

TIME-DEPENDENT DENSITY FUNCTIONAL THEORY KERNELS FROM MANY-BODY PERTURBATION THEORY

Miquel Huix-Rotllant \& Mark E. Casida

Departement de Chimie Moléculaire Université Joseph Fourier

Grenoble, France

January 27, 2010

Ground-State Chemistry

The ideal model must...

- include both non-dynamical and dynamical correlation.
- describe ground- and excited-state potential energy surface interactions.
- be size consistent and size extensive.
- be efficient enough to be able to perform dynamics.

Photochemists normally use...

CASPT2

- Systematic treatment of correlation
- Correct conical intersection
- Requires deep knowledge of the system
- Bad scaling

A-LR-TDDFT

- Only single excitations
- Not perfect conical intersection
- Require no prior knowledge
- Good scaling

Casida constructed an RPA-like equation for TDDFT
(REF: M.E.C., Recent Developements and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry vol. 4, 1996, p.391.)

$$
\left[\begin{array}{cc}
\mathbf{A}(\omega) & \mathbf{B}(\omega) \\
\mathbf{B}^{*}(\omega) & \mathbf{A}^{*}(\omega)
\end{array}\right]\binom{\mathbf{X}}{\mathbf{Y}}=\omega\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right]\binom{\mathbf{X}}{\mathbf{Y}}
$$

where

$$
\begin{aligned}
A_{i a, j b}^{\sigma \tau}(\omega) & =\left(\epsilon_{a}-\epsilon_{i}\right) \delta_{i j} \delta_{a b} \delta_{\sigma \tau}+\left(i a\left|f_{H x c}^{\sigma \tau}(\omega)\right| j b\right) \\
B_{i a, j b}^{\sigma \tau}(\omega) & =\left(i a\left|f_{H x c}^{\sigma \tau}(\omega)\right| b j\right)
\end{aligned}
$$

and
$\left(i a\left|f_{H x c}^{\sigma \tau}(\omega)\right| j b\right)=\iint \psi_{i}^{\sigma, *}\left(\overrightarrow{\mathbf{r}}_{1}\right) \psi_{a}^{\sigma}\left(\overrightarrow{\mathbf{r}}_{1}\right) f_{H x c}^{\sigma \tau}\left(\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}, \omega\right) \psi_{j}^{\tau, *}\left(\overrightarrow{\mathbf{r}}_{2}\right) \psi_{b}^{\tau}\left(\overrightarrow{\mathbf{r}}_{2}\right) d^{3} r_{1} d^{3} r_{2}$.
We can then write the linear response of the density as

$$
\delta \rho^{\sigma}(\overrightarrow{\mathbf{r}}, \omega)=\sum_{i a} X_{a i}^{\sigma}(\omega) \psi_{a}^{*}(\overrightarrow{\mathbf{r}}) \psi_{i}(\overrightarrow{\mathbf{r}})+Y_{i a}^{\sigma}(\omega) \psi_{i}^{*}(\overrightarrow{\mathbf{r}}) \psi_{a}(\overrightarrow{\mathbf{r}})
$$

Matrices $\mathbf{A}(\omega)$ and $\mathbf{B}(\omega)$ have the dimension of $N_{o c c} \times N_{v i r t}$

If the xc potential does not depend on the 'past' then

$$
v_{x c}[\rho](\overrightarrow{\mathbf{x}}, t) \approx v_{x c}\left[\rho_{t}\right](\overrightarrow{\mathbf{x}}) \rightarrow f_{x c}[\rho](\mathbf{1}, \mathbf{2}) \approx \delta\left(t_{1}-t_{2}\right) \frac{\delta E_{x c}\left[\rho_{t}\right]}{\delta \rho_{t}\left(\overrightarrow{\mathbf{x}}_{1}\right) \delta \rho_{t}\left(\overrightarrow{\mathbf{x}}_{2}\right)}
$$

where ρ_{t} is the density at time t and $E_{x c}[\rho]$ is the ground-state xc functional.
Such approximation turns Casida equations into

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{*} & \mathbf{A}^{*}
\end{array}\right]\binom{\mathbf{X}}{\mathbf{Y}}=\omega\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right]\binom{\mathbf{X}}{\mathbf{Y}}
$$

with

$$
\begin{aligned}
A_{i a, j b}^{\sigma \tau} & =\left(\epsilon_{a}-\epsilon_{i}\right) \delta_{i j} \delta_{a b} \delta_{\sigma \tau}+\left(i a\left|f_{H x c}^{\sigma \tau}\right| j b\right) \\
B_{i a, j b}^{\sigma \tau} & =\left(i a\left|f_{H x c}^{\sigma \tau}\right| b j\right)
\end{aligned}
$$

Matrices \mathbf{A} and $\mathbf{B} \rightarrow$ No explicit interaction with higher-excitations!

Maitra et al., JCP, 120, 5932 (2004) \rightarrow
Dressed-TDDFT: One single- and one double-excitation mixing.

$$
\left[\begin{array}{cc}
\omega_{S} & \langle S| \hat{H}|D\rangle \\
\langle S| \hat{H}|D\rangle & \omega_{D}
\end{array}\right]\binom{C_{S}}{C_{D}}=\omega\binom{C_{S}}{C_{D}}
$$

Applying the partitioning technique

$$
\left(\omega_{S}+\frac{|\langle S| \hat{H}| D\rangle\left.\right|^{2}}{\omega-\omega_{D}}\right) C_{S}=\omega C_{S}
$$

Maitra et al. assigned the different parts as

$$
\left[\chi_{s}^{-1}(\omega)-\chi^{-1}(\omega)\right]_{i a, a i} \approx \underbrace{\left(i a\left|f_{H x c}\right| a i\right)}_{\text {Adiabatic Kernel }}+\frac{\left|H_{S D}\right|^{2}}{\omega-\omega_{D}}
$$

Starting from the definition of the kernel

$$
f_{x c}(\mathbf{1}, \mathbf{2})=\frac{\delta v_{x c}[\rho](\mathbf{1})}{\delta \rho(\mathbf{1})}=\frac{\delta v_{s}[\rho](\mathbf{1})}{\delta \rho(\mathbf{2})}-\frac{\delta v_{e x t}[\rho](\mathbf{1})}{\delta \rho(\mathbf{2})}-\frac{\delta v_{H}[\rho](\mathbf{1})}{\delta \rho(\mathbf{2})}
$$

so that

$$
f_{H x c}(\mathbf{1}, \mathbf{2})=\chi_{s}^{-1}(\mathbf{1}, \mathbf{2})-\chi^{-1}(\mathbf{1}, \mathbf{2})
$$

The response functions of the non-interacting system requires the whole spectrum of excitations of the Kohn-Sham system

$$
\begin{aligned}
\chi_{s}\left(\overrightarrow{\mathbf{x}}_{1}, \overrightarrow{\mathbf{x}}_{2}, \omega\right) & =\lim _{\eta \rightarrow 0} \sum_{M} \frac{\left\langle\Psi_{s, 0}\right| \hat{\rho}\left(\overrightarrow{\mathbf{x}}_{1}\right)\left|\Psi_{s, M}\right\rangle\left\langle\Psi_{s, M}\right| \hat{\rho}\left(\overrightarrow{\mathbf{x}}_{2}\right)\left|\Psi_{s, 0}\right\rangle}{\omega+E_{s, M}-E_{s, 0}+i \eta} \\
& +\lim _{\eta \rightarrow 0} \sum_{M} \frac{\left\langle\Psi_{s, 0}\right| \hat{\rho}\left(\overrightarrow{\mathbf{x}}_{2}\right)\left|\Psi_{s, M}\right\rangle\left\langle\Psi_{s, M}\right| \hat{\rho}\left(\overrightarrow{\mathbf{x}}_{1}\right)\left|\Psi_{s, 0}\right\rangle}{\omega+E_{s, M}-E_{s, 0}-i \eta}
\end{aligned}
$$

The equation describing MB effects of four interacting particles is

$$
\begin{aligned}
& L(\mathbf{1}, \mathbf{2} ; \mathbf{3}, \mathbf{4})=L_{s}(\mathbf{1}, \mathbf{2} ; \mathbf{3}, \mathbf{4}) \\
+\quad & \int L_{s}(\mathbf{1}, \mathbf{2} ; \mathbf{3}, \mathbf{4}) \Xi_{H x c}(\mathbf{3}, \mathbf{4} ; \mathbf{5}, \mathbf{6}) L(\mathbf{5}, \mathbf{6} ; \mathbf{7}, \mathbf{8}) d \mathbf{3} d \mathbf{4} d \mathbf{5} d \mathbf{6},
\end{aligned}
$$

We need two-pair interaction, so we can fix two times to obtain

$$
\boldsymbol{\Pi}(\omega)=\boldsymbol{\Pi}_{s}(\omega)+\boldsymbol{\Pi}_{s}(\omega) \mathbf{K}(\omega) \boldsymbol{\Pi}(\omega)
$$

where $\Pi(\omega)=\Pi\left(\vec{x}_{1}, \vec{x}_{2} ; \vec{x}_{3}, \vec{x}_{4} ; \omega\right)$ Now we can write the kernel as

$$
\mathbf{K}(\omega)=\boldsymbol{\Pi}_{s}^{-1}(\omega)-\boldsymbol{\Pi}^{-1}(\omega)
$$

Localization in space J.E. Harriman, PRA, 27, 632, (1983); PRA, 34,29 (1986) In terms of the Harriman collapse and expansion operators $\hat{\Upsilon} \hat{\Sigma}_{x}\left(\overrightarrow{\mathbf{x}}_{1}, \overrightarrow{\mathbf{x}}_{2}\right)=\hat{\Sigma}_{x}\left(\overrightarrow{\mathbf{x}}_{1}, \overrightarrow{\mathbf{x}}_{1}\right)=\hat{v}_{x}\left(\overrightarrow{\mathbf{x}}_{1}\right) \quad \hat{\Upsilon}^{\dagger} \hat{v}_{x}\left(\overrightarrow{\mathbf{x}}_{1}\right)=\delta\left(\overrightarrow{\mathbf{x}}_{1}-\overrightarrow{\mathbf{x}}_{2}\right) \hat{v}_{x}\left(\overrightarrow{\mathbf{x}}_{1}\right)$ allows us to formally write our assumption

$$
\chi\left(\vec{x}_{1}, \vec{x}_{2} ; \omega\right)=\hat{\Upsilon} \Pi\left(\vec{x}_{1}, \vec{x}_{2} ; \vec{x}_{3}, \vec{x}_{4} ; \omega\right) \hat{\Upsilon}^{\dagger}=\Pi\left(\vec{x}_{1}, \vec{x}_{1} ; \vec{x}_{2}, \vec{x}_{2}\right)
$$

Now, having the Dyson-like equation for the kernel

$$
\chi(\omega)-\chi_{s}(\omega)=\chi_{s}(\omega) f_{H x c}(\omega) \chi(\omega)
$$

we can include our assumption $\chi(\omega)=\hat{\mathbf{\Upsilon}} \Pi(\omega) \hat{\mathbf{\Upsilon}}^{\dagger}$

$$
\hat{\boldsymbol{\Upsilon}}\left(\boldsymbol{\Pi}(\omega)-\boldsymbol{\Pi}_{s}(\omega)\right) \hat{\boldsymbol{\Upsilon}}^{\dagger}=\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega) \hat{\mathbf{\Upsilon}}^{\dagger}\right) f_{H x c}(\omega)\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}(\omega) \hat{\mathbf{\Upsilon}}^{\dagger}\right)
$$

Applying the Born approximation we obtain

$$
\hat{\boldsymbol{\Upsilon}}\left(\boldsymbol{\Pi}(\omega)-\boldsymbol{\Pi}_{s}(\omega)\right) \hat{\boldsymbol{\Upsilon}}^{\dagger}=\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega) \hat{\mathbf{\Upsilon}}^{\dagger}\right) f_{H x c}(\omega)\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}\right)
$$

We can further simplify by writing
$\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega)\left(\boldsymbol{\Pi}_{s}^{-1}(\omega)-\boldsymbol{\Pi}^{-1}(\omega)\right) \boldsymbol{\Pi}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}=\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}\right) f_{H x c}(\omega)\left(\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}\right)$ and applying the simplification $\hat{\boldsymbol{\Upsilon}} \boldsymbol{\Pi}_{s}(\omega)\left(\boldsymbol{\Pi}_{s}^{-1}(\omega)-\boldsymbol{\Pi}^{-1}(\omega)\right) \Pi_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}=\left(\hat{\boldsymbol{\Upsilon}} \Pi_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}\right) f_{H x c}(\omega)\left(\hat{\boldsymbol{\Upsilon}} \Pi_{s}(\omega) \hat{\boldsymbol{\Upsilon}}^{\dagger}\right)$

This is the Nanoquanta approximation

$$
\mathbf{f}_{H x c}(\omega)=\boldsymbol{\Lambda}_{s}(\omega)\left(\boldsymbol{\Pi}_{s}^{-1}(\omega)-\boldsymbol{\Pi}^{-1}(\omega)\right) \boldsymbol{\Lambda}_{s}(\omega)
$$

The construction then follows two parts:

1. Construction of the MBPT kernel
$K^{\prime}\left(\overrightarrow{\mathbf{x}}_{3}, \overrightarrow{\mathbf{x}}_{4} ; \overrightarrow{\mathbf{x}}_{5}, \overrightarrow{\mathbf{x}}_{6}, \omega\right)=\Pi_{s}^{-1}\left(\overrightarrow{\mathbf{x}}_{3}, \overrightarrow{\mathbf{x}}_{4} ; \overrightarrow{\mathbf{x}}_{5}, \overrightarrow{\mathbf{x}}_{6}, \omega\right)-\Pi^{-1}\left(\overrightarrow{\mathbf{x}}_{3}, \overrightarrow{\mathbf{x}}_{4} ; \overrightarrow{\mathbf{x}}_{5}, \overrightarrow{\mathbf{x}}_{6}, \omega\right)$
Ref.: J. Oddershede, P. Jørgensen, JCP, 66,1541, (1977).
2. Treatment of the space localization
$\Lambda_{s}\left(\overrightarrow{\mathbf{x}}_{1} ; \overrightarrow{\mathbf{x}}_{5}, \overrightarrow{\mathbf{x}}_{6}, \omega\right)=\left(\hat{\Upsilon} \Pi_{s}\left(\overrightarrow{\mathbf{x}}_{1}, \overrightarrow{\mathbf{x}}_{2} ; \overrightarrow{\mathbf{x}}_{3}, \overrightarrow{\mathbf{x}}_{4}, \omega\right) \hat{\Upsilon}^{\dagger}\right)^{-1} \hat{\Upsilon} \Pi_{s}\left(\overrightarrow{\mathbf{x}}_{3}, \overrightarrow{\mathbf{x}}_{4} ; \overrightarrow{\mathbf{x}}_{5}, \overrightarrow{\mathbf{x}}_{6}, \omega\right)$

The polarization propagator can be written as

$$
-\Pi(\omega)=\left(\hat{p}^{\dagger} \hat{q}\left|(\omega \breve{1}+\breve{H})^{-1}\right| \hat{r}^{\dagger} \hat{s}\right)
$$

By introducing a complete space of neutral excitations

$$
\mathbf{T}^{\dagger}=\left\{\mathbf{T}_{1}^{\dagger} ; \mathbf{T}_{2}^{\dagger} ; \ldots\right\}=\left\{\hat{a}^{\dagger} \hat{i}, \hat{i}^{\dagger} \hat{a} ; \hat{a}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j}, \hat{j}^{\dagger} \hat{b} \hat{i}^{\dagger} \hat{a} ; \ldots\right\}
$$

we can decouple the propagation of the pairs and the resolvent

$$
-\Pi(\omega)=\left(\left(\hat{p}^{\dagger} \hat{q} \mid \mathbf{T}_{1}\right)\left(\hat{p}^{\dagger} \hat{q} \mid \mathbf{T}_{2+}\right)\right)\left[\begin{array}{cc}
\boldsymbol{\Gamma}_{1,1}(\omega) & \boldsymbol{\Gamma}_{1,2+} \\
\boldsymbol{\Gamma}_{2+, 1} & \boldsymbol{\Gamma}_{2+, 2+}(\omega)
\end{array}\right]^{-1}\binom{\left(\mathbf{T}_{1}^{\dagger} \mid \hat{r}^{\dagger} \hat{s}\right)}{\left(\mathbf{T}_{2+}^{\dagger} \mid \hat{r}^{\dagger} \hat{s}\right)}
$$

Applying the partitioning technique

$$
\begin{aligned}
-\Pi_{s r, q p}(\omega) & =\left[\left(\hat{p}^{\dagger} \hat{q} \mid \mathbf{T}_{1}^{\dagger}\right)-\left(\hat{p}^{\dagger} \hat{q} \mid \mathbf{T}_{2+}^{\dagger}\right) \boldsymbol{\Gamma}_{2+, 2+}^{-1}(\omega) \boldsymbol{\Gamma}_{2+, 1}\right] \mathbf{P}^{-1}(\omega) \times \\
& \times\left[\left(\mathbf{T}_{1}^{\dagger} \mid \hat{r}^{\dagger} \hat{s}\right)-\boldsymbol{\Gamma}_{1,2+} \boldsymbol{\Gamma}_{2+, 2+}^{-1}(\omega)\left(\mathbf{T}_{2+}^{\dagger} \mid \hat{r}^{\dagger} \hat{s}\right)\right] \\
& +\left(\hat{p}^{\dagger} \hat{q} \mid \mathbf{T}_{2+}^{\dagger}\right) \boldsymbol{\Gamma}_{2+, 2+}^{-1}(\omega)\left(\mathbf{T}_{2+}^{\dagger} \mid \hat{r}^{\dagger} \hat{s}\right)
\end{aligned}
$$

We can partition the Hamiltonian in

$$
\hat{H}=\hat{H}^{(0)}+\hat{H}^{(1)} \quad \rightarrow \quad \hat{H}^{(0)}=\hat{h}_{s} \quad ; \quad \hat{H}^{(1)}=\hat{W}-\hat{v}_{H F}+\hat{M}_{x c}
$$

A.G., Phys. Rev. A. 57, 3433 (1998)

(a)

(b)

(k)

(d)

(e)

First+Second-order: Double-Excitations

- Roughly 200 diagrams have to be considered
- Renormalization of the excit. operators to recover Hermiticity
- The resumed expressions are

$$
\begin{gathered}
{\left[\Pi(\omega)-\Pi_{s}(\omega)\right]_{a i, a i}=} \\
+(a i \| a i)+M_{a a}-M_{i i} \leftarrow \quad \text { 1st order } \\
\\
+\frac{1}{2} \sum_{l m b} \frac{|(m a| | l b)|^{2}}{\epsilon_{a}+\epsilon_{b}-\epsilon_{l}-\epsilon_{m}} \\
\\
-\frac{1}{2} \sum_{l a b} \frac{|(i a| | l b)|^{2}}{\epsilon_{a}+\epsilon_{b}-\epsilon_{l}-\epsilon_{i}} \\
\\
-\sum_{d} \frac{\left|M_{i d}\right|^{2}}{\epsilon_{d}-\epsilon_{i}} \\
\\
-\sum_{k} \frac{\left|M_{k a}\right|^{2}}{\epsilon_{a}-\epsilon_{k}} \\
+\sum_{j k b c} \frac{-\delta_{j i}(b a \| c k)+\delta_{k i}(b a \| c j)}{-\delta_{a b}(c k \| i j)+\delta_{a c}(b k \| i j)} \begin{array}{l}
\omega-\omega_{i k b c}
\end{array}
\end{gathered}
$$

The space-localization makes the whole MB kernel ω-dependent

$$
\mathbf{f}_{H x c}(\omega)=\boldsymbol{\Lambda}(\omega)\left[\boldsymbol{K}^{\prime}(0)+\boldsymbol{K}^{\prime}(\omega)\right] \boldsymbol{\Lambda}_{s}^{\dagger}(\omega)
$$

In a spirit somewhat related to the Nanoquanta kernel

$$
\mathbf{f}_{H x c}(\omega)=\boldsymbol{\Lambda}_{s}(\omega)\left[\boldsymbol{K}^{\prime}(0)+\boldsymbol{K}^{\prime}(\omega)\right] \boldsymbol{\Lambda}_{s}^{\dagger}(\omega)
$$

Gonze-Scheffler Relations [X.G.,M.S.,PRL, 82, 4416 (1999)]: For the case of one pole well-separated from the others

$$
\begin{aligned}
\left(i a\left|\mathbf{f}_{H x c}\left(\epsilon_{a i}\right)\right| a i\right) & =\left(i a\left|\boldsymbol{\Lambda}_{s}\left(\epsilon_{a i}\right)\left[\boldsymbol{K}^{\prime}(0)+\boldsymbol{K}^{\prime}\left(\epsilon_{i a}\right)\right] \boldsymbol{\Lambda}_{s}\left(\epsilon_{a i}\right)\right| a i\right) \\
& =\left(i i\left|\left[\boldsymbol{K}^{\prime}(0)+\boldsymbol{K}^{\prime}\left(\epsilon_{i a}\right)\right]\right| a a\right)
\end{aligned}
$$

The complete ω-dependence of the localizer is unknown!!

Expanding the kernel in terms of auxiliary basis functions

$$
f_{H x c}\left(\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}, \omega\right)=\sum_{I} c_{I}(\omega) f_{I}\left(\overrightarrow{\mathbf{r}}_{1}\right) g_{I}^{*}\left(\overrightarrow{\mathbf{r}}_{2}\right)
$$

The localization condition is given by

$$
\left(i a\left|f_{H x c}(\omega)\right| j b\right)=\left(i a\left|K^{\prime}(\omega)\right| j b\right)
$$

Using the expansion, we can set up a linear system of equations

$$
\sum_{I} c_{I}(\omega)(i a \mid f)(g \mid j b)=\left(i a\left|K^{\prime}(\omega)\right| j b\right)
$$

- Double Excitations are lost due to the adiabatic approximation.
- Starting from an exact formulation of the kernel, we derived a second-order correction to the kernel.
- The kernel has two functions: (i) shift the Kohn-Sham eigenvalues; (ii) introduce electron-hole correlation
- An extra frequency dependence arises from the localization of the kernel
- We propose a general method for treating the localization effects, which we believe introduce important physical content.

Acknowledgements: G. Scuseria for allocating some time in the schedule.
Support: French ministry of Education, Nanoscience foundation.

