-electron bonds or lone pairs,

• computationally efficient: (Mbasis)4Mgeminal scaling,

but

• intergeminal correlation is missing (energies are too high),
• dispersion interaction is missing (van der Waals complexes are not 

bound),

• inaccurate energy barriers,

• incorrect products of multiple-bond dissociation.



Intergeminal correlation from the fluctuation-dissipation theorem

• The electron-electron interaction is determined by the pair density

• The pair density can be written in terms of a density and a density fluctuation 
operator

J.F. Dobson in “Time-Dependent Density Functional Theory”, M.A.L. Marques et al. ed., Springer 2006, p.443-463 
and references there. 
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I. ELECTRON-ELECTRON INTERACTION FROM THE FLUCTUATION-

DISSIPATION THEOREM

Consider the electron-electron interaction given by the pair density

Eee =
1

2

Z Z
(2)(x1; x2)jr1  r2j1dx1dx2 (1)

where

(2)(x1; x2) =

̂(2)(x1; x2)


(2)

The pair-density operator can be written in terms of the density áuctuation operator

̂(x) = ̂(x) h̂(x)i

Consequently, one obtains


̂(2)(x1; x2)


= h̂(x1)̂(x2)i+ (x1)(x2) (x1  x2)(x1) (3)

The term h̂(x1)̂(x2)i represents áuctuation of the density at x1 tied to áuctuation at x2.

This term gives rise to correlation. Since we are interested in inter-geminal correlation we

consider only contributions from pairs of the geminals P;Q


(2)
intercorr(x1; x2) =

1

2

X

P

X

Q>P

[h̂Q(x1)̂P (x2)i+ ̂P (x2)̂Q(x1)]

where geminal density and áuctuation operators are deÖned as

̂P (x) =
X

i;j2P

âyj âi 'j(x)
'i(x)

̂P (x) = ̂P (x) P (x)

Note that


APSGj̂P (x)jAPSG


=
X

i2P

ni'i(x)'i(x)
 = P (x)


APSGj̂P (x)jAPSG


= 0

The intergeminal correlation energy reads

Eintercorr =
1

2

Z Z

(2)
intercorr(x1; x2)jr1  r2j

1dx1dx2

Consequently, the intergeminal correlation energy functional reads (in spinorbitals)

Eintercorr =
1

4
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• The first term ties a fluctuation at x1 to a fluctuation at x2 and this gives rise 
to electron correlation.

including more than two electrons the last term in the APSG energy expression accounts

for inter-geminal (IG) electron interaction. If one introduces geminal one-electron reduced

density matrices i.e.

I(x; x
0) =

X

p2I

np'p(x
0)'p(x) (6)

then the last term in Eq.(5) can be written as

EAPSGIG =
1

2

X

I;J
I 6=J

Z Z
[I(x1; x1)J(x2; x2) I(x1; x2)J(x2; x1)]r112 dx1dx2 (7)

so it is evident that it involves only Coulomb and exchange intergeminal interactions. In

APSG approximation electrons on one geminal are not correlated with electrons on other

geminals. This deÖciency is responsible for example for lack of dispersion interaction in the

APSG model. In the paper we propose how to derive a pertinent intergeminal correlation

expression from the linear response functions.

II. INTERGEMINAL CORRELATION ENERGY FROM RESPONSE FUNC-

TIONS

Consider the electron-electron interaction given by a electron pair density, ̂(2)(x1; x2),

Eee =
1

2

Z Z
(2)(x1; x2)jr1  r2j1dx1dx2 : (8)

A pair density operator ̂(2)(x1; x2) can be written in terms of the density (x) = h0j̂(x)j0i

and the density áuctuation operator

̂(x) = ̂(x) h0j̂(x)j0i (9)

as

(2)(x1; x2) = h0j̂(x1)̂(x2)j0i+ (x1)(x2) (x1  x2)(x1) : (10)

The term h0j̂(x1)̂(x2)j0i represents a áuctuation of the density at x1 tied to a áuctuation

at x2 and it gives rise to electron correlation $dobson. In order to Önd an expression for

intergeminal correlation energy we will consider only contributions to the áuctuation term,

h0j̂(x1)̂(x2)j0i, originating from pairs of geminals I; J . For that purpose consider a

geminal density operator and a corresponding áuctuation density operator

̂I(x) =
X

p;q2I

âyqâp 'p(x)'q(x)
 (11)
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Intergeminal correlation from the fluctuation-dissipation theorem

• Intergeminal correlations should result from coupling of geminal density 
fluctuations.

• Define an intergeminal pair correlation function - a contribution to a pair 
density from intergeminal correlations:

where a geminal density of the geminal I and the fluctuation operator read

• The intergeminal electron correlation energy follows from

and

̂I(x) = ̂I(x) I(x) ; (12)

respectively, where I(x) is a diagonal part of the geminal reduced density matrix deÖned

introduced in Eq.(6), i.e.

I(x) =
X

p2I

np'p(x)'p(x)
 : (13)

DeÖne the intergeminal correlation (IGcorr) contribution to the pair density resulting from

interactions of pairs of geminals as
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• It is more convenient to write the IG correlation in terms of the transition 
density matrix elements 

For practical purpose it may be more convenient to express EIGcorr in terms of elements of

transition density matrices T

(T)pq =

0jâyqâpj


: (19)

Empoying Eq.(11,12) in Eq.(16) and using deÖnition (19) allows one to turn Eq.(18) into

EIGcorr =
1

2

X

I;J
I>J

X

pq2I

X

rs2J

X

 6=0

(T)qp(T)

rs hprjqsi : (20)

Notice that the two-electron integrals in are written in the natural spin-orbitals f'p(x)g.

The transition density matrix elements needed for evaluation of intergeminal correlation

energy, Eq.(20), can be obtained from the APSG ground state properties by employing either

the recently introduce extended random phase approximation (ERPA) or time-dependent

APSG linear formalism [$erpa,$td-apsg]. The ERPA approach is derived from the equation

of motion of Rowe [$rowe]. The initial assumption in Roweís approach is that an excited

state ji arises upon acting with an excitation opertor Ôy upon a ground state j0i. In ERPA

such an operator includes only single excitations and the singlet operator reads

ÔyERPA =
X

p>q

(X)pq(â
y
p âq + â

y
p
âq) +

X

p>q

(Y)pq(â
y
q âp + â

y
q
âp) ; (21)

where the creation and annihilation operators, âyp and âp , respectively, act in the space

of the natural spinorbitals (in Refs.[$erpa and $td-apsg] the excitation operator ÔyERPA in-

volves also a term with diagonal single excitations
P

p(Z)p â
y
p âp but since its contribution

to excitation energies and the interelectron geminal correlation energy is negligable, for sim-

plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
0

@ 0 A+

A 0

1

A

0

@
~Y

~X

1

A = !

0

@
~Y

~X

1

A ; (23)
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y
q âp + â

y
q
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(T)pq =

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Notice that the two-electron integrals in are written in the natural spin-orbitals f'p(x)g.

The transition density matrix elements needed for evaluation of intergeminal correlation

energy, Eq.(20), can be obtained from the APSG ground state properties by employing either

the recently introduce extended random phase approximation (ERPA) or time-dependent

APSG linear formalism [$erpa,$td-apsg]. The ERPA approach is derived from the equation

of motion of Rowe [$rowe]. The initial assumption in Roweís approach is that an excited

state ji arises upon acting with an excitation opertor Ôy upon a ground state j0i. In ERPA

such an operator includes only single excitations and the singlet operator reads
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where the creation and annihilation operators, âyp and âp , respectively, act in the space

of the natural spinorbitals (in Refs.[$erpa and $td-apsg] the excitation operator ÔyERPA in-

volves also a term with diagonal single excitations
P

p(Z)p â
y
p âp but since its contribution

to excitation energies and the interelectron geminal correlation energy is negligable, for sim-

plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)
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y
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a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation
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. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
0

@ 0 A+

A 0

1

A

0

@
~Y

~X

1

A = !

0

@
~Y

~X

1

A ; (23)

4

How to express Tv  in terms of the APSG ground state properties? 



ERPA-APSG

• By considering the Rowe’s equation of motion and the ERPA (extended 
random phase approximation) excitation operator 

K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).
K. Pernal, K. Chatterjee, and P. H. Kowalski, J. Chem. Phys. 140, 014101 (2014).

where p,q pertain to the natural spinorbitals, we have obtained the equations for 
excitation energies
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y
p
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y
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operator Ôy, i.e.
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of the natural spinorbitals (in Refs.[$erpa and $td-apsg] the excitation operator ÔyERPA in-

volves also a term with diagonal single excitations
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p(Z)p â
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p âp but since its contribution

to excitation energies and the interelectron geminal correlation energy is negligable, for sim-

plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
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The eigenvectors are related to the transition density matrix elements

Vectors ~Y
~W that enter Eq.(33) are components of the eigenvector solving the TD-APSG

equations [cf. Eq.(26)]

0

BBBBB@

0 0 A+ D+

0 0 2(D+)T E+

A D 0 0

2(D)T E 0 0

1

CCCCCA

0

BBBBB@

~Y

~W

~X

~V

1

CCCCCA
= !

0

BBBBB@

~Y

~W

~X

~V

1

CCCCCA
(34)

corresponding to an -th positive eigenvalue (excitation energy) ! and satisfying the fol-

lowing normalization condition

2

~Y

T
~X +


~W

T
~V = 1 : (35)

A comparison of Eq.(33) with an equivalent spin-summed response equation for Repq (!)

resulting from the standard linear response theory (cf. for example Eq.(66) in Ref.[$td-srlr])

provides the following relation between the elements of the transition density matrix (19)

and the ~Y ; ~W vectors

8p>q (cp + cq)( ~Y)pq = (T)pq + (T)qp ; (36)

8p cp( ~W)p = (T)pp : (37)

Notice that Eq.(36) is identical to the relation between ERPA-APSG ~Y vectors and T ,

cf. Eqs.(22) and (24).

We have shown, therefore, that both ERPA-APSG and TD-APSG equations provide

approximations to transition density matrices T deÖned in Eq.(19). Elements of the ~Y

vector corresponding to the -th positive solution of either ERPA-APSG, Eq.(23), or TD-

APSG, Eq.(34), equations are related to the o§-diagonal elements ofT via the same relation

given in Eq.(36). Aditionally, TD-APSG yields diagonal elements of the transition density

matrix as shown in Eq.(37). In Ref.[$td-apsg] we have discussed that the A

matrices

entering ERPA and TD-APSG equations are identical and so they are solutions to both

eigenproblems if diagonal double excitations (vectors ~W and ~V). In fact, it will be shown

that employing either solutions of ERPA or TD-APSG equations in intergeminal correlation

energy expression lead to values of practically the same quality. Having found expressions

for the transition density matrix elements in terms of ERPA or TD-APSG eigenvectors the

spin-summed expression for the intergeminal correlation energy, Eq.(20), can be written

6



APSG with ERPA intergeminal correlation energy

• Including all possible intergeminal correlation interactions leads to the energy 
functional 

where Ip corresponds to a geminal which an orbital p belongs to. 

K. Pernal, J. Chem. Theory Comput. 10, 4332 (2014).

EERPAAPSG = EAPSG +
X

p>q

X

r>s

(1 IpIqIrIsIpIr)



"
2(cp + cq)(cr + cs)

X



( ~Y)pq( ~Y)rs  [c2p(1 c
2
q) c

2
q(1 c

2
s)]prqs

#
hprjqsi
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ERPA-APSG method

• Optimize the APSG energy

• Solve the ERPA eigenequations

I. THE ERPA-APSG METHOD

Computational methods in chemistry still struggle with the problem of providing good

accuracy in predicting diversified electronic structures of molecules at manageable compu-

tational cost. Density functional-based approximations can be highly e�cient but most of

them su↵er from severe inaccuracies when multireference e↵ects come into play. As a re-

sult they are incapable of correctly describing breaking of covalent bonds - a problem of

fundamental importance in chemistry, or singlet states of diradical character. On the other

hand, wavefunction methods can, depending on the level of approximation, provide results

of required accuracy but the computational cost is often prohibitively high. The most often

used wavefunction methods are either of a single-reference character (e.g. couple cluster

approximations), thus often unreliable in description of strongly correlated systems, or they

are based on a multireference wavefunction (e.g. multireference configuration interaction)

and miss an important portion of dynamic electron correlation.

Geminal theories have been proposed as alternatives to one-electron Hartree-Fock method

and, by relying on two-electron functions called geminals, they are potentially capable of ac-

counting for dissociation of bonds1,2. Imposing a strong orthogonality condition on geminals

leads to a relatively simple optimization problem for the energy but this simplification has

serious consequences in the performance of the resulting method, called antisymmetrized

product of the strongly orthogonal geminals (APSG)3. Some of them originate from the

lack of intergeminal electron correlation in the APSG energy.

Expansion of spatial parts of geminals { I} in a set of natural orbitals {'p} corresponding

to a singlet-state APSG wavefunction ansatz takes diagonal form4, namely

8I  I(r1, r2) =
X

p2I

cp'p(r1)'p(r2) . (1)

Arai has shown that strong orthogonality of geminals implies that subspaces in which gem-

inals are expanded (Arai spaces) are disjoint5. In other words, a given natural orbital 'p

is assigned to only one geminal of the index denoted by Ip. The expression for the APSG

energy reads4

EAPSG[{cp} , {'p}] = 2
X

p

c2p hpp +
X

pq

�IpIq cpcq hpp|qqi

+
X

pq

(1� �IpIq) c
2

pc
2

q [2 hpq|pqi � hpq|qpi] . (2)

2

The one- and two-electron integrals, {hpq} and {hpq|rsi}, respectively, are in the represen-

tation of the natural orbitals. The second term in Eq.(2) accounts exactly for intrageminal

electron interactions. As a result APSG provides an exact description of closed-shell two-

electron systems and supersystems composed of noninteracting electron pairs. The last

term in the APSG expression is responsible for the intergeminal e↵ects. It can be expressed

as a sum of Coulomb and exchange intergeminal interactions, apparently missing the in-

tergeminal correlation6. APSG is a good starting point for systems of multiconfigurational

character, since static correlation e↵ects in electron pairs are exactly captured and two-

electron bonds dissociate correctly2,7. The method misses, however, a significant portion

of the dynamic correlation, which is a consequence of the underlying strong orthogonality

condition for geminals resulting in the lack of intergeminal correlation e↵ects. As it will

be shown, this deficiency often results in inaccurate energy di↵erences (e.g. energy barri-

ers), which is a serious limitation of the APSG approximation from the perspective of its

usefulness for chemical systems.

We have proposed6 an intergeminal correlation correction to APSG by considering in-

tergeminal density fluctuation terms, which, after employing the fluctuation-dissipation

equation, has led to expressing the intergeminal correlation in terms of the transition density

matrix elements. The latter can be found by solving the extended random phase approx-

imation (ERPA) equations8,9 originally formulated as a method for obtaining excitation

energies. The ERPA equations can be written as an eigenvalue problem that reads

h�
A+

�
1/2

A� �
A+

�
1/2

i �
A+

��1/2
Y⌫ = !2

⌫

�
A+

��1/2
Y⌫ , (3)

where, !2

⌫ denotes the ⌫th eigenvalue. If the ground state APSG wavefunction is employed,

the symmetric and positive definite matrices A�, A+ are given in terms of the coe�cients

{cp} and the orbitals {'p}. Their explicit forms are provided in the Appendix. The in-

tergeminal correlation correction has been expressed in terms of the eigenvectors Y⌫ and

3

E. Pastorczak and K. Pernal, Phys. Chem. Chem. Phys. 17, 8622 (2015).

• Find the intergeminal correlation and add it to the APSG energy.

• Solve ERPA equations• Solve ERPA equations• Solve ERPA equations



Asymmetric dissociation of water molecule
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Symmetric dissociation of water molecule
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For Li2 molecule at eq:

EAPSGcorr (Req) = 93%

EERPAAPSGcorr (Req) = 99%

Asymmetric dissoc. of H2O

FCI APSG ERPA-APSG

Ecorr(Req) 100% 37% 95%

De [Hartree] 0:183 0:159 0:184

Symmetric dissociation of H2O

FCI APSG ERPA-APSG

Ecorr(Req) 100% 37% 95%

De [Hartree] 0:333 0:315 0:356

Dissociation of FH:

FCI APSG ERPA-APSG

Ecorr(Req) 100% 33% 95%

De [Hartree] 0:202 0:174 0:211
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Twisting of the CC bond in ethylene
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ERPA-APSG: exact asymptotic of the interaction energy for the helium dimer
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Interaction energy for water dimer
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
1

2

X

p6=t;s 6=q

1

2
stpq hpsjtqinp(1 ns) = 

1

2

X

p>t;s 6=q

stpq hpsjtqinp(1 ns)


1

2

X

t<p;s 6=q

qpts hpsjtqins(1 np)

= 
1

2

X

p>t;q>s

stpq hpsjtqi [np(1 ns) + ns(1 np)]

For Li2 molecule at eq:

EAPSGcorr (Req) = 93%

EERPAAPSGcorr (Req) = 99%

Asymmetric dissoc. of H2O

FCI APSG ERPA-APSG

Ecorr(Req) 100% 37% 95%

De [Hartree] 0:183 0:159 0:184

Symmetric dissociation of H2O

FCI APSG ERPA-APSG

Ecorr(Req) 100% 37% 95%

De [Hartree] 0:333 0:315 0:356

Dissociation of FH:

FCI APSG ERPA-APSG

Ecorr(Req) 100% 33% 95%

De [Hartree] 0:202 0:174 0:209

Interaction energy for water dimer:

CCSD(T) APSG ERPA-APSG

Eint [mHartree] 11:2 6:8 10:1

5

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

5 6 7 8 9 10 11 12 13 14
-12

-10

-8

-6

-4

-2

0

2

4

6

(H2O)2, cc-pVDZ

 

 

In
te

ra
ct

io
n 

en
er

gy
 [m

H
ar

tre
e]

R [bohr]

 CCSD(T)
 ERPA-APSG
 APSG

 
 

Figure 1. Geometries of the dimers in the HB6/04 database 
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Umbrella inversion of the NH3 molecule in cc-pVTZ basis set
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Umbrella inversion energy barriers for NH3
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FIG. 2. Umbrella inversion of the NH
3

molecule in cc-pVTZ11 basis set.
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FIG. 3. Twisting of O-O bond of the H
2

O
2

molecule in cc-pVDZ11 basis set.

Rotation of molecular fragments around a single bond is a process that does not in-

volve breaking of covalent bonds and its accurate description requires accounting for mainly
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Energy barriers for twisting of the O-O bond in H2O2 
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Inversion barrier of the NH3 and H2O molecules in cc-pVTZ basis set

E. Pastorczak and K. Pernal, Phys. Chem. Chem. Phys. 17, 8622 (2015).

TABLE I. Inversion and rotational barriers. Absolute errors of the barriers with respect to either

CCSD(T) or TCSCF-CISD values are provided in parenthesis. Geometries: aROH = 1.808 a.u.,

↵HOH = 104.5�, bRNH = 1.912 a.u., ↵ = 67� (see Fig.2), cROH = 1.827 a.u., ROO = 2.748 a.u.,

↵HOO = 99.5�, ↵=115.9� (see Fig.3), dRCC = 1.330 a.u., RCH = 1.076 a.u., ↵HCC = 121.7�,

↵
torsional

=0�. Basis sets used: H
2

O, NH
3

- cc-pVTZ11; H
2

O
2

- cc-pVDZ11; C
2

H
4

- DZP12. eResults

taken from Ref.12

Molecule Method Total energy [Ha] Barrier [kcal/mol]

Opt. geom.a Linear

H
2

O CCSD(T) -76.3339 -76.2785 34.8 (0.0)

MP2 -76.3205 -76.2663 34.0 (0.8)

APSG -76.1569 -76.0886 42.9 (8.1)

ERPA-APSG -76.3297 -76.2751 34.2 (0.5)

Opt. geom.b Planar

NH
3

CCSD(T) -56.4746 -56.4637 6.8 (0.0)

MP2 -56.4546 -56.4442 6.5 (0.3)

APSG -56.3258 -56.3095 10.2 (3.4)

ERPA-APSG -56.4726 -56.4618 6.8 (0.0)

Opt. geom.c cis trans cis trans

H
2

O
2

CCSD(T) -151.1939 -151.1797 -151.1925 8.9 (0.0) 0.9 (0.0)

MP2 -151.1705 -151.1562 -151.1692 9.0 (0.1) 0.9 (0.0)

APSG -150.9338 -150.9188 -150.9329 9.4 (0.5) 0.5 (0.4)

ERPA-APSG -151.1624 -151.1483 -151.1611 8.9 (0.0) 0.8 (0.1)

Opt. geom.d Twisted (90�)

C
2

H
4

TCSCF-CISDe -78.3659 -78.2457 75.4 (0.0)

CASSCFe -78.1895 -78.0646 78.4 (3.0)

MP2 -78.3529 -78.1907 101.8 (26.4)

APSG -78.1920 -78.0646 80.0 (4.6)

ERPA-APSG -78.3700 -78.2445 78.8 (3.4)
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Deprotonation energies in aug-cc-pVDZ basis set

TABLE II. Deprotonation energies of alcohols, �E. Absolute errors with respect to CCSD(T)

values are provided in parenthesis. Aug-cc-pVDZ11 basis set used in all calculations. Geometries:

aROH = 1.808 a.u., ↵HOH = 104.5�, b B3LYP/6-31G⇤ optimized14, cMP2/6-31G⇤ optimized.

Molecule Method �E [kcal/mol]

H
2

Oa CCSD(T) 395.5 (0.0)

MP2 391.6 (3.9)

APSG 405.1 (9.6)

ERPA-APSG 397.9 (2.4)

CH
3

OHb CCSD(T) 393.5 (0.0)

MP2 390.4 (3.1)

APSG 404.1 (10.6)

ERPA-APSG 396.5 (3.0)

C
2

H
5

OHb CCSD(T) 389.3 (0.0)

MP2 386.6 (2.7)

APSG 401.9 (12.6)

ERPA-APSG 393.3 (4.0)

C
3

H
7

OHc CCSD(T) 390.9 (0.0)

MP2 388.2 (2.7)

APSG 403.7 (12.8)

ERPA-APSG 395.0 (4.1)

III. APPENDIX

The ERPA-APSG method involves solving the ERPA equations, Eq.(3), where the ele-

ments of the matrices A+ and A� are given in terms of the APSG natural orbitals {'p}

and the expansion coe�cients {cp} [cf. Eq.(2)], namely9

8p>q
r>s

A+

pq,rs = (cp + cq)�1(Apq,rs +Bpq,rs)(cr + cs)�1 ,

8p>q
r>s

A�
rs,pq = (cp � cq)�1(Apq,rs � Bpq,rs)(cr � cs)�1 ,

11



Conclusions

• yields exact ground state energy of singlet two-electron systems,

• reproduces correct potential energy curves (dissociation energies of the 
same or better accuracy than those of APSG),

• predicts correct energy barriers,

• takes into account dispersion energy,

• improves hydrogen bonds over APSG,

• is size-extensive,
• is comparable to RPA in terms of computational efficiency.

• The ERPA-APSG energy takes into account static and short- and long-range 
dynamic correlation.

• In particular, the method 
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