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Problem presentation: the Gross-Pitaevskii equation

Physical problem: Ground state of a system of bosons at very low temperature.

Two ways of seeing the problem: minimization problem – eigenvalue problem

Minimization problem: Energy functional minimization

I = inf

{
E (v), v ∈ H1

#(Ω),

∫
Ω

v2 = 1

}
with Ω = (0, 1)

where E (v) =
1

2

∫
Ω

|∇v |2 +
1

2

∫
Ω

Vv2 +
1

4

∫
Ω

v4, V ∈ Lp, p > 1

Nonlinear eigenvalue problem
∀v ∈ X , (−∆ + V + u2)u = λu∫

Ω

u2 = 1.

Setting: 1-Dimensional, Periodic Setting.
0 1

⌦

Remark: λ is the smallest eigenvalue and is simple.
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Resolution method
1- Space discretization: Planewave expansion.
Expansion in Fourier series:

u(x) =
∑
k

ûkek(x) where ek(x) = e2πik.x

Exact space: X = H1
#(Ω). Discretized space: XN = Span {ek , |k| ≤ N, k ∈ N}.

Discretized
problem

∀vN ∈ XN ,

∫
Ω

∇uN ·∇vN+

∫
Ω

VuNvN+

∫
Ω

u3
NvN−λN

∫
Ω

uNvN = 0.

2- Iterative resolution: Algorithm used to solve the equation on XN :

1. Initialization: Well-chosen pair (u0
N , λ

0
N).

2. Iterations: Loop until convergence (‖ukN − uk−1
N ‖H1 small).

Linear Problem

ΠN(−∆ũkN + V ũkN + (uk−1
N )2ũkN) = λk−1

N uk−1
N .

Normalization ukN = ũkN/‖ũkN‖L2 .
Rayleigh Quotient λkN =

∫
∇(ukN)2 + V (ukN)2 + (ukN)4.

            

            

(uk
N , �k

N )

Dimension

Iterations

3. Output: Approximate eigenfunction and eigenvalue (ukoutN , λkoutN ).
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N )2ũkN) = λk−1

N uk−1
N .

Normalization ukN = ũkN/‖ũkN‖L2 .
Rayleigh Quotient λkN =

∫
∇(ukN)2 + V (ukN)2 + (ukN)4.

            

            

(uk
N , �k

N )

Dimension

Iterations

3. Output: Approximate eigenfunction and eigenvalue (ukoutN , λkoutN ).
4



Error balance–Separation of error

Aim
Analyse the error bound

Find the origin of the error: space discretization and iterations

Be able to refine the right parameter at each step

Get the best compromise between space discretization and number of
iteration that minimizes the number of computations for a given accuracy.

Two error sources:

Size of the Fourier space 2N + 1.

Number of iterations k.

Therefore, we decompose the main residual into two computable parts

Rdisc = −∆ukN + VukN + (uk−1
N )2ukN − λk−1

N uk−1
N

Riter = (ukN)3 − (uk−1
N )2ukN − λkNukN + λk−1

N uk−1
N

such that
Rk
N = Rdisc + Riter .
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Error balance–Estimator

Writing Rk
N = Rdisc + Riter , we find

‖u − ukN‖H1 ≤ α(errk + errN)

where errk depends on the number of iterations and

errk = ‖Riter‖H−1 + ‖(V + 3(ukN)2 − λkN − 1)−‖L∞[
‖Riter‖H−1

βk
N

+
2

βk
N

|λkN − µ1
N |‖ukN − v1

N‖L2

+
3

2
‖ukN − v1

N‖2
L2

(
1 +
‖2(ukN)2v1

N‖H−1

βk
N

)]
and errN depends on the dimension and

errN = ‖Rdisc‖H−1

We note errtot ≤ errN + errk , with errtot = ‖Rk
N‖H−1

These terms are computable. We use them for adaptative refinement.
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Numerical simulations: Framework

The Fourier coefficients of the potential V are given by V̂k = − 1√
2π

1

|k|4 − 1
4

,

x
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Exact solution

”Exact” solution
Calculated in a discrete space with N=500.

Norm of the residual:
‖Rk

N‖H−1 = 4.10−13

Results no more precise than 10−13
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Simulations using a large dimension
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Simulations with a large number of iterations
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Error balance algorithm

Initialization
(u0

N0
, �0

N0
)

One iteration
k = k + 1

(uk
N , �k

N )

Compute
errtot

errN , errk

Discretization error 
too large: 
Increase N

Return
(uk

N , �k
N )

Iteration error 
too large

else

errtot < "

errN > 0.1errk
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Error balance results
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Is the error guaranteed?

Mathematical approach:

No

(uk
N , �k

N )

Caloz-Rappaz 
conditions satisfied?

Approximate solution: Yes

No

Yes

No guaranteed  
error bound

Error small enough?

First guaranteed bound

Error bound 
much larger 

than real error

Second guaranteed 
bound:  

close to real error

Conclusion:

Error not guaranteed for too coarse solutions

Error bound used for adaptive refinement

Error guaranteed for fine solutions
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Is the error guaranteed?

Practical aspects:

No

(uk
N , �k

N )

Caloz-Rappaz 
conditions satisfied?

Approximate solution: Yes

No

Yes
Error small enough?

First guaranteed bound

Adaptive refinement 
using second bound 

as indicator 
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Good approximate 
solution with guaranteed 
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and beyond . . .

We want now to incorporate the error due to the model . . .

Indeed, what is of interest for us is the solution to the full, original, Schrödinger
equation. What is the link between Schrödinger and one of the feasible model.

Kohn Sham, DFT

Hartree Fock

?
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post Hartree-Fock . . . CI-Full CI

We are using Slatter determinants to minimize the Schrodinger energy . . . leads
to the following equation

Find (Φ,λ) ∈ Y × RN such that, ∀ψ ∈ Y

1
2

∫
R3 ∇ϕi∇ψi +

∫
R3 V ϕiψi + 2

∑N
j=1

∫
R3

∫
R3

|ϕj (y)|2ϕi (x)ψi (x)
|x−y| dx dy

−
∑N

j=1

∫
R3

∫
R3

ϕi (y)ϕj (y)ϕj (x)ψi (x)
|x−y| dx dy

= λi
∫
R3 ϕiψi
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post Hartree-Fock . . . CI-Full CI

We are using Slatter determinants. . .

This has led us to an eigenvalue problem . . . where we have withdrawn **only**
the N lowest eigenvalues : the occupied orbitals.

There are N − N to be used : the excited states.
The basic Hartree Fock determinant is written as

Ψ0(x) =
1√
N!

det(ϕi (xj))Ni,j=1

and we denote it as
Ψ0 := Ψ[1, 2, . . . ,N]

for obvious reasons as it involves the N occupied orbitals.
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post Hartree-Fock . . . CI-Full CI

The basic Hartree Fock determinant is written as

Ψ0(x) =
1√
N!

det(ϕi (xj))Ni,j=1 := Ψ[1, 2, . . . ,N].

Single excited determinant can then be constructed as

Ψa
j := Ψ[1, 2, . . . , j − 1, a, j + 1, . . . ,N]

where the occupied orbital j is replaced by the unoccupied orbital a.
Analogously, doubly excited determinants are constructed as

Ψa,b
j,k := Ψ[1, 2, . . . , j − 1, a, j + 1, . . . , k − 1, b, k + 1, . . . ,N]

Higher excitations involve index

µ =

 a1 . . . ak

`1 . . . `k


where ai designates an index of unoccupied orbital that replaces the occupied
one `i associated to an excitation of order k. Such an excited determinant is
denoted as Ψµ = XµΨ0 where Xµ is a k-order excitation operator.
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post Hartree-Fock . . . CI-Full CI

The linear combinaison of all these excited determinants represents all the
antisymetric functions that can be built . . . Actually, all the excited determinants
may not be so useful . . . meaning that the coefficients in front of some of these,
in the expansion of the ground state solution to Schrödinger problem, may be
VERY small.

Would we know this a priori, we would look for minimization on reduced
expansions based on only those that are useful.

This is the spirit of Coupled Cluster approximations

22
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post Hartree-Fock . . . CC

The Projected Coupled Cluster Method consists in the ansatz

T = T (t) =
∑
k

Tk =
∑
µ

tµXµ

e.g. the CCSD method is given by T = T1 + T2 = T (t) where the unknowns
are the cluster amplitudes tµ that are determined by the following (nonlinear)
equation

∀µ ∈ J1 ∪ J2, 0 =< Ψµ, e
−THeTΨ0 >

We define the residual fµ(t) by

fµ(t) :=< Ψµ, e
−THeTΨ0 >
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post Hartree-Fock . . . CC

The natural question is then to understand the link between the norm of t and
the energy norm of the wave function. Following Reinhold Schneider this is
provided by the quantity ‖t‖V defined by

‖t‖2
V =

∑
µ∈J

εµ|tµ|2

where εµ =
∑k

i=1 λai − λ`i , and the λ’s are Hartree Fock eigenvalues in
increasing order. This norm is equivalent to the H1 norm of Ψ. The correct
evaluation of the norm of the residual f(t̃) := (fµ(t̃))µ is thus

‖f‖2
V ′ =

∑
µ∈J

ε−1
µ |fµ|2
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An adaptive strategy for Coupled Cluster Approximations

Starting from an initial index set J0 composed say of single excitations. The
procedure — as usual in the adaptive process — follows the rule

ESTIMATE −→ MARK −→ REFINE :

at step i , in order to define Ji+1 we estimate those fµ(t̃i ) that may be added in
order to improve the accuracy of the computation.

∀µ ∈ J , fµ(ti ) :=< Ψµ|e−TiHeTi |Ψ0 >= 0

By marking those indices associated with the those that have the largest
contribution in the above V ′ (dual)-norm (i.e. with the relative weight ε−1

µ ) we
add them in the set Ji to get a Ji+1 (finer) adapted set and we continue
recursively by enriching up to a level where the error estimator is small at the
required accuracy.

25



An adaptive strategy for Coupled Cluster Approximations

Starting from an initial index set J0 composed say of single excitations. The
procedure — as usual in the adaptive process — follows the rule

ESTIMATE −→ MARK −→ REFINE :

at step i , in order to define Ji+1 we estimate those fµ(t̃i ) that may be added in
order to improve the accuracy of the computation.

∀µ ∈ J , fµ(ti ) :=< Ψµ|e−TiHeTi |Ψ0 >= 0

By marking those indices associated with the those that have the largest
contribution in the above V ′ (dual)-norm (i.e. with the relative weight ε−1

µ ) we
add them in the set Ji to get a Ji+1 (finer) adapted set and we continue
recursively by enriching up to a level where the error estimator is small at the
required accuracy.

25



An adaptive strategy for Coupled Cluster Approximations

Starting from an initial index set J0 composed say of single excitations. The
procedure — as usual in the adaptive process — follows the rule

ESTIMATE −→ MARK −→ REFINE :

at step i , in order to define Ji+1 we estimate those fµ(t̃i ) that may be added in
order to improve the accuracy of the computation.

∀µ ∈ J , fµ(ti ) :=< Ψµ|e−TiHeTi |Ψ0 >= 0

By marking those indices associated with the those that have the largest
contribution in the above V ′ (dual)-norm (i.e. with the relative weight ε−1

µ ) we
add them in the set Ji to get a Ji+1 (finer) adapted set and we continue
recursively by enriching up to a level where the error estimator is small at the
required accuracy.

25



An adaptive strategy for Coupled Cluster Approximations
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An adaptive strategy for Coupled Cluster Approximations
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An adaptive strategy for Coupled Cluster Approximations
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Conclusion, and perspectives

Conclusion:

A posteriori Analysis for a nonlinear eigenvalue problem

A posteriori analysis for the error in the model

Perspectives:

A posteriori Analysis on the Kohn-Sham model.

Other discretizations like wavelets, finite elements.
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