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PEPA  or  (Natural) NPEPA:
Population  analysis  for both  electrons  and   electron-holes



(LOCAL)   ELECTRONIC   EVENTS (in  the  sense  of  Loge Theory [1] ) 
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Placing  functional  groups ‘under  the  microscope’

=
R2

R1

OC C O

R1

R2 R2

R1

OC

R2

R1

C O

C O

R1

R2

[1] R. Daudel,  in   ‘Localization  and  Delocalization  in  Quantum  Chemistry’ ,    Chalvet, O.  et  al.,(eds.), vol.I;   Reidel, Dordrecht,1975,  p. 3  



METHOD
Extract  a  local  information  from  a delocalized  Ψ(ΜΟ) :

<Ψ(ΜΟ) ρ̂ Ψ(ΜΟ)>

⇓

- Elaboration  of   Ψ(ΜΟ)   within MOFFITT’s theorem

(  Ψ(ΜΟ)   → Ψ(ΤL)   )

- Elaboration  of   ρ̂ within  SECOND  QUANTIZATION
( include  electron  holes)
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Let   E is the number of the target electrons,  and    H is the number of the target electron holes.
Placing  ‘under the microscope’ E spin-orbitals:

or   E + H  spin-orbitals:

HE;
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- Expectation values,  PE;H , of  the generalized density operators:
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represents  a  summation  over  Slater determinants, which involve  
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W( KΦ )

is the weight of the local Slater determinant , depending on the (non-) orthogonality of orbitals.KΦ



Weights of the totally local Slater determinants, :KΦ

(i) orthogonal  orbitals

2
KT=W( KΦ )

Provides the  probability of a given occupation scheme of (local) AO-positions

(ii) non-orthogonal  orbitals (Mulliken partition for P.E.P.A)

The Coulson-Chirgwin definition for the weights of determinantal wave functions:

KΦ 2
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KT KΦ ΚΦ ′W( ) =   < >   +  < >                 

By adopting the Mulliken partition for P.E.P.A., the weights, PE;H, of local electronic structures are 
coherent with those of VB theory. The principal difference is that VB weights are obtained from spin-
eigenfunctions and concern the whole electronic assembly, while PE;H are obtained from the sums 
weights of single Slater determinants, and concern local structures. 



Summary 

The generalized Poly-Electron Population Analysis (PEPA)

requires very simple (formally) equation: 
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(A)Mixed local-non-local Slater determinants

(B) The hole-expansion methodology

[Note: The involved  det {       } have   a fixed occupation  in the target SOs {      ,     }  , while the  
remaining  SOs can  have  anyone occupation ] 

KΦ λφ μφ

But, in medium size systems:
Exponential scaling of computational difficulties with the system size !

⇓
Efficient  calculation  of HEP ; without approximations:
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(A)  Mixed local-non-local Slater determinants

The basic idea:
Any delocalized MO Slater determinant (of the initial wave function), ID
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is decomposed (i.e. expanded) in mixed local-non-local  (LNL) Slater determinants, LNL
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Generalizing the Moffitt’s  theorem we obtain:

Ψ(ΜΟ)   =     ∑
LNL

I
IC LNL

ID +    Ψ(remaining)         

H
iψ

The  factorization of  VB-type (Totally Local)  Slater determinants
(i.e grouping  the TL  Slater determinants,  having  as  ‘common  factor’ the  target  electrons  under the  

microscope )

Only this part is useful to 
calculate                                                       

< Ψ(ΜΟ) |    |Ψ(ΜΟ)>ρ̂

H
iψ
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 μEfficient  calculation  of PE;H( ... ; ... )  (without approximations)

(B)   The hole-expansion  methodology [1]
The basic ideas:
(i)  One can show [1] that a structure involving only electron holes can be calculated very efficiently (i.e. 
without generating and storing the extremely numerous TL Slater det.) :

[1] P. Karafiloglou J. Chem. Phys. 130 (2009) 164103
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(ii)  One can show [1] that a structure involving only electrons can be expanded in terms involving only holes 
(hole-expansion), as for example:

1 λφ 1 λφP1;0( ;0) = 1-P0;1(0; ) [a trivial example of a hole-expansion issued from the  first order 
anticommutation relation] 
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Similarly,  for structures involving both electrons and holes:
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The general expression for any  structure involving   E   electrons and   H    holes is:
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ALGORTHM:  Library  of  hole-structures
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Generalizing these relations, one can show inductively the following general expansion:
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Poly-Electron  Population  Analysis  of  VB  wave functions

A proposition  for the VB workshop (Paris, July 2012)

From  a  V.B.  wave function  obtain  the  Coulson-Chirgwin   
weights, W( ΦK ), of  single  Slater  determinants, ΦK .

Ψ(TL)  Ψ(VB)  

(An output file involving the weigths W(ΦK) of single Slater determinants, ΦK ) 

⇓

⇓
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Relationships  between  local  structures
The  electron-expansion methodology [1]

(Expand  the holes in terms involving only electrons)
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P2;0 P3;0 P4;0P3;0

The  P3;0 contribute  with  a  minus sign  => The greater the contributions of  the  three-electron
structures are, the less important are both covalent and ionic structures, and thus the more week is 
the bond:     Déjà vu in  the  ‘L.P.B.W.E.  effect’ of  V.B.  theory !

[1]  P. Papanikolaou,   P. Karafiloglou    J. Phys. Chem. A 112 8839, 2008



The 4th  order  anticommutation relation

involves  16   terms :  

By  adopting  the  V.B.  perspective for  chemical  bonding,  and  choosing  the  above  spin-
orbitals   (i = 1,2,3,4)  such as 
i = 1  → λφ ,  i = 2  → λφ and        i = 3  → μφ ,    i = 4  → μφ

μφφλ

R 1 R 2

we  obtain :
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The  bond  localization  (L)  in  VB  language:   

or, the  bond  delocalization (D)  :   

L= _1D

Lionel  Salem in ‘The Molecular Orbital Theory of Conjugated Systems’, p.86(Benjam, N.York
“Delocalization  is  a measure  of  the degree  to  which  the electrons cannot  
be assigned  by  pairs to individual  bonds”
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C(  λ, μ  )  =  P2(  λ, μ  )      P1(  λ  )  P1( μ  ) 

Electron  pairs in Chemical  systems :

Coulomb   correlations  in two orbitals:  Fermi  correlations  in two orbitals:  

 Coulomb   and  Fermi  (or Exchange)  correlations
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C(  λ , μ  )  =  P2(  λ, μ  )      P1( λ  )  P1(  μ  ) 
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 Fermi  correlations  in   one orbital:  Coulomb   correlations  in  one orbital: 

P. Karafiloglou, J. Phys. Chem. A 2001,  105, 4524



One  orbital  correlations: Tw o  orbital  correlations: 

This  corroborates  with the V.B.  description  of  butadiene:
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The chemical  bond  is a  matter  of  an  electron  pair
From  genuine  chemical  knowledge: 

C( λ, μ ) 
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negative 
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 Fermi (or Exchange)  Coulomb    

The  absolutes  values  of  Fermi  are   greater   than  the  Coulomb  correlations 
(this  holds  without  any  exception)

Methods based on the behaviour of  parallel  spins  (c.f. to  Pauli Principle) 

(e.g. Wiberg  indices,  E.L.F.,  D.A.F.H.),  provide  remarkably  good  results ! 

Note:
...

.. 
-0

.2
25

0 
...

.. ........... -0.0317 ........... ..... -0.2250.....

.......
.......

..... +
0.0074 ......

.......
...

: :

...................... +0.0104 ......................
.. 

+0
.0

56
3.

...
. ........... +0.0210 ........... ..... +0.0563...

.......
.......

..... -
0.0047.......

.......
.....

...................... -0.0306 ...................

P. Karafiloglou, J. Phys. Chem. A 2001,  105, 4524



At  least  from  etymological viewpoint  ‘Valence  Bond’ refers  to  a  bond  in 
Valence orbitals:

_____________________________________________________________________________________________

Conceptual problems can arise even in  the simplest case  of  a  double-zeta basis:   

In which extent the outer orbital is Valence (and in which extent is  Rydberg) orbital ?



Current  calculations  involve  quite  extended  AO-basis sets:
Multiple  zeta  +  polarization  functions

⇓
Conceptual  problems to  interpret  ‘accurate’ calculations:  
Which  orbitals  represent  better the valence orbitals  and which  the  Rydberg ? 

For example, the  C atom  makes bonds  by using  the   valence  2s, 2p,
although for quantum chem. investigations one must use : s, s', s'',   p, p', p'',  polarization

¬ These  orbitals  are  ‘natural’ in   the  Löwdin sense  and,  thus,  can  be clearly 
distinguished  in  valence   and   Rydberg.

¬ They  show  remarkable  stability with  the extension  of  the  SCF AO- basis set.      
¬ They span the complete SCF-AO basis set => The initial wavefunction can be transformed     
m into the Natural basis without altering its approximation level; this  holds even for 
aacorrelated  wavefunctions (linear combination of Slater determinants)   
aa=>  no approximations or additional assumptions for NPEPA.
¬ The bonding  NBOs show a very good transferability.
¬ These Natural orbitals can be  either orthogonal or non-orthogonal 

CHOICE  OF  ORBITAL  SPACES

A  very good solution:
Natural  Orbitals (NAOs, NHOs, NBOs, …etc) [1]

[1]  F. Weinhold, C. R. Landis, in ‘Valency and Bonding: A Natural Bond Orbital 
Donor-Acceptor Perspective’; Cambridge U. Press, 2005, and references cited therein



NON-ORTHOGONAL  vs ORTHOGONAL   ORBITALS

PNAOs  → .... OSWO NAOs

PNHOs  → .... OSWO NHOs (hybrid valence)  etc …

► π – Bonds :  Both orthogonal  and  non-orthogonal  orbitals  are
appropriate,  providing  the same  conceptual  pictures [1,2]   

► σ – Βonds :  For  VB-type  descriptions  more appropriate  are  the  
(non-orthogonal)  PNAOs,   or,  better,  the  PNHOs.

Note :  The  NBOs are  appropriate  for  both   π – Bonds and  σ – Βonds.

[1]  K. Hirao,  H. Nakano,  K. Nakayama J.  Chem. Phys. 1997, 107, 9966
[2] P. Karafiloglou     J. Chem. Phys.  130  (2009) 164103

P. Papanikolaou, P. Karafiloglou J. Phys. Chem. A 2008, 112  8839 
P. Karafiloglou, J. Phys. Chem. A 2001,  105, 4524



An  intriguing  Epistemological  problem:

Although  the  chemical formula has been introduced before the development of Quantum 
Theory,  remains (and will remain) a  basic stone  for  Chemical Sciences !

Question:  In which  degree  the  traditional  chemical formula  describes 
correctly the physical (quantum)  reality [1]  ?

Quantum  Probabilities  for  chemical  formulae:

In each chemical  formula we associate a Quantum  Probability, PN;0 , i.e.  a  factor  
ranging  to [0,1] :

PN;0 → 1
Chemical  formula  → Physical   Reality

[1][A  NBO-based probability, PN;0 ,  provides  a  quantitative measure  of  this degree]




