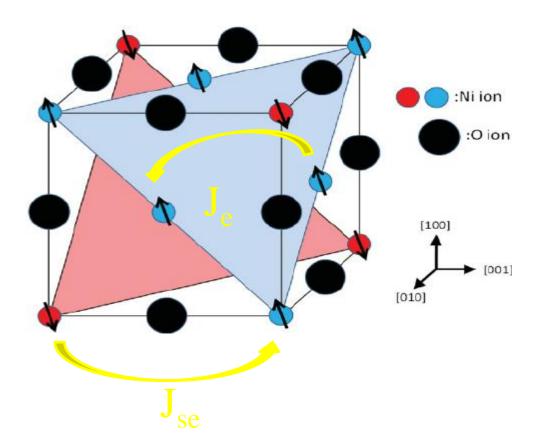


Thomas Olsen

Department of Physics, Technical University of Denmark

RPA workshop 3/5 - 2017



Static correlation denotes situation where the many-body wavefunction is poorly described by a Slater determinant

For a mean field Hydrogen molecule one gets

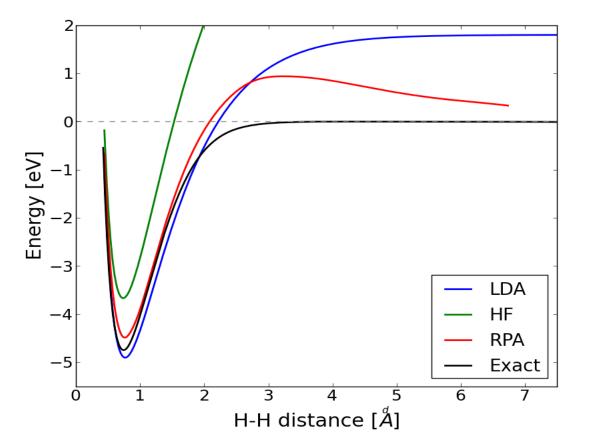
 $\varphi_{SL}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \sigma_b(\boldsymbol{r}_1)\sigma_b(\boldsymbol{r}_2)(\alpha_1\beta_2 - \alpha_2\beta_1)$

 $|\sigma_b\rangle = (|s_A\rangle + |s_B\rangle)/\sqrt{2}$

In the dissociation limit a much better ansatz is the Heitler-London state

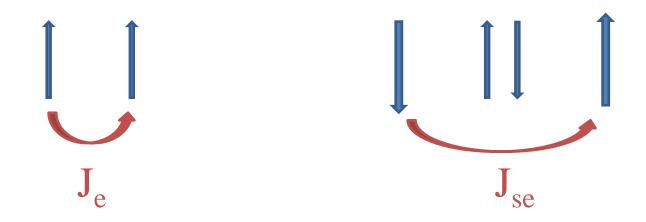
 $\varphi_{HL}(\boldsymbol{r}_1, \boldsymbol{r}_2) = [s_A(\boldsymbol{r}_1)s_B(\boldsymbol{r}_2) + s_A(\boldsymbol{r}_2)s_B(\boldsymbol{r}_1)](\alpha_1\beta_2 - \alpha_2\beta_1)$

Static correlation in H₂ dissociation not captured by LDA or HF

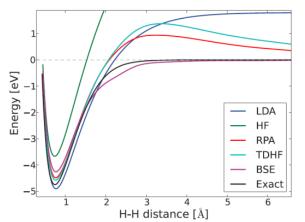


RPA does get it right, but performs poorly at intermediate distances

Exchange and superexchange from RPA

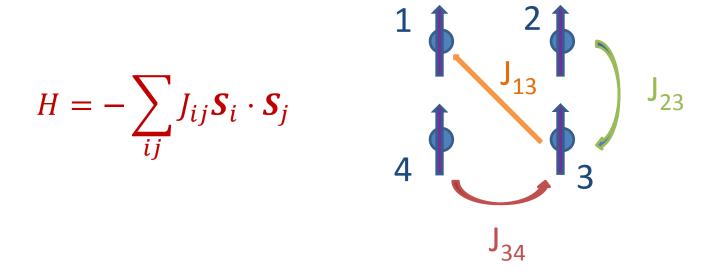


Dissociating H₂ with RPA and beyond



Magnetic interactions

Magnetic interactions are modelled in terms of Heisenberg Hamiltonians:

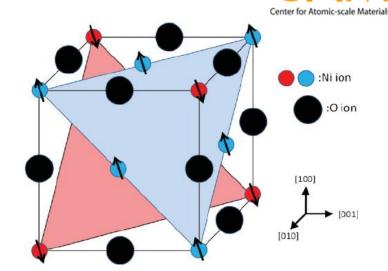


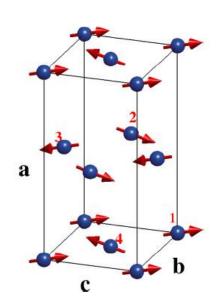
Typically, magnetic coupling constants are determined experimentally from spin-wave dispersions or susceptibility.

Different combinations of J_{ij} result in very different magnetic properties!

Magnetic interactions

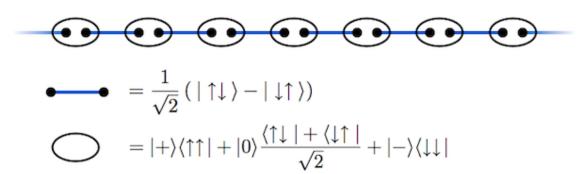
NiO: Antiferromagnetic coupling of ferromagnetic planes





LiNiPO₄: Magnetoelectric coupling from non-collinear spin configuration

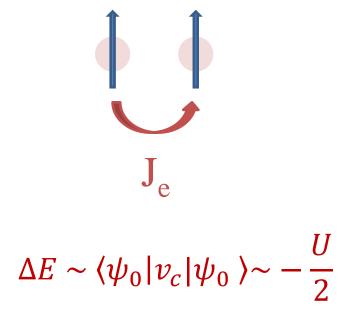
Haldane phase: S=1 chain exhibiting a topological gap



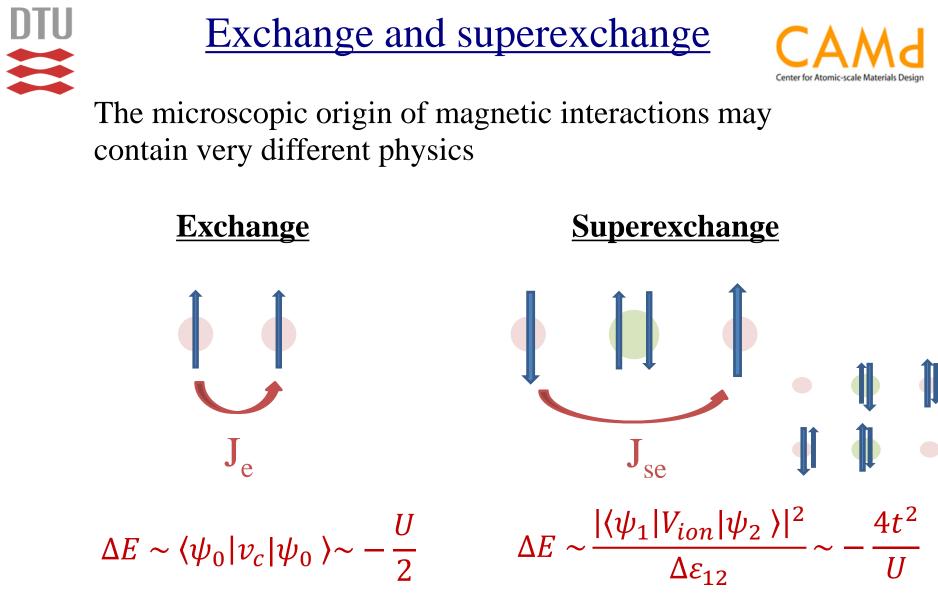
Exchange and superexchange

The microscopic origin of magnetic interactions may contain very different physics

Exchange



First order pertubation theory in Coulomb interaction



First order pertubation theory in Coulomb interaction

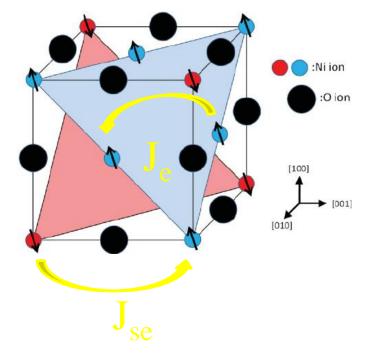
Second order in interatomic Coupling: Non-perturbative in U

The magnetic couplings are obtained from first principle by energy mapping to the Heisenberg model

For NiO we need three configurations to obtain J_e and J_{se}

Each Ni atom has:

- o 12 direct nearest neighbors
- 6 next nearest neighbors connected by oxygen bridge



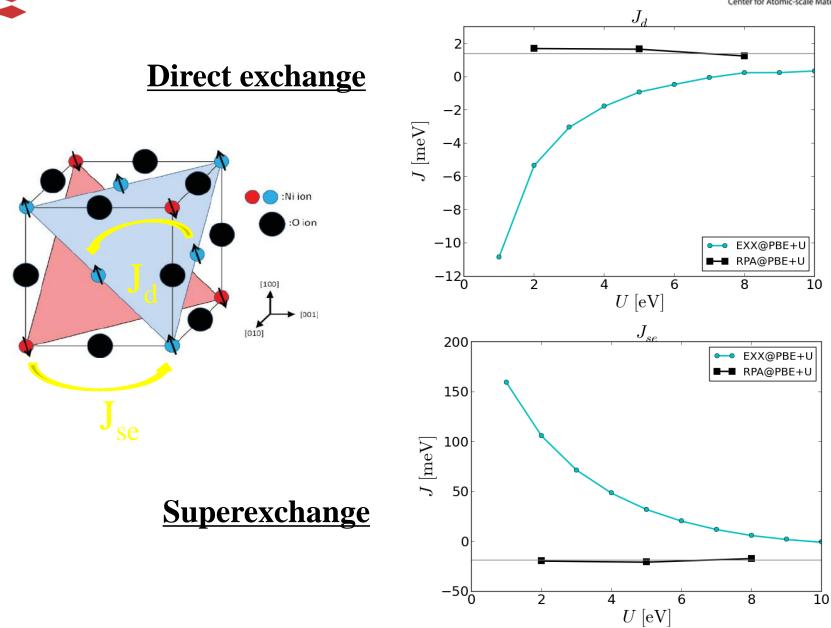
We have tested LDA+U, PBE+U, HSE06@PBE+U, EXX@PBE+U and RPA@PBE+U

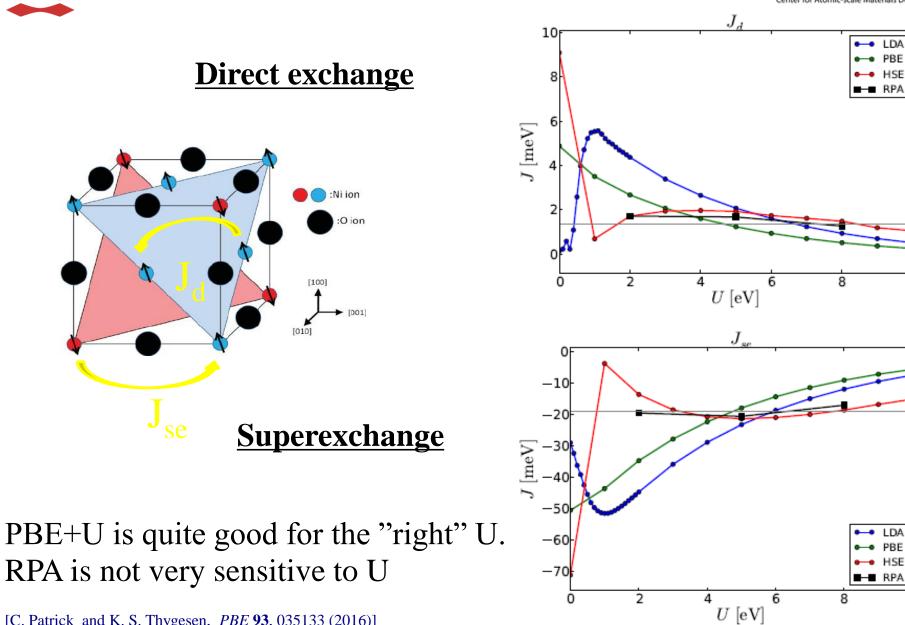
Due to the energy mapping scheme the J_{ij} can be written as

 $J^{RPA} = J_{EXX} + J_{c}^{RPA}$

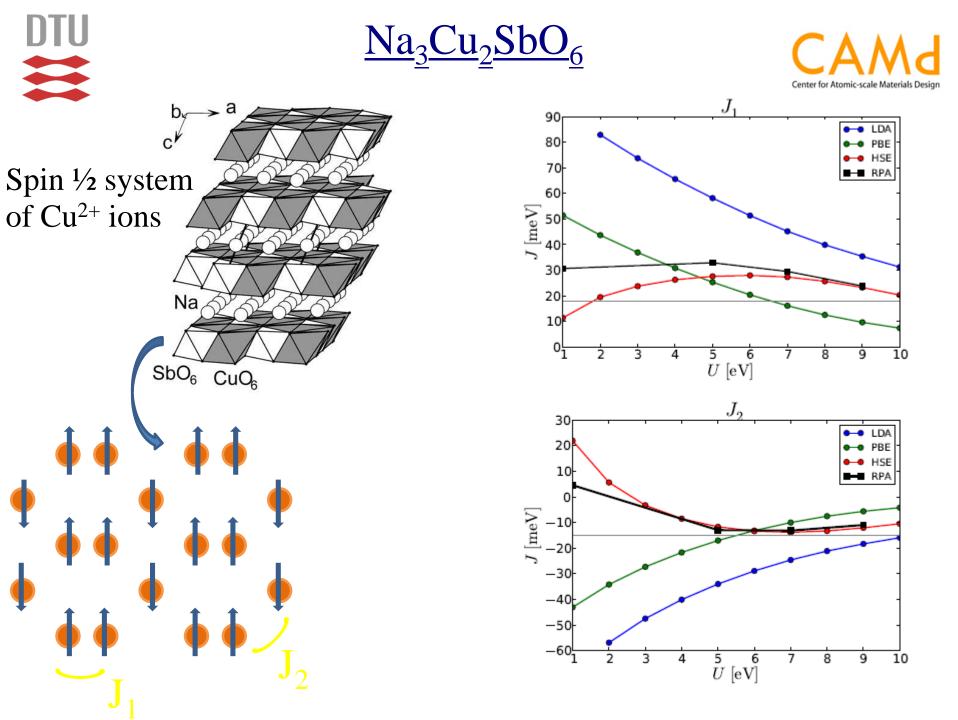
which allow us to separate the exchange and correlation parts of the magnetic couplings

All calculations performed with the electronic structure package GPAW using plane waves and PAW

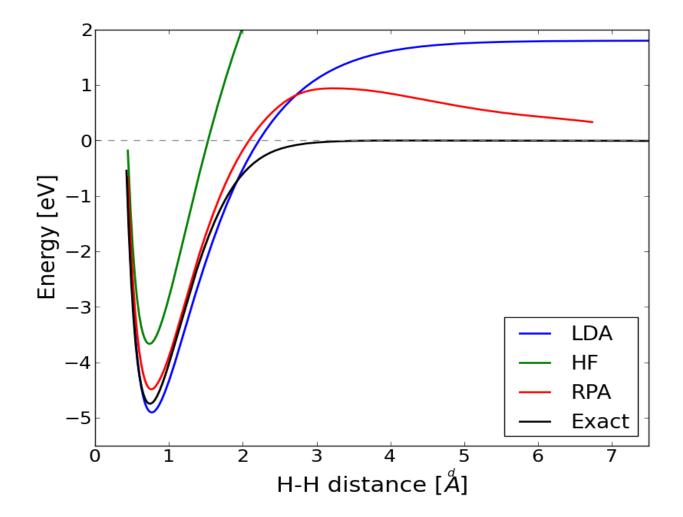




[C. Patrick and K. S. Thygesen, *PBE* 93, 035133 (2016)]



Can we improve the dissociation curve of H_2 by going beyond RPA?



Within the adiabatic connection – fluctuation dissipation theorem the correlation energy can be written as

$$E_{c} = \frac{-1}{2\pi} \int_{0}^{1} d\lambda \int d\mathbf{r} d\mathbf{r}' \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \int_{0}^{\infty} d\omega [\chi^{\lambda}(\mathbf{r}, \mathbf{r}'; i\omega) - \chi^{0}(\mathbf{r}, \mathbf{r}'; i\omega)]$$

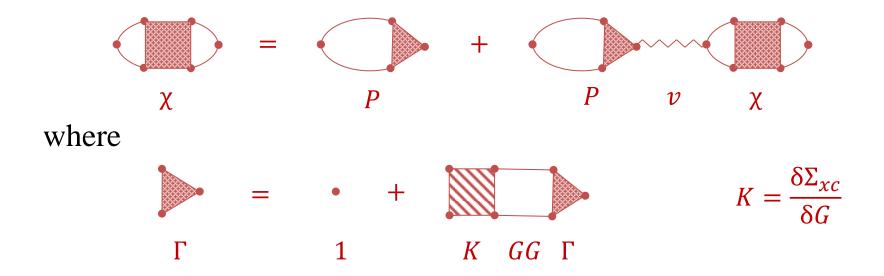
where $\chi^{\lambda}(r,r')$ is the (reducible) response function at coupling λ

Within the adiabatic connection – fluctuation dissipation theorem the correlation energy can be written as

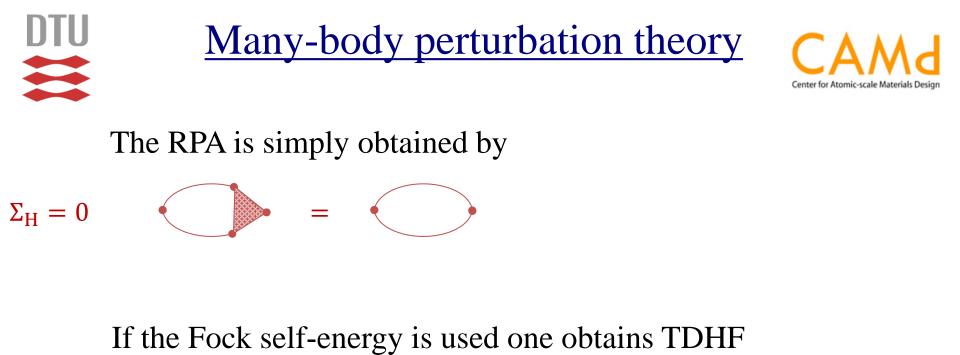
$$E_{c} = \frac{-1}{2\pi} \int_{0}^{1} d\lambda \int d\mathbf{r} d\mathbf{r}' \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \int_{0}^{\infty} d\omega [\chi^{\lambda}(\mathbf{r}, \mathbf{r}'; i\omega) - \chi^{0}(\mathbf{r}, \mathbf{r}'; i\omega)]$$

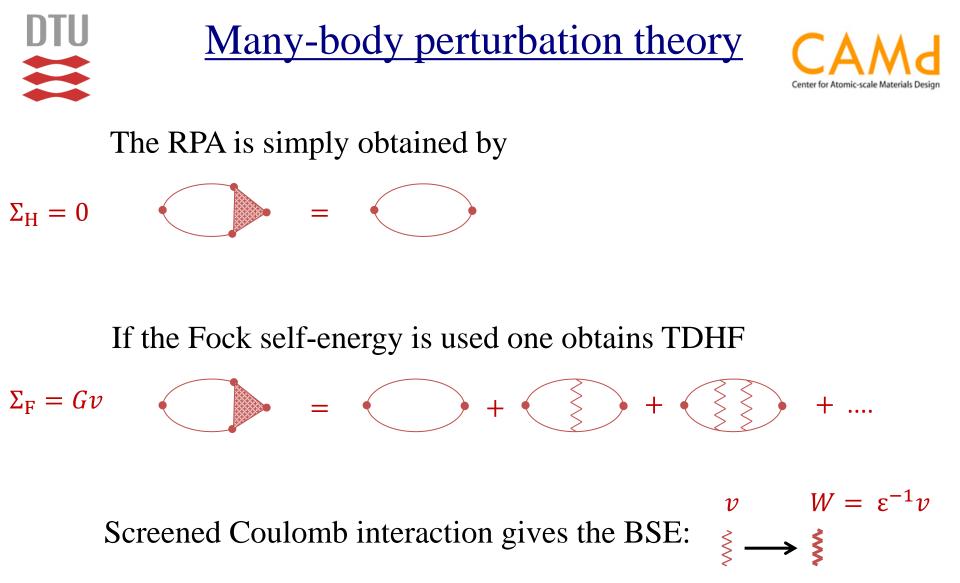
where $\chi^{\lambda}(r,r')$ is the (reducible) response function at coupling λ

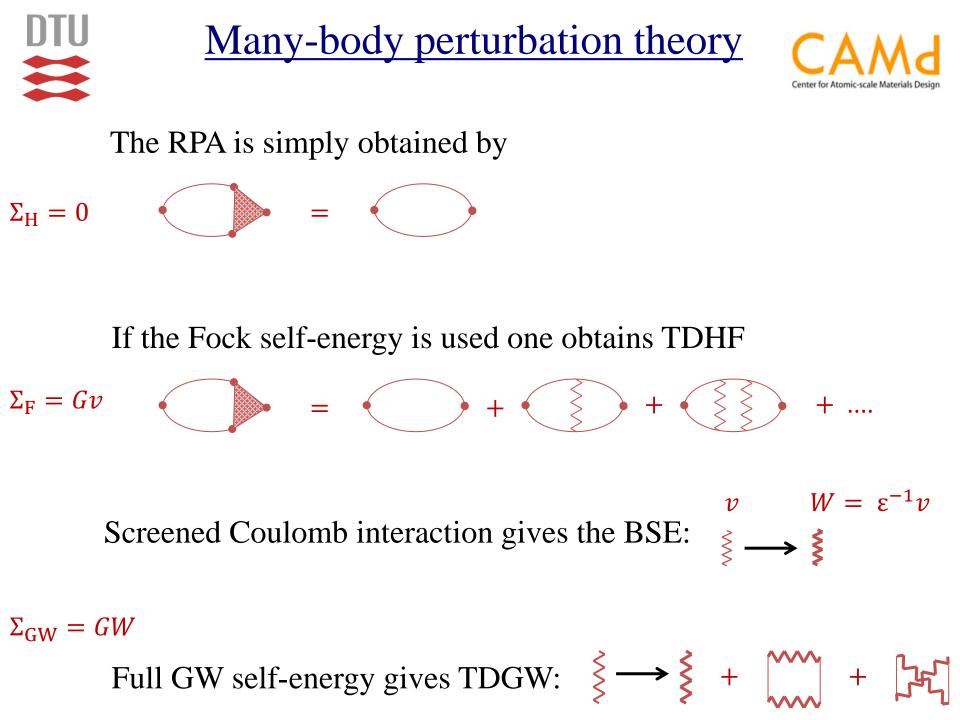
In terms of diagrams (from Hedins formulation)



The RPA is simply obtained by



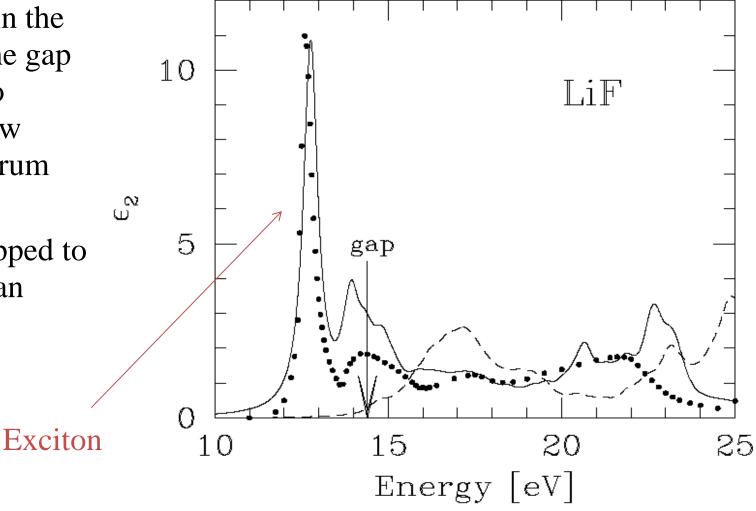




Optical absorption with BSE

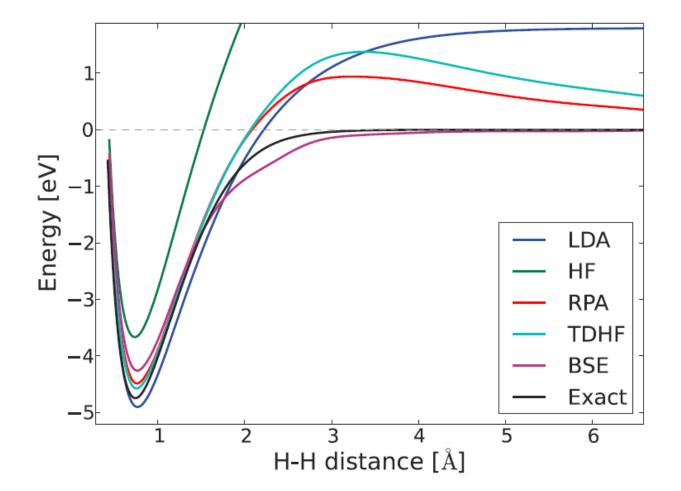
Only bands in the vicinity of the gap is needed to reproduce low energy spectrum

Problem mapped to a Hamiltonian



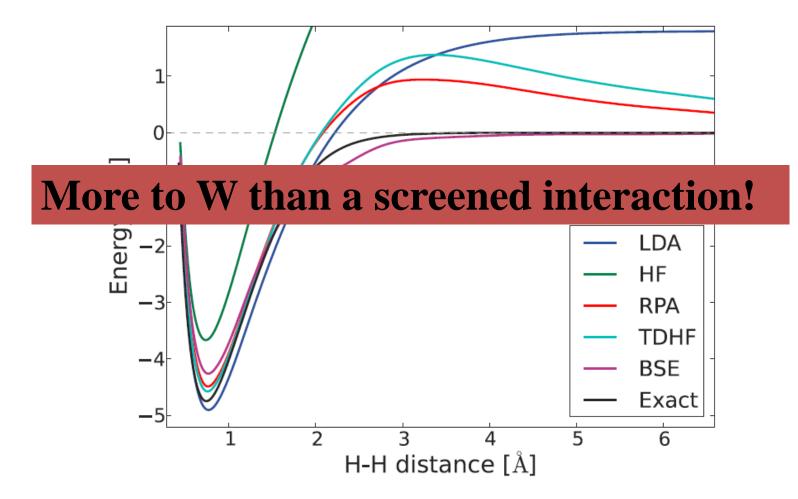
- We need all bands
- No Tamm-Dancoff approximation -> non-Hermitan Hamiltonian
- The calculations is carried out at many point along the adiabatic path
- Analytical frequency integration -> correlation energy is a sum of the residues

We have performed *ab initio* calculations with TDHF and BSE for the potential energy curve of H_2



[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]

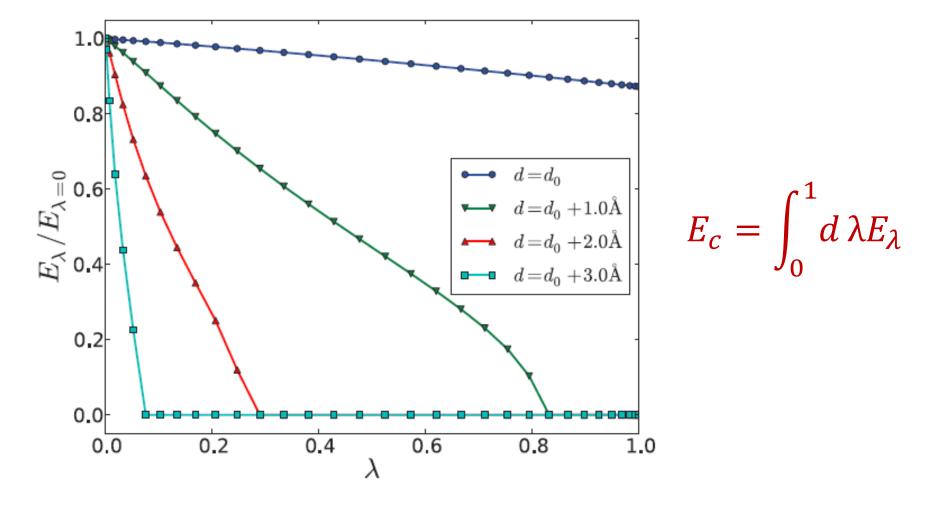
We have performed *ab initio* calculations with TDHF and BSE for the potential energy curve of H_2



[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]

Imaginary poles in BSE

As we approach the dissociation limit the BSE Hamiltonian acquire imaginary poles giving rise to vanishing $E_c(\lambda)$



[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]

To assess the performance of TDGW we consider a Hubbard dimer

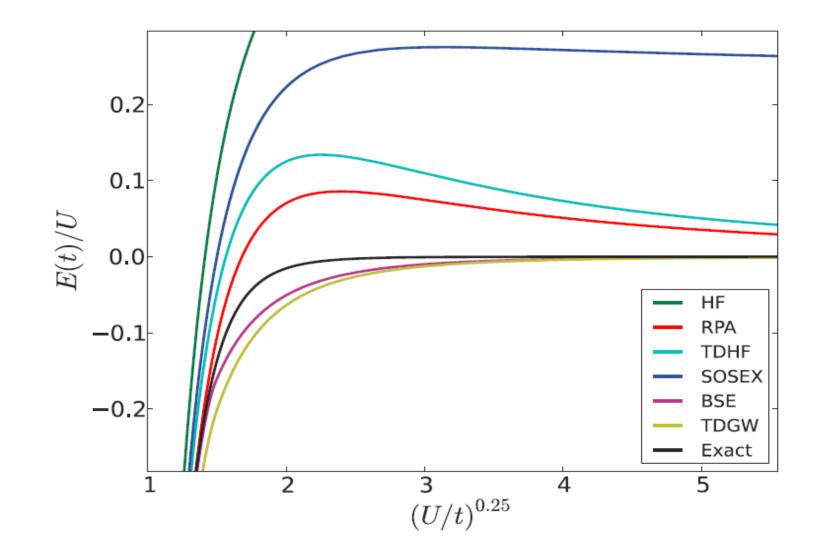
$$H = -t \sum_{i \neq j,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i,\sigma\sigma'} c_{i\sigma}^{\dagger} c_{i\sigma'}^{\dagger} c_{i\sigma'}^$$

At half filling there is 6 Slater determinants and H can be diagonalized analytically

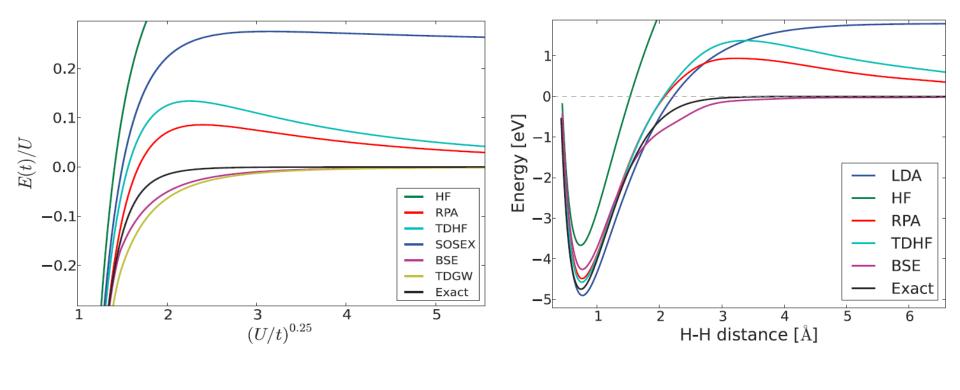
The correlation energy in various approximations can be obtained from

$$E_{c} = -\frac{U}{2} \int_{0}^{1} d\lambda \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sum_{i\sigma\sigma'} Im[\chi_{i\sigma i\sigma'}(\omega) - \chi^{0}_{i\sigma i\sigma'}(\omega)]$$

[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]



[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]



Hubbard dimer

Ab initio H₂

[T. Olsen and K. S. Thygesen, J. Chem Phys 140, 164116 (2014)]

- RPA performs well for exchange and superexchange magnetic interactions
- ... but so does PBE+U and HSE06 for the "right" value of U
- The dissociaton curve for H₂ is significantly improved going to the BSE level but calculations are intractable for realistic systems
- RPA and BSE fails dramatically for H_2^+

Thank you for the attention