POLY-ELECTRON POPULATION ANALYSIS (PEPA) OF MO WAVEFUNCTIONS:

A'theoretical Microscope' to explore VB-type local structures.

Padeleimon KARAFILOGLOU
ARISTOTLE UNIVERSITY OF THESSALONIKI
GREECE

PEPA or (Natural) NPEPA:
Population analysis for both electrons and electron-holes

(LOCAL) ELECTRONIC EVENTS (in the sense of Loge Theory [1])

Placing functional groups 'under the microscope'

[1] R. Daudel, in 'Localization and Delocalization in Quantum Chemistry', Chalvet, O. et al.,(eds.), vol.I; Reidel, Dordrecht,1975, p. 3

METHOD

Extract a local information from a delocalized $\Psi(\mathbf{M O})$:

$<\Psi(\mathbf{M O})|\hat{\rho}| \Psi(\mathbf{M O})>$
 \Downarrow

- Elaboration of $\boldsymbol{\Psi (M O) ~ w i t h i n ~ M O F F I T T ' s ~ t h e o r e m ~}$

$$
(\Psi(\mathrm{MO}) \rightarrow \Psi(\mathrm{TL}))
$$

- Elaboration of $\hat{\rho}$ within $\begin{array}{r}\text { SECOND QUANTIZATION } \\ \text { (include electron holes) }\end{array}$

TOTALLY LOCAL $\Psi(T L)$

$$
\begin{aligned}
& \psi(\mathrm{MO})=\sum_{\mathrm{I}}{ }^{\mathrm{CI}} \mathrm{C}_{\mathrm{I}}\left|\mathrm{D}_{\mathrm{I}}\right| \\
& \left|D_{I_{I}}\right|=\left\|\psi_{i_{1}} \ldots \psi_{i_{2}} \bar{\Psi}_{i_{1}} \ldots \overline{\psi_{i_{2}}}{ }^{2}\right\| \\
& \left(\operatorname{MOs} \quad \Psi_{i_{1}}: \quad \psi_{i_{1}}=\sum_{k} c_{k, i_{1}} \varphi_{k}\right) \\
& \text { OR }
\end{aligned}
$$

$$
\begin{aligned}
\Psi(\mathrm{TL}) & =\sum_{\mathrm{K}} \mathrm{~T}_{\mathrm{K}}\left|\Phi_{\mathrm{K}}\right| \\
\left|\Phi_{\mathrm{K}}\right|=\| \varphi_{\mathrm{k}_{1}^{s}} \ldots \varphi_{\mathrm{k}_{1}^{s}} & \bar{\varphi}_{\mathrm{k}_{1}} \ldots{\overline{k_{1}}}_{\mathrm{k}_{1}} \|
\end{aligned}
$$

One Slater Determinant, D_{1}, involving
the delocalized Khon-Sham orbitals, $\psi_{i_{1}}$

MOFFITT's theorem

$$
\overline{\Psi(\mathrm{MO})}=\Psi(\mathrm{TL})
$$

Decomposition of MO-Slater determinants:

$$
\begin{aligned}
& \left|D_{I}\right|=\sum_{K} T_{K}^{T}\left|\Phi_{\mathrm{K}}\right| \quad \text { (from identity relations) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{K}}=\sum_{\mathrm{I}}{ }^{s} \mathrm{C}_{\mathrm{I}} \mathrm{~T}_{\mathrm{K}}^{\mathrm{I}}
\end{aligned}
$$

DENSITY OPERATORS

Let \mathbf{E} is the number of the target electrons, and \mathbf{H} is the number of the target electron holes. Placing 'under the microscope' \mathbf{E} spin-orbitals:

$$
\hat{\rho}_{E ; 0}\left(\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}} ; 0\right)=\varphi_{\lambda_{1}}^{+} \cdots \varphi_{\lambda_{E}}^{+} \bar{\varphi}_{\lambda_{E}}^{-} \cdots \varphi_{\lambda_{1}}^{-}
$$

or $\mathbf{E}+\mathbf{H}$ spin-orbitals:

$$
\hat{\rho}_{\mathrm{E} ; \mathrm{H}}\left(\varphi_{\lambda_{1}} \varphi_{\lambda_{\mathrm{E}}} ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)=\varphi_{\lambda_{1}}^{+} \ldots \varphi_{\lambda_{\mathrm{E}}}^{+} \varphi_{\mu_{1}}^{-} \ldots \varphi_{\mu_{H}}^{-} \varphi_{\mu_{H}}^{+} \cdots \varphi_{\mu_{1}}^{+} \varphi_{\lambda_{\mathrm{E}}}^{-} \cdots \varphi_{\lambda_{1}}^{-}
$$

(for simplicity: creation φ^{+}instead of $\mathrm{a}_{\varphi}^{+} \quad, \quad$ and annihilation φ^{-}instead of a_{φ})

- Expectation values, $\mathrm{P}_{\mathrm{E} ; \mathrm{H}}$, of the generalized density operators:
$\mathrm{P}_{\mathrm{E} ; \mathrm{H}}\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}} ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)=\langle\Psi(\mathrm{TL})| \hat{\rho}_{\mathrm{E}, \mathrm{H}}\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}} ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)|\Psi(\mathrm{TL})\rangle=$

$$
=\sum_{\mathrm{K}\left(\neq \varphi_{\mu_{1}} \cdots \varphi_{\mu_{H}}\right)}^{\left(\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}}\right)} \mathrm{W}\left(\Phi_{\mathrm{K}}\right)
$$

Where $\sum_{\mathrm{K}\left(\neq \varphi_{\mu_{1}} \cdots \varphi_{\mu_{H}}\right)}^{\left(\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}}\right)}$ represents a summation over Slater determinants, which involve
$\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}}$ and simultaneously SOs $\varphi_{\mu_{1}} \cdots \varphi_{\mu_{H}}$ are absent, and

$$
\mathrm{W}\left(\Phi_{\mathrm{K}}\right)
$$

is the weight of the local Slater determinant $\left|\Phi_{\mathrm{K}}\right|$, depending on the (non-) orthogonality of orbitals.

Weights of the totally local Slater determinants, $\left|\Phi_{\mathrm{K}}\right|$:

(i) orthogonal orbitals

$$
\mathrm{W}\left(\Phi_{\mathrm{K}}\right)=\mathrm{T}_{\mathrm{K}}^{2}
$$

Provides the probability of a given occupation scheme of (local) AO-positions
(ii) non-orthogonal orbitals (Mulliken partition for P.E.P.A)

The Coulson-Chirgwin definition for the weights of determinantal wave functions:

$$
\mathrm{W}\left(\Phi_{\mathrm{K}}\right)=\mathrm{T}_{\mathrm{K}}^{2}<\Phi_{\mathrm{K}}\left|\Phi_{\mathrm{K}}>+\mathrm{T}_{\mathrm{K}} \sum_{\mathrm{K} \neq \mathrm{K}}^{\text {fulbasis }} \mathrm{T}_{\mathrm{K}^{\prime}}<\Phi_{\mathrm{K}}\right| \Phi_{\mathrm{K}^{\prime}}>
$$

By adopting the Mulliken partition for P.E.P.A., the weights, $\mathrm{P}_{\mathrm{E} ; \mathrm{H}}$, of local electronic structures are coherent with those of VB theory. The principal difference is that VB weights are obtained from spineigenfunctions and concern the whole electronic assembly, while $\mathrm{P}_{\mathrm{E} ; \mathrm{H}}$ are obtained from the sums weights of single Slater determinants, and concern local structures.

Summary

The generalized Poly-Electron Population Analysis (PEPA)

requires very simple (formally) equation:

$$
\mathrm{P}_{\mathrm{E} ; \mathrm{H}}\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}} ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)=\sum_{\mathrm{K}\left(\neq \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)}^{\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}}\right)} W\left(\Phi_{\mathrm{K}}\right)
$$

[Note: The involved det $\left\{\Phi_{\mathrm{K}}\right\}$ have a fixed occupation in the target $\operatorname{SOs}\left\{\varphi_{\lambda}, \varphi_{\mu}\right\}$, while the remaining SOs can have anyone occupation]

But, in medium size systems:
Exponential scaling of computational difficulties with the system size !
\Downarrow
Efficient calculation of $\mathrm{P}_{\mathrm{E} ; \mathrm{H}}$ without approximations:
(A) Mixed local-non-local Slater determinants
(B) The hole-expansion methodology

Efficient calculation of $\mathrm{P}_{\mathrm{E}: \mathrm{H}}\left(\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}} ; \varphi_{\mu_{1}} \cdots \varphi_{\mu}\right)$ (without approximations)

(A) Mixed local-non-local Slater determinants

The factorization of VB-type (Totally Local) Slater determinants
(i.e grouping the TL Slater determinants, having as 'common factor' the target electrons under the microscope)

The basic idea:
Any delocalized MO Slater determinant (of the initial wave function), $\left|D_{I}\right|$

$$
\begin{aligned}
\left|\mathrm{D}_{\mathrm{I}}\right|= & \left\|\Psi_{i_{1}} \ldots \Psi_{i_{N}}\right\| \\
& \leftarrow \text { non-local } \rightarrow
\end{aligned}
$$

is decomposed (i.e. expanded) in mixed local-non-local (LNL) Slater determinants, $\left|D_{\mathrm{I}}^{\mathrm{LNL}}\right|$

$$
\begin{aligned}
\left|D_{\mathrm{I}}^{\text {LNL }}\right|= & \| \varphi_{\mathrm{i}_{1} \ldots} \varphi_{\mathrm{i}_{\mathrm{E}}} \Psi_{i_{\mathrm{i}+1}}^{H} \ldots \\
& \leftarrow \text { local } \rightarrow \quad \leftarrow \text { non-local } \rightarrow
\end{aligned}
$$

A non-local Ψ_{i}^{H} has the following form :

$$
\psi_{\mathrm{i}}^{H}=\sum_{\mathrm{k} \neq \varphi_{i_{1}} \ldots \varphi_{\mathrm{i}_{\mathrm{E}}} \varphi_{\mu_{1}} \ldots \varphi_{\mu_{\mathrm{H}}}} \mathrm{c}_{\mathrm{k}, \mathrm{i}} \varphi_{\mathrm{k}}
$$

Generalizing the Moffitt's theorem we obtain:

$$
\Psi(\mathrm{MO})=\sum_{\mathrm{I}}^{\mathrm{LNL}} \mathrm{C}_{\mathrm{I}}\left|\mathrm{D}_{\mathrm{I}}^{L N L}\right|+\Psi(\text { remaining }) \longrightarrow \begin{gathered}
\text { Only this part is useful to } \\
\text { calculate } \\
\langle\Psi(\mathrm{MO})| \hat{\rho} \mid \Psi(\mathrm{MO})>
\end{gathered}
$$

Efficient calculation of $\mathrm{P}_{\mathrm{E} ; \mathrm{H}}\left(\varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{E}} ; \varphi_{\mu_{1}} \cdots \varphi_{\mu_{H}}\right)$ (without approximations)

(B) The hole-expansion methodology [1]

The basic ideas:
(i) One can show [1] that a structure involving only electron holes can be calculated very efficiently (i.e. without generating and storing the extremely numerous TL Slater det.) :

$$
\mathrm{P}_{0 ; \mathrm{H}}\left(0 ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{\mathrm{H}}}\right)=\sum_{\mathrm{I}}^{\mathrm{Cl}} \mathrm{C}_{\mathrm{I}}^{*} \sum_{\mathrm{I}}^{\mathrm{Cl}} \mathrm{C}_{\mathrm{I}}<\mathrm{D}_{\mathrm{I}}\left|\mathrm{D}_{\mathrm{I}}^{H}\right\rangle
$$

where $\left|D_{I}\right|$ is a MO Slater determinant of the initial wave function:

$$
\left|D_{I}\right|=\left\|\psi_{i_{1}} \ldots \Psi_{i_{N}}\right\|
$$

And $\mathrm{D}_{\mathrm{I}}^{H}$ are Slater determinants involving (instead of MOs Ψ_{i}) projected MO, $\Psi_{\mathrm{i}}{ }^{H}$

$$
\left|\mathrm{D}_{\mathrm{I}}^{H}\right|=\left\|\Psi_{\mathrm{i}_{1}}^{H} \ldots \psi_{\mathrm{i}_{\mathrm{N}}}^{H}\right\|
$$

in which Ψ_{i}^{H} is obtained from the corresponding Ψ_{i}, in which the SOs involving holes, $\varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}$, are not excluded:

$$
\psi_{\mathrm{i}}^{H}=\sum_{\mathrm{k} \neq \varphi_{\mu_{1}} \cdots \varphi_{\mu_{\mathrm{H}}}} \mathrm{c}_{\mathrm{k}, \mathrm{i}} \quad \varphi_{\mathrm{k}}
$$

An overlap $<\mathrm{D}_{\mathrm{I}} \mid \mathrm{D}_{\mathrm{I}}^{H}$ > is a determinant involving as elements the overlaps $\left\langle\Psi_{\mathrm{i}} \mid \Psi_{\mathrm{i}}^{H}\right\rangle$.

$$
\left\langle\mathrm{D}_{\mathrm{I}} \mid \mathrm{D}_{\mathrm{I}}^{H}\right\rangle=\left|\begin{array}{ccc}
\left\langle\psi_{i} \mid \psi_{i}^{H}\right\rangle & \cdots & \left\langle\psi_{i} \mid \psi_{N}^{H}\right\rangle \\
\cdot & & \vdots \\
\cdot & & \vdots \\
\left\langle\psi_{i N} \mid \psi_{i}^{H}\right\rangle & \cdots & \left\langle\psi_{i N} \mid \psi_{i N}^{H}\right\rangle
\end{array}\right|
$$

] P. Karafiloglou
J. Chem. Phys. 130 (2009) 164103
(ii) One can show [1] that a structure involving only electrons can be expanded in terms involving only holes (hole-expansion), as for example:

$$
\mathrm{P}_{1 ; 0}\left(\varphi_{\lambda_{1}} ; 0\right)=1-\mathrm{P}_{0 ; 1}\left(0 \varphi_{\lambda_{1}}\right) \quad \begin{aligned}
& \text { [a trivial example of a hole-expansion issued from the first order } \\
& \text { anticommutation relation] }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{2 ; 0}\left(\varphi_{\lambda_{1}} \varphi_{\lambda_{2}} ; 0\right)=1-\mathrm{P}_{0 ; 1}\left(0 ; \varphi_{\lambda_{1}}\right)-\mathrm{P}_{0 ; 1}\left(0 ; \varphi_{\lambda_{2}}\right)+\mathrm{P}_{0 ; 2}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\lambda_{2}}\right) \\
& \mathrm{P}_{3 ; 0}\left(\varphi_{\lambda_{1}} \varphi_{\lambda_{2}} \varphi_{\lambda_{3}} ; 0\right)=1-\mathrm{P}_{0 ; 1}\left(0 ; \varphi_{\lambda_{1}}\right)-\mathrm{P}_{0 ; 1}\left(0 ; \varphi_{\lambda_{2}}\right)-\mathrm{P}_{0 ; 1}\left(0 ; \varphi_{\lambda_{3}}\right)+\mathrm{P}_{0 ; 2}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\lambda_{2}}\right)+ \\
& \text { etc } \\
& \mathrm{P}_{0 ; 2}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\lambda_{3}}\right)+\mathrm{P}_{0 ; 2}\left(0 ; \varphi_{\lambda_{2}} \varphi_{\lambda_{3}}\right)-\mathrm{P}_{0 ; 3}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\lambda_{2}} \varphi_{\lambda_{3}}\right)
\end{aligned}
$$

Generalizing these relations, one can show inductively the following general expansion:

$$
\mathrm{P}_{\mathrm{E} ; 0}\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}} ; 0\right)=1+\sum_{\mathrm{q}=1}^{\mathrm{E}}(-1)^{\mathrm{q}} \sum_{\mathrm{j}_{1}<\mathrm{K}}^{\lambda_{\mathrm{E}}} \Lambda \sum_{<\mathrm{i}_{\mathrm{q}}}^{\lambda_{\mathrm{E}}} P_{0 ; q}\left(0 ; \varphi_{\mathrm{j}_{1}} \ldots \varphi_{\mathrm{j}_{\mathrm{q}}}\right)
$$

Similarly, for structures involving both electrons and holes:

$$
\begin{aligned}
\mathrm{P}_{2 ; 2}\left(\varphi_{\lambda_{1}} \varphi_{\lambda_{2}} ; \varphi_{\mu_{1}} \varphi_{\mu_{2}}\right)= & \mathrm{P}_{0 ; 2}\left(0 ; \varphi_{\mu_{1}} \varphi_{\mu_{2}}\right)-\mathrm{P}_{0 ; 3}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\mu_{1}} \varphi_{\mu_{2}}\right)- \\
& -\mathrm{P}_{0 ; 3}\left(0, \varphi_{\lambda_{2}} \varphi_{\mu_{1}} \varphi_{\mu_{2}}\right)+\mathrm{P}_{0 ; 4}\left(0 ; \varphi_{\lambda_{1}} \varphi_{\lambda_{2}} \varphi_{\mu_{1}} \varphi_{\mu_{2}}\right)
\end{aligned}
$$

The general expression for any structure involving E electrons and H holes is:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E} ; \mathrm{H}}\left(\varphi_{\lambda_{1}} \ldots \varphi_{\lambda_{\mathrm{E}}} ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)= & \mathrm{P}_{0 ; \mathrm{H}}\left(0 ; \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)+ \\
& +\sum_{\mathrm{q}=1}^{\mathrm{E}}(-1)^{\mathrm{q}} \sum_{\mathrm{j}_{1}<\mathrm{K}}^{\lambda_{\mathrm{E}}} \Lambda \sum_{<\mathrm{j}_{\mathrm{q}}}^{\lambda_{E}} \mathrm{P}_{0 ; \mathrm{q}+\mathrm{H}}\left(0 ; \varphi_{\varphi_{\mu_{2}}} \ldots \varphi_{\mathrm{j}_{\mathrm{q}}} \varphi_{\mu_{1}} \ldots \varphi_{\mu_{H}}\right)
\end{aligned}
$$

A proposition for the VB workshop (Paris, July 2012)

$$
\Psi(\mathrm{VB}) \longrightarrow \Psi(\mathrm{TL})
$$

From a V.B. wave function obtain the Coulson-Chirgwin weights, $\mathrm{W}\left(\Phi_{\mathrm{K}}\right)$, of single Slater determinants, Φ_{K}.

\Downarrow

(An output file involving the weigths $\mathbf{W}\left(\Phi_{\mathbf{K}}\right)$ of single Slater determinants, $\Phi_{\mathbf{K}}$)
\downarrow

Poly-Electron Population Analysis of VB wave functions

Two-electron	One-electron one-hole
probability $\left(\mathrm{P}_{2 ; 0}\right):$	probability $\left(\mathrm{P}_{1 ; 1}\right):$

Two-electron two-hole probabilities $\left(\mathrm{P}_{2 ; 2}\right)$:

Three-electron one-hole probabilities ($\mathrm{P}_{3 ; 1}$) :

Four-electron two-hole probabilities ($\mathrm{P}_{4 ; 2}$):

Relationships between local structures

The electron-expansion methodology [1]

(Expand the holes in terms involving only electrons)

$$
\begin{aligned}
& \mathrm{P}_{2 ; 2}(\mu, \bar{\mu} ; \mathrm{v}, \overline{\mathrm{~V}})=\mathrm{P}_{2 ; 0}(\mu, \bar{\mu})-\mathrm{P}_{3 ; 0}(\mu, \bar{\mu}, v)-\mathrm{P}_{3 ; 0}(\mu, \bar{\mu}, \bar{v})+\mathrm{P}_{4 ; 0}(\mu, \bar{\mu}, \mathrm{v}, \overline{\mathrm{v}}) \\
& P_{2 ; 2}(\mu, \bar{v} ; \bar{\mu}, v)=P_{2 ; 0}(\mu, \bar{v})-P_{3 ; 0}(\mu, \bar{v}, \bar{\mu})-P_{3 ; 0}(\mu, \overline{\mathrm{~V}}, \mathrm{v})+P_{4 ; 0}(\mu, \bar{v}, \bar{\mu}, v), \text { etc } \ldots \\
& \text { where } P_{2 ; 2}(\mu, \bar{\mu} ; v, \overline{\mathrm{~V}})=\sum_{\mathrm{K}(\neq \mathrm{v}, \overline{\mathrm{~V}})}^{(\mu \overline{\mathrm{L}})} \mathrm{W}\left(\Phi_{\mathrm{K}}\right) \quad \text { and } \quad P_{2 ; 2}(\mu, \overline{\mathrm{~V}} ; \bar{\mu}, \mathrm{v})=\sum_{\mathrm{K}(\neq \overline{\mathrm{F}}, \overline{\mathrm{~V}})}^{(\mu, \overline{\mathrm{v}})} \mathrm{W}\left(\Phi_{\mathrm{K}}\right) \\
& \text {... etc ... }
\end{aligned}
$$

The $\mathrm{P}_{3 ; 0}$ contribute with a minus sign \Rightarrow The greater the contributions of the three-electron structures are, the less important are both covalent and ionic structures, and thus the more week is the bond: Déjà $v u$ in the 'L.P.B.W.E. effect' of V.B. theory!
[1] P. Papanikolaou, P. Karafiloglou J. Phys. Chem. A $\underline{112}$ 8839, 2008

The 4th order anticommutation relation

$$
\prod_{i=1}^{4}\left(a_{i}^{+} a_{i}+a_{i} a_{i}^{+}\right)=1
$$

involves 16 terms:

$$
\begin{aligned}
& \quad a_{1}^{+} a_{4}^{+} a_{2} a_{3} a_{3}^{+} a_{2}^{+} a_{4} a_{1}+a_{2}^{+} a_{3}^{+} a_{1} a_{4} a_{4}^{+} a_{1}^{+} a_{3} a_{1}+a_{1}^{+} a_{2}^{+} a_{3} a_{4} a_{4}^{+} a_{3}^{+} a_{2} a_{1}+ \\
& +a_{3}^{+} a_{4}^{+} a_{1} a_{2} a_{2}^{+} a_{1}^{+} a_{4} a_{3}+ \\
& +a_{1}^{+} a_{2} a_{3} a_{4} a_{4}^{+} a_{3}^{+} a_{2}^{+} a_{1}+a_{3}^{+} a_{1} a_{2} a_{4} a_{4}^{+} a_{2}^{+} a_{1}^{+} a_{3}+a_{2}^{+} a_{1} a_{3} a_{4} a_{4}^{+} a_{3}^{+} a_{1}^{+} a_{2}+ \\
& +a_{4}^{+} a_{1} a_{2} a_{3} a_{3}^{+} a_{2}^{+} a_{1}^{+} a_{4}+a_{1} a_{2} a_{3} a_{4} a_{4}^{+} a_{3}^{+} a_{2}^{+} a_{1}^{+}+ \\
& +a_{1}^{+} a_{3}^{+} a_{4}^{+} a_{2} a_{2}^{+} a_{4} a_{3} a_{1}+a_{1}^{+} a_{2}^{+} a_{3}^{+} a_{4} a_{4}^{+} a_{3} a_{2} a_{1}+a_{2}^{+} a_{3}^{+} a_{4}^{+} a_{1} a_{1}^{+} a_{4} a_{3} a_{2}^{+} \\
& +a_{1}^{+} a_{2}^{+} a_{4}^{+} a_{3} a_{3}^{+} a_{4} a_{2} a_{1}+a_{1}^{+} a_{2}^{+} a_{3}^{+} a_{4}^{+} a_{4} a_{3} a_{2} a_{1}+ \\
& +a_{1}^{+} a_{3}^{+} a_{2} a_{4} a_{4}^{+} a_{2}^{+} a_{3} a_{1}^{+}+a_{2}^{+} a_{4}^{+} a_{1} a_{3} a_{3}^{+} a_{1}^{+} a_{4} a_{2}=1
\end{aligned}
$$

By adopting the V.B. perspective for chemical bonding, and choosing the above spinorbitals ($i=1,2,3,4$) such as

$$
\mathrm{i}=1 \rightarrow \varphi_{\lambda}, \quad \mathrm{i}=2 \rightarrow \bar{\varphi}_{\lambda} \quad \text { and } \quad \mathrm{i}=3 \rightarrow \varphi_{\mu} \quad, \quad \mathrm{i}=4 \rightarrow \bar{\varphi}_{\mu}
$$

we obtain:

The bond localization (L) in VB language:

or, the bond delocalization (D) :
$\mathrm{D}=1-\mathrm{L}$

Lionel Salem in 'The Molecular Orbital Theory of Conjugated Systems', p.86(Benjam, N.York "Delocalization is a measure of the degree to which the electrons cannot be assigned by pairs to individual bonds"

Electron pairs in Chemical systems :

Coulomb and Fermi (or Exchange) correlations

Coulomb correlations in one orbital:

$$
\mathrm{C}(\lambda, \bar{\lambda})=\mathrm{P}_{2}(\lambda, \bar{\lambda})-\mathrm{P}_{1}(\lambda) \mathrm{P}_{1}(\bar{\lambda})
$$

Fermi correlations in one orbital:

$$
\begin{aligned}
& \mathrm{C}(\lambda, \lambda)=\mathrm{P}_{2}\left(\lambda, \mathcal{Z}^{0}, \lambda\right)-\mathrm{P}_{1}(\lambda)^{2} \\
& \mathrm{C}(\bar{\lambda}, \bar{\lambda})=\mathrm{P}_{2}\left(\bar{\chi}, \bar{\lambda}^{\frac{\tau^{0}}{0}}\right)-\mathrm{P}_{1}(\bar{\lambda})^{2}
\end{aligned}
$$

Coulomb correlations in two orbitals:

$$
C(\lambda, \bar{\mu})=P_{2}(\lambda, \bar{\mu})-P_{1}(\lambda) P_{1}(\bar{\mu})
$$

From genuine chemical knowledge:
The chemical bond is a matter of an electron pair ($\uparrow \downarrow$)

One orbital correlations: Butadiene Two orbital correlations:

This corroborates with the V.B. description of butadiene:

For a given φ_{λ}

$$
\sum_{\bar{\mu}} C(\lambda, \bar{\mu})=0
$$

The absolutes values of Fermi are greater than the Coulomb correlations (this holds without any exception)

Note: Methods based on the behaviour of parallel spins (c.f. to Pauli Principle)
(e.g. Wiberg indices, E.L.F., D.A.F.H.), provide remarkably good results !
P. Karafiloglou, J. Phys. Chem. A 2001, 105, 4524

At least from etymological viewpoint 'Valence Bond' refers to a bond in Valence orbitals:

Conceptual problems can arise even in the simplest case of a double-zeta basis:

In which extent the outer orbital is Valence (and in which extent is Rydberg) orbital ?

CHOICE OF ORBITAL SPACES

Current calculations involve quite extended AO-basis sets:

Multiple zeta + polarization functions

\square
Conceptual problems to interpret 'accurate' calculations:
Which orbitals represent better the valence orbitals and which the Rydberg ?
For example, the C atom makes bonds by using the valence $2 \mathrm{~s}, 2 \mathrm{p}$, although for quantum chem. investigations one must use : s, s', s", p, p', p", polarization

A very good solution:
Natural Orbitals (NAOs, NHOs, NBOs, ...etc) ${ }^{[1]}$
\neg These orbitals are 'natural' in the Löwdin sense and, thus, can be clearly distinguished in valence and Rydberg.
\neg They show remarkable stability with the extension of the SCF AO- basis set.
\neg They span the complete SCF-AO basis set $=>$ The initial wavefunction can be transformed into the Natural basis without altering its approximation level; this holds even for correlated wavefunctions (linear combination of Slater determinants)
=> no approximations or additional assumptions for NPEPA.
\neg The bonding NBOs show a very good transferability.
\neg These Natural orbitals can be either orthogonal or non-orthogonal
[1] F. Weinhold, C. R. Landis, in 'Valency and Bonding: A Natural Bond Orbital
Donor-Acceptor Perspective’; Cambridge U. Press, 2005, and references cited therein

PNHOs O.W.S.O. NHOs (hybrid valence) etc ...

- $\quad \pi$-Bonds : Both orthogonal and non-orthogonal orbitals are appropriate, providing the same conceptual pictures [1,2]
- $\underline{\sigma}$-Bonds : For VB-type descriptions more appropriate are the (non-orthogonal) PNAOs, or, better, the PNHOs.

Note: The NBOs are appropriate for both π-Bonds and σ-Bonds.
[1] K. Hirao, H. Nakano, K. Nakayama J. Chem. Phys. 1997, 107, 9966
[2] P. Karafiloglou J. Chem. Phys. 130 (2009) 164103
P. Papanikolaou, P. Karafiloglou J. Phys. Chem. A 2008, 1128839
P. Karafiloglou, J. Phys. Chem. A 2001, 105, 4524

An intriguing Epistemological problem:

Although the chemical formula has been introduced before the development of Quantum Theory, remains (and will remain) a basic stone for Chemical Sciences !

Question: In which degree the traditional chemical formula describes correctly the physical (quantum) reality ${ }^{\text {(1) }}$?

Quantum Probabilities for chemical formulae:

In each chemical formula we associate a Quantum Probability, $\mathrm{P}_{\mathrm{N} ; 0}$, i.e. a factor ranging to $[0,1]$:

$$
\begin{array}{clcl}
\mathbf{P}_{\mathrm{N} ; \mathbf{0}} & \rightarrow & \mathbf{1} \\
\text { Chemical formula } & \rightarrow & \text { Physical } & \text { Reality }
\end{array}
$$

${ }^{\text {In }}\left[\mathrm{A}\right.$ NBO-based probability, $\mathbf{P}_{\mathrm{N} ; 0}$, provides a quantitative measure of this degree]

Spin-dependent or spin-independent Population Analysis?

Closed shell systems:

Open shell systems:

Only for the 1-RDM (and for closed shell systems) one can use spin-free populations
For higher or der RDM it is worthwhile to use spin-dependent populations

