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Photochemistry requirements

The ideal model must...

@ include both non-dynamical and dynamical correlation.

@ describe ground- and excited-state potential energy surface
interactions.

@ be size consistent and size extensive.

o be efficient enough to be able to perform dynamics.

Photochemists normally use...

CASPT2 A-LR-TDDFT
@ Systematic treatment of : o
. @ Only single excitations
correlation

@ Not perfect conical

@ Correct conical ) .
Intersection

intersection _ _
@ Require no prior

@ Requires deep knowledge knowledge

of the system

@ Bad scaling @ Good scaling



LR-TDDFT in frequency space: Casida Equations

Casida constructed an RPA-like equation for TDDFT

(REF: M.E.C., Recent Developements and Applications of Modern Density Functional Theory, Theoretical and

Computational Chemistry vol. 4, 1996, p.391.)
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where
fp(@) = (€a — €)0ij0arbor + (ia| ffc(w)]iD)
fpw) = (idl ch( )1b7)

and

(ial £ (w)|55) = // O E )0 (B) F e (1 Fos )T (E ] (F2) A1 0P,

We can then write the linear response of the density as
ZX ¥i(F) + Yig (w) ey (F)1ba(F)

Matrices A(w) and B(w) have the dimension of Nyee X Nyirt



Adiabatic Approximation

If the xc potential does not depend on the 'past’ then

= = 5E:cc[pt]
Vzxe X, 1) = Uge X) = Jxc 1,2)~6(ti—to) =——o~7 5~
P 0)  iclp)(8) = Falpl(1,2) m 8ty — 1) el
where p; is the density at time ¢ and E,[p] is the ground-state xc

functional.
Such approximation turns Casida equations into

o V)=l SR

with
b = (€a = €)0ij0apdor + (ial fEpclib)
o = (ial figclbd)

Matrices A and B — No explicit interaction with
higher-excitations!



Dressed-TDDFT

Maitra et al., JCP, 120,

5932 (2004).— .
Dressed-TDDFT: One E N

single- and one I
double-excitation - o 2
mixing. o o

{ (S111D) <S‘ilD> ] < gi > :°"< gi >

Applying the partitioning technique
S|H|D)|?
(ws . |<|r>|> Cs = wOs
w —wp

Maitra et al. assigned the different parts as
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Adiabatic Kernel
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Frequency dependence of the Kernel (1)

Starting from the definition of the kernel

Svre[p](1) _ 6uslpl(1)  bvear[p](1) — Svm(p](1)
dp(1) p(2) p(2) p(2)

f:r:c(]-a2) =
so that
szc(la 2) = Xs_l(lv 2) - X_l(lv 2)

The response functions of the non-interacting system requires the
whole spectrum of excitations of the Kohn-Sham system

(W0l p(K1)[Ws,00) (Vs 01 |p(X2) [P 0)

Xs(X1,X2,w) = lim Z

n—0 ; w—i—E&M —Es,()—i-i?]
.S (Ws01p(X2) [ ar) (W01 p(X1) W5 0)
n—0 w + Es,M — E370 —1n



Frequency-Dependence of the Kernel (Il)

The equation describing MB effects of four interacting particles is
L(1,2;3,4) = Ly(1,2;3,4)
+ /LS(1,2;3,4)EHM(3,4;5,6)L(5,6;7,8)d3d4d5d6,
We need two-pair interaction, so we can fix two times to obtain
M(w) = IL(w) + I (w) K(w)I(w)
where II(w) = (%1, Z2; 3, Z4;w) Now we can write the kernel as
K(w) =T (w) - TI"'(w)

Localization in space JEe. Hariman, PRA, 27, 632, (1983); PRA, 34,29 (1986)
In terms of the Harriman collapse and expansion operators

T3, (%1, %) = 8a(R1,%1) = 0:(%1)  TTo,(%1) = (X1 — %2)0,(%1)
allows us to formally write our assumption

X(Z1, To; w) = YI(Z, To; T3, Ta;w) YT = TI(Z), T1; Do, Ta)



From MBPT to TDDFT (I)

Now, having the Dyson-like equation for the kernel

X(w) = xs (W) = Xs (W) frze(W)x(w)

we can include our assumption x(w) = YTI(w) YT

T (M(w) — M (w) YT = (YT (W) TT) frrze(w) (YTI(w) Y1)
Applying the Born approximation we obtain

T (T(w) — Te(w)) YT = (YT (w) YT frre(w) (YT (w) Y1)
We can further simplify by writing
YIL, (w) (L (@) T (@) (W) YT = (YT (@) YT) frrpe(w) (YT () TT)
and applying the simplification
YIL (w) (T (@) =TT (@)L (@) YT = (YTL (@) Y) frrpe (0) (YL () Y1)
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From MBPT to TDDFT (Il)

This is the Nanoquanta approximation
Frrze(w) = As (W) (T (W) = T (w)) A (w)
The construction then follows two parts:
1. Construction of the MBPT kernel
K'(R3,%4; %5, %6, w) = II; 1(X3, %y; X5, X6, w) — 111 (X3, Xy; X5, X, w)
Ref.: J. Oddershede, P. Jgrgensen, JCP, 66,1541, (1977).

2. Treatment of the space localization

As(R1; %5, %6, w) = (TTI4(%, Xo; K3, %a, ) T IV (%3, %45 %5, X6, w)
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Construction of the MBPT kernel

The polarization propagator can be written as
~Tl(w) = (p'q|(wl + H)~"|7"3)
By introducing a complete space of neutral excitations
T = {T!, T): ..} = {a'i,iTa; alib'j, jTbita; ..}
we can decouple the propagation of the pairs and the resolvent

I () r1,2+w) ]< ((TW) )

—1I — (($t61 T (BT 61T
(@) = (G'ATHE'AT)) | "5 7 1,0 T4, 715)

Applying the partitioning technique
Mo gp(@) = [(A74T]) = (974 TE )T o (@)T24 1P (w) X
( 5

+ (14T )T 5, (W) (TL, [#3)
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Dressed-TDDFT

(;ff T}) {4
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First-order: Exact Exchange

We can partition the Hamiltonian in

= A0 4 g0

L A0 ),

A.G., Phys. Rev. A. 57, 3433 (1998)

7

E[(l) :W—@HF—FMR

(2)

@

(U]

14



First+Second-order: Double-Excitations

@ Roughly 200 diagrams have to be considered
@ Renormalization of the excit. operators to recover Hermiticity
@ The resumed expressions are

M(w) — Is(w)] = (ai||ai) + Maq — Mi; «— 1st order

+iy,  Amellb)

Imb eq+ep—ej—em

at,at

|(ia||1b)|?
2 Zlab €at+ep—e€—€;

«— 2on order

_ zd |]\/[zd|

Mal?

_Zk |eaie‘k
| =diballck) + 3wl s) |
_5ab(CkHij) + 511(’(6]{7"6])
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Space-Localization

The space-localization makes the whole MB kernel w-dependent

frroc(w) = AW)[K'(0) + K'(w)]AsT (W)

In a spirit somewhat related to the Nanoquanta kernel

frrze(w) = As(W)[K'(0) + K'(w)]As" ()

Gonze-Scheffler Relations [X.G.,M.S.,PRL, 82, 4416 (1999)]: For
the case of one pole well-separated from the others
(ia|frze(eai)lai) = (ia|As(eqi) [K'(0) + K'(€ia)As(€ai)|ai)
= (i|[K'(0) + K'(€ia)]|aa)

The complete w-dependence of the localizer is unknown!!
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General treatment of Localization

Expanding the kernel in terms of auxiliary basis functions

fze(T1, T2, w ZCI ) f1(¥1)g7 (F2)

The localization condition is given by
(il frzc(w)|jb) = (ia| K'(w)]jb)

Using the expansion, we can set up a linear system of equations

ZCI )(ial f)(gljb) = (ial K’ (w)]50)
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Conclusions

@ Double Excitations are lost due to the adiabatic
approximation.

@ Starting from an exact formulation of the kernel, we derived a
second-order correction to the kernel.

@ The kernel has two functions: (i) shift the Kohn-Sham
eigenvalues; (i) introduce electron-hole correlation

@ An extra frequency dependence arises from the localization of
the kernel

@ We propose a general method for treating the localization
effects, which we believe introduce important physical content.
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