Part 4. VB diagrams

VB diagrams by Shaik and Pross

• A powerful VB model for rationalizing reactivity :

J. Am. Chem. Soc. 1981, 103, 3692-3701

What Happens to Molecules as They React? A Valence Bond Approach to Reactivity

Sason S. Shaik

Contribution from the Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva, 84120, Israel. Received June 12, 1980

• Developed and applied since then to a huge number of organic chemical reactions, inorganic reactions, clusters and metalloenzymes

• Reviews : https://wiki.lct.jussieu.fr/workshop/index.php/VB_tutorial

VB diagrams by Shaik and Pross

• A powerful VB model for rationalizing reactivity :

Two archetypal diagrams that describe the major reactivity patterns in **any** chemical reaction :

Reminders

• Energy expressions from qualitative VB :

Energy of a determinant with *n pairs of interacting e*⁻ : $\sigma 2n\beta S \approx \sigma sign : + if attractive, - if repulsion$

- Bonding energy:
- Pauli Repulsion in VB Theory: Elementary Repulsion

A•—• B $E = 2\beta S < 0$

Nonbonded Interactions

$$\begin{array}{ccc} ? \\ A \cdot & B \cdot - \cdot C & -\beta s \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Reminders

• Singlet-triplet gap : E A• •B Φ_{T} 12βSI • Lecture 1 : R_{HH} $\Delta E_{ST} \approx 2De$ 12βSI • A more accurate relation : $\frac{3}{4}\Delta E_{ST} \approx 2D_e$ $\Phi_{\rm cov}$ A•--•B

• VB diagram for the S_N2 reaction :

VB diagram for the $S_N 2$ reaction : $x_1 - x_r$

E

 $+2\beta S$

Réactifs

Produits

 $\blacktriangleright C.R.$

• Extended formula for the two-state diagrams :

$$\Delta E^{\ddagger} \approx f_0 G_0 - B + 0.5 \Delta E_{RP} + 0.5 \frac{\Delta E_{RP}^2}{G_0}$$

- Basic ingredients of the VB diagrams :
 - **G** : promotion energy : $R \rightarrow R^*$ is an excited diabatic state which prepare the reactants ground state for the bonding changes from R to P.
 - *f* : measure the **intrinsic** «**smoothness**» of the electronic structure change in R and P
 - \Rightarrow *f*G : gauges the total deformation and repulsive interactions R have to experience to achieve resonance with P
 - **B** : resonance energy of the TS due to VB mixing at the crossing point

Reaction Coordinate

• Two-state (VBSCD) vs. multi-state diagrams (VBCMD) :

R and P mix to form the barrier and the TS for an elementary process

The intermediate has a different electronic structure than R and P («internal catalysis»)

• How to derive quantitative expressions for G?

The promoted states involve two elementary excitations, depending on whether there are **changes in the oxidations states** of fragments or not

• How to derive quantitative expressions for G?

The promoted states involve two elementary excitations, depending on whether there are **changes in the oxidations states** of fragments or not

- How do I know if there is a change in oxydation state ?
 - 1) draw the covalent structure for R and P
 - 2) count the number of electrons on each fragment
 - 3) does this number change during reaction $? \rightarrow NO$: no change of ox. state

 \rightarrow **YES** : change of ox. state

• How to derive quantitative expressions for G?

The promoted states involve two elementary excitations, depending on whether there are **changes in the oxidations states** of fragments or not

- How do I know if there is a change in oxydation state ?
 - 1) draw the covalent structure for R and P
 - 2) count the number of electrons on each fragment
 - 3) does this number change during reaction $? \rightarrow NO$: no change of ox. state

 $X \bullet + H \bullet - \bullet Y \longrightarrow X \bullet - \bullet H + \bullet Y = NO$ \rightarrow YES : change of ox. state

 $X^{\bullet} + H^{\bullet} - \bullet Y \longrightarrow X^{\bullet} - \bullet H + Y^{\bullet} Y^{\bullet} Y^{\bullet} Y^{\bullet}$

- **Rule 1** : no change in oxydation state :
 - What happens during $R \rightarrow R^*$ promotion :
 - 1) Bonds which are broken are decoupled to their triplet state in R*
 - 2) Electrons are paired anew as in P

$$X \bullet + H \bullet - \bullet Y \longrightarrow X \bullet - \bullet H + \bullet Y \qquad \mathbb{R}^* \qquad X \bullet + H \bullet \bullet Y$$

. .

$$\Rightarrow G_r \approx \Delta E(S \to T)$$

- **Rule 2** : change in the oxydation state :
 - What happens during $R \rightarrow R^*$ promotion :

Charge transfer from the fragment being oxydized (lose 1e⁻) to the fragment being reduced (gain 1e⁻)

$$X:^{-} + H^{\bullet} - \bullet Y \longrightarrow X^{\bullet} - \bullet H + Y:^{-} \mathbb{R}^{*} \qquad X^{\bullet} + (H^{\bullet} \bullet Y)^{-}$$

$$\Rightarrow G_r \approx IP(X:) - EA(H - Y)$$

• **Rule 1** : no change in oxydation state :

 $\Rightarrow G_r \approx \Delta E(S \to T)$

• **Rule 2** : change in the oxydation state :

 $\Rightarrow G_r \approx IP(X:) - EA(H - Y)$

- How to get $\Delta E(S \rightarrow T)$, IP, EA?
 - Accurate computations (not specially VB !)
 - From experiments

In short

• Two type of diagrams for all reactions

• Three main parameters (G, f, B) to express the barrier

$$\Delta \mathbf{E}^{\neq} = \mathbf{f} \mathbf{G} - \mathbf{B}$$

• Two rules for expressing G NO $\Rightarrow G_r \approx \Delta E(S \rightarrow T)$

$$\mathbf{YES} \Rightarrow G_r \approx IP(X:) - EA(H - Y)$$

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Anion/Cation recombination :

 $X:^- + R^+ \rightarrow X-R$

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Nucleophilic addition :

Rule 2 : $G_r \approx IP(X^-:) - EA(R^+)$

• Nucleophilic addition :

Rule 2 : $G_r \approx IP(X^-:) - EA(R^+)$

First set : localized X: = F, CN, HO, HOO CF₃CH₂O, CH₃O, $\Delta E^{\neq} = f_1(IP(X^-)) + cte$

Second set : delocalized

PhS⁻, PhO⁻, N₃⁻, NO₂⁻, AcO⁻ $\Delta E^{\neq} = f_2(IP(X^-)) + cte$

 $f_2 > f_1$

• Nucleophilic addition :

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed/forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Radical exchange reactions

Stability or unstability of X₃ • **clusters** (X= H, F, Cl, Br, I, Li, Na, etc.)

 $X \bullet + X - X \to [X - - X] \bullet \to X - X + X \bullet$

Rule 1 :
$$\Rightarrow G \approx \Delta E_{ST}(X - X) \propto 2D_e$$

• Radical exchange reactions

Stability or unstability of $X_3 \bullet$ clusters (X= H, F, Cl, Br, I, Li, Na, etc.) $X \bullet + X - X \rightarrow [X - X - X] \bullet \rightarrow X - X + X \bullet$

Rule 1 : $\Rightarrow G \approx \Delta E_{ST}(X - X) \propto 2D_e$

• Radical exchange reactions

Stability or unstability of $X_3 \bullet$ clusters (X= H, F, Cl, Br, I, Li, Na, etc.)

 $\mathbf{X} \bullet + \mathbf{X} - \mathbf{X} \to [\mathbf{X} - \mathbf{X} - \mathbf{X}] \bullet \to \mathbf{X} - \mathbf{X} + \mathbf{X} \bullet$

Rule 1 :
$$\Rightarrow G \approx \Delta E_{ST}(X - X) \propto 2D_e$$

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed/forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Allowed / forbidden cycloadditions

Allowed / forbidden cycloadditions

➡ G lower for [4+2] cycloaddition

• Allowed / forbidden cycloadditions

Allowed / forbidden cycloadditions

• Allowed / forbidden cycloadditions

Allowed / forbidden cycloadditions

➡ G much higher for [2+2+2] cycloaddition

- Allowed / forbidden cycloadditions
 - G involve S \rightarrow T decoupling of the two π bonds : Formally Forbiden 2 $\underset{CH_2}{\overset{CH_2}{\longrightarrow}} \frac{42.2 \text{ k/mol}}{\overset{H_2C}{\longrightarrow}} \underset{H_2C}{\overset{H_2C}{\longrightarrow}} \underset{CH_2}{\overset{H_2C}{\longrightarrow}} \underset{H_2C}{\overset{CH_2}{\longrightarrow}} \underset{CH_2}{\overset{G_c}{\longrightarrow}} \underset{G_c}{\overset{G_c}{\longrightarrow}} 2\Delta E_{sT}(\pi\pi^*) = 202 \text{ kcal/mol}}$ 2 $\underset{H_2}{\overset{SiH_2}{\longrightarrow}} \underset{H_2Si}{\overset{H_2Si}{\longrightarrow}} \underset{SiH_2}{\overset{SiH_2}{\longrightarrow}} \underset{G_{si}}{\overset{G_{si}}{\longrightarrow}} = 2\Delta E_{sT}(\pi\pi^*) = 80 \text{ kcal/mol}}$
 - Estimation using the formula ($\Delta E^{\neq}=fG-B$) and f=0.3 (typical value) lead to a barrier difference of 40 kcal.mol⁻¹ for Si vs C : not bad !

Allowed / forbidden cycloadditions

Formally Forbiden

• G involve S \rightarrow T decoupling of the two π bonds :

- R*

$$2 \begin{array}{c} CH_2 \\ 42.2 \text{ k/mol} \\ H_2 \\ \hline \\ CH_2 \end{array} \xrightarrow{} H_2 \\ H_2 \\ \hline \\ H_2 \\ \hline \\ H_2 \\ \hline \\ CH_2 \end{array} \xrightarrow{} H_2 \\ \hline \\ CH_2 \\ \hline CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline CH_2 \\$$

It is even faster than the (formally allowed) Diel-Alder reaction with G=179 kcal.mol⁻¹!

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• SN2(C) vs. SN2(Si) - Origin of hypercoordination :

Positive charge localization on Si vs. delocalization on C

 \Rightarrow Si small ion allowing close approach of anions and a significant electrostatic stabilization of its ionic structure

• SN2(C) vs. SN2(Si) - Origin of hypercoordination :

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Barrier in radical exchange reactions :

 $\mathbf{X}^{\scriptscriptstyle\bullet} + \mathbf{H} {-} \mathbf{X} \quad \rightarrow [\mathbf{X} ... \mathbf{H} ... \mathbf{X}]^{\:\bullet} \ \rightarrow \mathbf{X} {-} \mathbf{H} + \mathbf{X}^{\scriptscriptstyle\bullet}$

$$\Delta E^{\neq}$$
 (kcal/mol)

FHF 20.9

CIHCI 11.0

BrHBr 8.0

• Barrier in radical exchange reactions :

 $\mathbf{H}^{\scriptscriptstyle\bullet} + \mathbf{X} - \mathbf{H} \quad \rightarrow [\mathbf{H} \dots \mathbf{X} \dots \mathbf{H}]^{\:\bullet} \rightarrow \mathbf{H} - \mathbf{X} + \mathbf{H}^{\scriptscriptstyle\bullet}$

• Barrier in radical exchange reactions :

 $\mathbf{H}^{\scriptscriptstyle\bullet} + \mathbf{X} - \mathbf{H} \quad \rightarrow [\mathbf{H} \dots \mathbf{X} \dots \mathbf{H}]^{\scriptscriptstyle\bullet} \rightarrow \mathbf{H} - \mathbf{X} + \mathbf{H}^{\scriptscriptstyle\bullet}$

 $\mathbf{X}^{\scriptscriptstyle\bullet} + \mathbf{H} {-} \mathbf{X} \quad \rightarrow [\mathbf{X} ... \mathbf{H} ... \mathbf{X}]^{\:\bullet} \ \rightarrow \mathbf{X} {-} \mathbf{H} + \mathbf{X}^{\scriptscriptstyle\bullet}$

	ΔE^{\neq} (kcal/mol)
HFH	42.5
FHF	20.9
HCIH	18.5
CIHCI	11.0
HBrH	12.9
BrHBr	8.0

 $H + F-H \longrightarrow [H--F--H]^{\neq} \longrightarrow H-F + H$

VB statecrossing diagrams

Similar diagrams for FHF reaction...

 $H + F-H \longrightarrow [H--F--H]^{\neq} \longrightarrow H-F + H$

The covalent curves

On the basis of covalent structures alone, both reactions should have the same barriers !

The covalent curves

Covalent + ionic curves

transition state => high barrier

=> lower barrier

The only factor that differentiate barriers at the TS is the covalent-ionic RE

Covalent + ionic curves

...and we know (from tutorial 1) that the covalent-ionic RE is very large in H—F

Covalent + ionic curves

H...F...H vs. F...H...F

Resonance Energies (BOVB):

RE(HFH) < RE(FHF) Difference = 22.3 kcal/mol Reaction barriers (CCSD(T)): $\Delta E^{\neq}(HFH) < \Delta E^{\neq}(FHF)$ Difference = 21.6 kcal/mol

- Anion/Cation recombination
- Nucleophilic addition
- X₃ radical exchange reactions
- Allowed / forbidden cycloadditions
- SN2(C) vs. SN2(Si) Origin of hypercoordination
- XHX vs HXH radical exchange reactions
- A single electron may change everything

• Multistate diagrams (VBCMD) :

A single electron may change everything !

Conclusion

- A general and powerful model for reactivity :
 - Nucleophilic, electrophilic, radical, pericyclic...
 - Simple: could be applied «on the back of en envelop»
 - Insightful: allows to create order among great families of reactions
- Both interpretative and quantitative :
 - qualitative reasonings : a few rules and elementary interactions
 - quantitive proof : by high level VB calculations

VB theory

→ VB theory :

- provides a **wave-function** *ansatz* which enables to compute high level wf that are quantum dressing of Lewis' model ;
- retrieves fundamental chemical concepts, such as : resonance/mesomery, hybridization, arrow-pushing language, and provides a theoretical support for them ;
- incorporates interpretative tools which are both directly connected to quantum mechanics and to the local vision of chemists' (VB weights, resonance energies, VB diagrams)

To go further...

https://wiki.lct.jussieu.fr/workshop/index.php/VB_tutorial

To go further...

Final conclusion

<u>benoit.braida@upmc.fr</u>

UPMC campus

benoit.braida@upmc.fr