
TIME-DEPENDENT DENSITY FUNCTIONAL THEORY KERNELS
FROM MANY-BODY PERTURBATION THEORY

Miquel Huix-Rotllant & Mark E. Casida
Departement de Chimie Moléculaire
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Photochemistry requirements

The ideal model must...

include both non-dynamical and dynamical correlation.

describe ground- and excited-state potential energy surface

interactions.

be size consistent and size extensive.

be efficient enough to be able to perform dynamics.

Photochemists normally use...

CASPT2

Systematic treatment of
correlation

Correct conical
intersection

Requires deep knowledge
of the system

Bad scaling

A-LR-TDDFT

Only single excitations

Not perfect conical
intersection

Require no prior
knowledge

Good scaling
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LR-TDDFT in frequency space: Casida Equations

Casida constructed an RPA-like equation for TDDFT
(REF: M.E.C., Recent Developements and Applications of Modern Density Functional Theory, Theoretical and

Computational Chemistry vol. 4, 1996, p.391.)
[

A(ω) B(ω)
B

∗(ω) A
∗(ω)

](
X

Y

)

= ω

[
1 0

0 −1

](
X

Y

)

where

Aστ
ia,jb(ω) = (ǫa − ǫi)δijδabδστ + (ia|fστ

Hxc(ω)|jb)

Bστ
ia,jb(ω) = (ia|fστ

Hxc(ω)|bj)

and

(ia|fστ
Hxc(ω)|jb) =

∫∫

ψ
σ,∗
i (~r1)ψ

σ
a (~r1)f

στ
Hxc(~r1,~r2, ω)ψτ,∗

j (~r2)ψ
τ
b (~r2)d

3r1d
3r2.

We can then write the linear response of the density as

δρσ(~r, ω) =
∑

ia

Xσ
ai(ω)ψ∗

a(~r)ψi(~r) + Y σ
ia(ω)ψ∗

i (~r)ψa(~r)

Matrices A(ω) and B(ω) have the dimension of Nocc ×Nvirt
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Adiabatic Approximation

If the xc potential does not depend on the ’past’ then

vxc[ρ](~x, t) ≈ vxc[ρt](~x)→ fxc[ρ](1,2) ≈ δ(t1− t2)
δExc[ρt]

δρt(~x1)δρt(~x2)

where ρt is the density at time t and Exc[ρ] is the ground-state xc
functional.
Such approximation turns Casida equations into

[
A B

B
∗

A
∗

](
X

Y

)

= ω

[
1 0

0 −1

](
X

Y

)

with

Aστ
ia,jb = (ǫa − ǫi)δijδabδστ + (ia|fστ

Hxc|jb)

Bστ
ia,jb = (ia|fστ

Hxc|bj)

Matrices A and B → No explicit interaction with
higher-excitations!
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Dressed-TDDFT

Maitra et al., JCP, 120,

5932 (2004).→
Dressed-TDDFT: One
single- and one
double-excitation
mixing.

E

ωS

ωD

ωb

ωa

f

ωωS

1

ωD
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ωωa

fa

fb

ωb.
[

ωS 〈S|Ĥ|D〉

〈S|Ĥ|D〉 ωD

](
CS

CD

)

= ω

(
CS

CD

)

Applying the partitioning technique
(

ωS +
|〈S|Ĥ|D〉|2

ω − ωD

)

CS = ωCS

Maitra et al. assigned the different parts as

[χ−1
s (ω)− χ−1(ω)]ia,ai ≈ (ia|fHxc|ai)

︸ ︷︷ ︸

Adiabatic Kernel

+
|HSD|

2

ω − ωD
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Frequency dependence of the Kernel (I)

Starting from the definition of the kernel

fxc(1,2) =
δvxc[ρ](1)

δρ(1)
=
δvs[ρ](1)

δρ(2)
−
δvext[ρ](1)

δρ(2)
−
δvH [ρ](1)

δρ(2)

so that
fHxc(1,2) = χ−1

s (1,2)− χ−1(1,2)

The response functions of the non-interacting system requires the
whole spectrum of excitations of the Kohn-Sham system

χs(~x1, ~x2, ω) = lim
η→0

∑

M

〈Ψs,0|ρ̂(~x1)|Ψs,M 〉〈Ψs,M |ρ̂(~x2)|Ψs,0〉

ω + Es,M − Es,0 + iη

+ lim
η→0

∑

M

〈Ψs,0|ρ̂(~x2)|Ψs,M 〉〈Ψs,M |ρ̂(~x1)|Ψs,0〉

ω + Es,M − Es,0 − iη
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Frequency-Dependence of the Kernel (II)

The equation describing MB effects of four interacting particles is

L(1,2;3,4) = Ls(1,2;3,4)

+

∫

Ls(1,2;3,4)ΞHxc(3,4;5,6)L(5,6;7,8) d3d4d5d6 ,

We need two-pair interaction, so we can fix two times to obtain

Π(ω) = Πs(ω) + Πs(ω)K(ω)Π(ω)

where Π(ω) = Π(~x1, ~x2; ~x3, ~x4;ω) Now we can write the kernel as

K(ω) = Π
−1
s (ω)−Π

−1(ω)

Localization in space J.E. Harriman, PRA, 27, 632, (1983); PRA, 34,29 (1986)

In terms of the Harriman collapse and expansion operators

Υ̂Σ̂x(~x1, ~x2) = Σ̂x(~x1, ~x1) = v̂x(~x1) Υ̂†v̂x(~x1) = δ(~x1 − ~x2)v̂x(~x1)

allows us to formally write our assumption

χ(~x1, ~x2;ω) = Υ̂Π(~x1, ~x2; ~x3, ~x4;ω)Υ̂† = Π(~x1, ~x1; ~x2, ~x2)
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From MBPT to TDDFT (I)

Now, having the Dyson-like equation for the kernel

χ(ω)− χs(ω) = χs(ω)fHxc(ω)χ(ω)

we can include our assumption χ(ω) = Υ̂Π(ω)Υ̂†

Υ̂(Π(ω)−Πs(ω))Υ̂† = (Υ̂Πs(ω)Υ̂†)fHxc(ω)(Υ̂Π(ω)Υ̂†)

Applying the Born approximation we obtain

Υ̂(Π(ω)−Πs(ω))Υ̂† = (Υ̂Πs(ω)Υ̂†)fHxc(ω)(Υ̂Πs(ω)Υ̂†)

We can further simplify by writing

Υ̂Πs(ω)(Π−1
s (ω)−Π

−1(ω))Π(ω)Υ̂† = (Υ̂Πs(ω)Υ̂†)fHxc(ω)(Υ̂Πs(ω)Υ̂†)

and applying the simplification

Υ̂Πs(ω)(Π−1
s (ω)−Π

−1(ω))Πs(ω)Υ̂† = (Υ̂Πs(ω)Υ̂†)fHxc(ω)(Υ̂Πs(ω)Υ̂†)
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From MBPT to TDDFT (II)

This is the Nanoquanta approximation

fHxc(ω) = Λs(ω)(Π−1
s (ω)−Π

−1(ω))Λs(ω)

The construction then follows two parts:

1. Construction of the MBPT kernel

K ′(~x3, ~x4;~x5, ~x6, ω) = Π−1
s (~x3, ~x4;~x5, ~x6, ω)−Π−1(~x3, ~x4;~x5, ~x6, ω)

Ref.: J. Oddershede, P. Jørgensen, JCP, 66,1541, (1977).

2. Treatment of the space localization

Λs(~x1;~x5, ~x6, ω) = (Υ̂Πs(~x1, ~x2;~x3, ~x4, ω)Υ̂†)−1Υ̂Πs(~x3, ~x4;~x5, ~x6, ω)
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Construction of the MBPT kernel

The polarization propagator can be written as

−Π(ω) = (p̂†q̂|(ω1̆ + H̆)−1|r̂†ŝ)

By introducing a complete space of neutral excitations

T
† = {T†

1;T
†
2; ...} = {â†î, î†â; â†îb̂†ĵ, ĵ† b̂̂i†â; ...}

we can decouple the propagation of the pairs and the resolvent

−Π(ω) =
(
(p̂†q̂|T1)(p̂

†q̂|T2+)
)
[

Γ1,1(ω) Γ1,2+

Γ2+,1 Γ2+,2+(ω)

]−1(
(T†

1|r̂
†ŝ)

(T†
2+|r̂

†ŝ)

)

Applying the partitioning technique

−Πsr,qp(ω) = [(p̂†q̂|T†
1)− (p̂†q̂|T†

2+)Γ−1

2+,2+(ω)Γ2+,1]P
−1(ω)×

× [(T†
1|r̂

†ŝ)− Γ1,2+Γ
−1

2+,2+(ω)(T†
2+|r̂

†ŝ)]

+ (p̂†q̂|T†
2+)Γ−1

2+,2+(ω)(T†
2+|r̂

†ŝ)
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Dressed-TDDFT

r s

p q

L

r s
t

ΥT

p q t′

Π ≡

(T†
a|T

†
b)

−1

(r̂†ŝ|T†
a)

(T†
d|p̂

†q̂)

(T†
c|T

†
d)

−1

(T†
b|(1̆ω + H̆)−1|T†

c)

...

...

...

...

r s

p q

t

t′

≈

ω

k c

i a

r s

p q

P−1(ω)

(r̂†ŝ|T†
1)− (r̂†ŝ|T†

2+)Γ−1

2+,2+(ω)Γ2+,1

(T†
1|p̂

†q̂)− Γ1,2+Γ−1

2+,2+(ω)(T†
2+|p̂

†q̂)
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First-order: Exact Exchange

We can partition the Hamiltonian in

Ĥ = Ĥ(0) + Ĥ(1) → Ĥ(0) = ĥs ; Ĥ(1) = Ŵ − v̂HF + M̂xc

A.G., Phys. Rev. A. 57, 3433 (1998)
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First+Second-order: Double-Excitations

Roughly 200 diagrams have to be considered

Renormalization of the excit. operators to recover Hermiticity

The resumed expressions are

[Π(ω)−Πs(ω)]ai,ai = (ai||ai) +Maa −Mii ← 1st order

+1
2

∑

lmb
|(ma||lb)|2

ǫa+ǫb−ǫl−ǫm

−1
2

∑

lab
|(ia||lb)|2

ǫa+ǫb−ǫl−ǫi

−
∑

d
|Mid|

2

ǫd−ǫi

−
∑

k
|Mka|

2

ǫa−ǫk

← 2on order

+
∑

jkbc

|
−δji(ba||ck) + δki(ba||cj)
−δab(ck||ij) + δac(bk||ij)

|2

ω − ωikbc
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Space-Localization

The space-localization makes the whole MB kernel ω-dependent

fHxc(ω) = Λ(ω)[K ′(0) + K ′(ω)]Λs
†(ω)

In a spirit somewhat related to the Nanoquanta kernel

fHxc(ω) = Λs(ω)[K ′(0) + K ′(ω)]Λs
†(ω)

Gonze-Scheffler Relations [X.G.,M.S.,PRL, 82, 4416 (1999)]: For
the case of one pole well-separated from the others

(ia|fHxc(ǫai)|ai) = (ia|Λs(ǫai)[K
′(0) + K ′(ǫia)]Λs(ǫai)|ai)

= (ii|[K ′(0) + K ′(ǫia)]|aa)

The complete ω-dependence of the localizer is unknown!!
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General treatment of Localization

Expanding the kernel in terms of auxiliary basis functions

fHxc(~r1,~r2, ω) =
∑

I

cI(ω)fI(~r1)g
∗
I (~r2)

The localization condition is given by

(ia|fHxc(ω)|jb) = (ia|K ′(ω)|jb)

Using the expansion, we can set up a linear system of equations

∑

I

cI(ω)(ia|f)(g|jb) = (ia|K ′(ω)|jb)
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Conclusions

Double Excitations are lost due to the adiabatic
approximation.

Starting from an exact formulation of the kernel, we derived a
second-order correction to the kernel.

The kernel has two functions: (i) shift the Kohn-Sham
eigenvalues; (ii) introduce electron-hole correlation

An extra frequency dependence arises from the localization of
the kernel

We propose a general method for treating the localization
effects, which we believe introduce important physical content.
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