Some aspects of multi-reference methods: size consistency and coupling between different correlation effects

Emmanuel Giner

Max Planck Institute for Solid State Research Stuttgart, Allemagne

Single reference systems

Weakly correlated systems

- Qualitatively :
 - ${}^{\scriptstyle \blacktriangleright} |\Psi\rangle \approx |{\bf HF}\rangle$
 - Closed-shell grd. states
 - Large HOMO-LUMO gap
- Dynamical correlation
 - Short-range (pprox cusp)
 - Long-range (pprox VdW)
- *e-e* correlation is weak :
 - Perturbation
 - Coupled Cluster
- Size extensivity
 - Closed-shell systems
 - Large system

Single reference systems

Weakly correlated systems

- Qualitatively :
 - ${}^{\scriptstyle \blacktriangleright} |\Psi\rangle \approx |{\bf HF}\rangle$
 - Closed-shell grd. states
 - Large HOMO-LUMO gap
- Dynamical correlation
 - Short-range (pprox cusp)
 - Long-range (pprox VdW)
- *e-e* correlation is weak :
 - Perturbation
 - Coupled Cluster
- Size extensivity
 - Closed-shell systems
 - Large system

Single-reference (SR) methods

- Perturbative expansion :
 - $\begin{array}{l} \mbox{Rayleigh-Schroedinger} \\ |\Psi^{(0)}\rangle = |\mathbf{HF}\rangle \ (\mbox{MP}n) \\ \mbox{Useful guide} \, ! \, ! \end{array}$
- Important applications :
 - Linked-Cluster Thm.
 - Size-extensivity
 - Coupled-Cluster
 - CCSD(T)
- Nowadays developments :
 - Bigger system (locality of e-e corr.)
 - Basis-set error $(f_{12}, DFT-WFT)$

Qualitative description of MR systems

- Relatively few strongly correlated electrons
 - Bond breakings
 - Magnetic systems
- But rapidly large expansion for $|\Psi^{(0)}
 angle$!

$$|\Psi^{(0)}\rangle = \sum_{I=1}^{10^3 - 10^6} c_I |I\rangle$$

• The ratios $\frac{c_{\rm I}}{c_{\rm J}}$ drive most of the physical properties

- \bullet Between the $|I\rangle$ and $|J\rangle$
 - Large interactions
 - Energetic degeneracies

•
$$\frac{\langle \mathbf{J}|H|\mathbf{I}\rangle}{\Delta E_{\mathbf{I}\mathbf{J}}} \gg 1$$

Non perturbative

Quantitative description : the physics beyond $|\Psi^{(0)}
angle$

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{i} c_{i} |\phi_{i}\rangle$$

• Standard dynamical correlation (cusp, VdW)

• Differential correlation effects

- \blacktriangleright The $|I\rangle$ are different
- \blacktriangleright Correlation effects depend on $|I\rangle$

• Change $|\Psi^{(0)} angle$

- Affects the $\langle {\rm J} | H | {\rm I} \rangle$ and $\Delta E_{{\rm IJ}}$
- Renormalization of H

• Size consistency

- Able to break bonds
- Treat open shell systems

The questions that must be answered for our MR methods

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{i} c_{i} |\phi_{i}\rangle$$

- How do we compute the energy?
- What choice for $|\Psi^{(0)}\rangle$?
- What choice for the $|\phi_i\rangle$?
- How do we determine the c_i ?

Requirements for a good MR method

- "Truly MR"
 - Same status for all $|I\rangle$ in $|\Psi^{(0)}\rangle$

• Correct treatment of dynamic correlation

- No divergences
- Accurate

• Treat the coupling static / dynamical correlation

- ► Building an effective Hamiltonian \tilde{H} within $\{|I\rangle\}$ $\tilde{H} = \sum_{I,J} (H_{IJ} + \tilde{O}_{IJ}) |I\rangle\langle J|$
- \blacktriangleright Diagonalize \tilde{H} can change $|\Psi^{(0)}\rangle$

Size-consistent

- $\blacktriangleright \ E(A \cdots B) = E(A) + E(B)$
- \blacktriangleright Correct even for open-shell sub-systems A and B

• Lowest computational cost ..

How to compute the energy ...?

- Variational calculations
- Projection technique

To be variational or not, that is the question ...

Variational calculations : CI calculations

• Average value of H on $|\Psi\rangle$:

$$E_{\Psi}^{\text{Var}} = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\sum_{\text{IJ}} c_{\text{J}} \langle J | H | \text{I} \rangle c_{\text{I}}}{\langle \Psi | \Psi \rangle}$$

• Upper bound to the FCI energy : $\ensuremath{\textcircled{\sc o}}$

no divergences : can treat strong correlation

$$= \min_{\Psi} E_{\Psi}^{\text{Var}}$$

easy to solve (Lanczos, Davidson)

• Space is not closed : ^(C)

- always exist some $|\mu
 angle$ such that $\langle\mu|H|\Psi
 angle
 eq 0$
- linear parametrization are required
- size consistency issues

To be variational or not, that is the question ...

Non-Variational calculations : CC, PT, FCI-QMC

• Suppose that $\ \ H|\Psi
angle=E|\Psi
angle$ is valid with :

$$|\Psi
angle = |\Psi^{(0)}
angle + \sum_{i\in \text{ FOIS}} c_i |\phi_i
angle + |\mathcal{R}
angle$$

with FOIS $\Leftrightarrow \langle \Psi^{(0)} | H | \phi_i \rangle \neq 0$ and $\langle \Psi^{(0)} | H | \mathcal{R} \rangle = 0$ • Non variational \Leftrightarrow projection on the reference WF $\langle \Psi^{(0)} |$:

$$\begin{split} E_{\Psi}^{\text{Proj}} &= \langle \Psi^{(0)} | H | \Psi \rangle \\ &= \underbrace{\langle \Psi^{(0)} | H | \Psi^{(0)} \rangle}_{E_{\Psi^{(0)}}^{\text{Var}}} + \sum_{i \in \text{FOIS}} c_i \langle \Psi^{(0)} | H | \phi_i \rangle \end{split}$$

- not necessary an upper bound O
- Variational for $|\Psi^{(0)}\rangle$
 - \Rightarrow good for the strongly correlated electrons!
- Only needs the coefficient of the FOIS ③
 - Much easier to close the space 😂
 - Size consistency ③

The space in which we are going to work

• The zeroth-order wave function : CAS-CI

 \blacktriangleright All determinants within $n \; e$ and m orbitals

$$|\Psi^{(0)}\rangle = \sum_{\mathbf{I}} c_{\mathbf{I}} |\mathbf{I}\rangle$$

• Size extensive ©

If active space is correctly chosen

$$E^{(0)}(A\cdots B) = E_A^{(0)} + E_B^{(0)}$$

 \blacktriangleright Also works for open-shell systems A and B

How do we determine c_i ?

Rayleigh-Schroedinger Perturbation Theory

• Assume a **partitioning of** H

$$H = H^{(0)} + V$$

ullet and $H^{(0)}$ being diagonal on the $|\phi_i
angle$ and $|\Psi^{(0)}
angle$

$$H^{(0)}|\Psi^{(0)}\rangle = E^{(0)}|\Psi^{(0)}\rangle$$
$$H^{(0)}|\phi_i\rangle = E^{(0)}_i|\phi_i\rangle$$

• Then the coefficient c_i at first order is simply :

$$c_i^{(1)} = \frac{\langle \Psi^{(0)} | H | \phi_i \rangle}{E^{(0)} - E_i^{(0)}}$$

Choice of the $|\phi_i\rangle$

• The $|\phi_i
angle$: connected to $|\Psi^{(0)}
angle$ $|\phi_i
angle$ such that $\langle\phi_i|H|\Psi^{(0)}
angle
eq 0$

 \bullet Singles and doubles exc. on top of $|\Psi^{(0)}\rangle$

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{i} c_i |\phi_i\rangle$$

singles and doubles exc.

• In SR methods $|\phi_i
angle$ are Slater determinants

$$|\phi_i\rangle = a_a^{\dagger} a_b^{\dagger} a_i a_j |\mathbf{HF}\rangle$$

• In MR methods it is more complicated ..

Choice of the $|\phi_i\rangle$ in MR method

• Linear combinations (Internally-contracted)

$$|\phi_i\rangle = a_a^{\dagger} a_b^{\dagger} a_i a_j |\Psi^{(0)}\rangle = \sum_{\mathbf{I}} c_{\mathbf{I}} a_a^{\dagger} a_b^{\dagger} a_i a_j |\mathbf{I}\rangle$$

• Single determinants (Externally-uncontracted)

$$|\phi_i\rangle = a_a^{\dagger} a_b^{\dagger} a_i a_j \ |\phi_i\rangle$$

• Key questions :

- Size-extensivity
- Changing $|\Psi^{(0)}
 angle \Leftrightarrow$ building \tilde{H}

The size-extensivity

MRPT2 using Linear combinations

• CASPT2

- Quite accurate (but empirical ..)
- Empirical parameters (IP-EA shifts, imaginary shifts ...) ©
- $H^{(0)}$ is a generalized Fock operator
- ► One body operator ⇔ Not size consistent ☺

• NEVPT2

- Quite accurate
- No empirical parameters ③
- $H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$\hat{H}_D = \hat{F}_{\mathsf{core}} + \hat{F}_{\mathsf{virtuals}} + \sum_{a,b,c,d} (ab|cd) a_b^{\dagger} a_d^{\dagger} a_c a_a$$

Two body operator in the active space + Linear combination \Rightarrow size consistent !! \odot

The size-extensivity

MRPT2 using Linear combinations

• CASPT2

- Quite accurate (but empirical ..)
- Empirical parameters (IP-EA shifts, imaginary shifts ...) ©
- $H^{(0)}$ is a generalized Fock operator
- ► One body operator ⇔ Not size consistent ☺

• NEVPT2

- Quite accurate
- No empirical parameters ③
- $H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$\hat{H}_D = \hat{F}_{\mathsf{core}} + \hat{F}_{\mathsf{virtuals}} + \sum_{a,b,c,d} (ab|cd) a_b^{\dagger} a_d^{\dagger} a_c a_a$$

Two body operator in the active space + Linear combination \Rightarrow size consistent !! \bigcirc

But really hard to build \tilde{H} ... \bigcirc

Emmanuel Giner (MPI)

Building of \tilde{H} : the Shifted- B_k

MRPT2 using Slater determinants

• The first order coefficient of $|\phi_i
angle$:

$$c_i^{(1)} = \frac{\langle \phi_i | H | \Psi^{(0)} \rangle}{E^{(0)} - E_i^{(0)}} = \sum_{\mathbf{I}} c_{\mathbf{I}} \frac{\langle \phi_i | H | \mathbf{I} \rangle}{E^{(0)} - E_i^{(0)}}$$

ullet The contribution of $|\phi_i\rangle$ to the energy at second order :

$$e_i^{(2)} = c_i^{(1)} \langle \Psi^{(0)} | H | \phi_i \rangle = \frac{\langle \Psi^{(0)} | H | \phi_i \rangle^2}{E^{(0)} - E_i^{(0)}}$$

Building of \tilde{H}

MRPT2 using Slater determinants : the Shifted- B_k

• $e_i^{(2)}$ can be reinterpreted as an **expectation value** of a new operator :

$$e_i^{(2)} = \sum_{IJ} c_J \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}} c_I = \langle \Psi^{(0)}|\tilde{O}_i|\Psi^{(0)} \rangle$$
$$\langle J|\tilde{O}_i|I \rangle = \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}}$$

 And so the total dressed *H* is simply : (Shavitt, 1968; Davidson, 1983, Nakano, 1993)

$$\langle \mathbf{J} | \tilde{H} | \mathbf{I} \rangle = \langle \mathbf{J} | H | \mathbf{I} \rangle + \sum_{i} \frac{\langle \mathbf{J} | H | \phi_i \rangle \langle \phi_i | H | \mathbf{I} \rangle}{E^{(0)} - E_i^{(0)}}$$

Building of \tilde{H}

MRPT2 using Slater determinants : the Shifted- B_k

• $e_i^{(2)}$ can be reinterpreted as an **expectation value** of a new operator :

$$e_i^{(2)} = \sum_{IJ} c_J \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}} c_I = \langle \Psi^{(0)}|\tilde{O}_i|\Psi^{(0)} \rangle$$
$$\langle J|\tilde{O}_i|I \rangle = \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}}$$

 And so the total dressed *H* is simply : (Shavitt, 1968; Davidson, 1983, Nakano, 1993)

$$\langle \mathbf{J} | \tilde{H} | \mathbf{I} \rangle = \langle \mathbf{J} | H | \mathbf{I} \rangle + \sum_{i} \frac{\langle \mathbf{J} | H | \phi_i \rangle \langle \phi_i | H | \mathbf{I} \rangle}{E^{(0)} - E_i^{(0)}}$$

Now we can couple the $|\Psi^{(0)}
angle$ and the $|\phi_i
angle$ through $\langle {
m J}| { ilde H} |{
m I}
angle$!! ${
m \odot}$

Building of \tilde{H}

MRPT2 using Slater determinants : the Shifted- B_k

• $e_i^{(2)}$ can be reinterpreted as an **expectation value** of a new operator :

$$e_i^{(2)} = \sum_{IJ} c_J \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}} c_I = \langle \Psi^{(0)}|\tilde{O}_i|\Psi^{(0)} \rangle$$
$$\langle J|\tilde{O}_i|I \rangle = \frac{\langle J|H|\phi_i \rangle \langle \phi_i|H|I \rangle}{E^{(0)} - E_i^{(0)}}$$

 And so the total dressed *H* is simply : (Shavitt, 1968; Davidson, 1983, Nakano, 1993)

$$\langle \mathbf{J} | \tilde{H} | \mathbf{I} \rangle = \langle \mathbf{J} | H | \mathbf{I} \rangle + \sum_{i} \frac{\langle \mathbf{J} | H | \phi_i \rangle \langle \phi_i | H | \mathbf{I} \rangle}{E^{(0)} - E_i^{(0)}}$$

Now we can couple the $|\Psi^{(0)}\rangle$ and the $|\phi_i\rangle$ through $\langle J|\tilde{H}|I\rangle$! \odot But we have a size consistency issue now ... \odot

Emmanuel Giner (MPI)

Why a size consistency issue

The problem of Slater determinants ...

• The problem comes from the energy denominators

$$\Delta E_i^{(0)} = E^{(0)} - E_i^{(0)}$$

• Let's assume a Epstein-Nesbet H₀

$$E^{(0)} = \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle$$
$$E^{(0)}_i = \langle \phi_i | H | \phi_i \rangle$$

- This comparaison is unfair !!
- Leads to non separable correlated energies ...

$$E(A \cdots B) \neq E(A) + E(B)$$

Some mumerical test of separability

TABLE – Total energies (a. u.) for the numerical separability check on $F_2 \dots FH$.

	CASSCF	$Shifted$ - B_k
F_2	-198.746157368569	-199.122170300
FH	-100.031754985880	-100.289784498
F_2+FH	-298.777912354448	-299. <mark>41</mark> 1954798
$F_2 \ldots FH$	-298.77791235444 <mark>3</mark>	-299. <mark>39</mark> 6752116
Absolute error (a.u.)	5.0×10^{-12}	1.5×10^{-2}
Relative error	1.7×10^{-14}	5.1×10^{-5}

Alternatives

• Proposal by Lindgren (QD-PT, 1974)

$$\Delta E_i^{(0)} = E_{\mathbf{I}}^{(0)} - E_i^{(0)} = \langle \mathbf{I} | H | \mathbf{I} \rangle - \langle \phi_i | H | \phi_i \rangle$$

 \Rightarrow systematically diverges ! ! \bigcirc

• Proposal by Heully et. al (H_{int}, 1996)

$$\Delta E_{\mathbf{I}i}^{(0)} = \langle \mathbf{I} | H | \mathbf{I} \rangle - \langle \phi_i | H | \phi_i \rangle + \delta_{\mathbf{I}i}$$

 \Rightarrow Numerically instable \bigcirc

Related proposal by Mukherjee et. al (Mk-MRPT2, 1999)
 ⇒ Numerically instable ☺

Proposal of a solution (Giner et. al, 2017)

Taking zeroth-order energies of multi-reference wave functions

$$\Delta E_{\mathbf{I}i}^{(0)} = \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle - \frac{\langle \Psi^{(0)} | \left(\hat{T}_{\mathbf{I}i} \right)^{\dagger} H \hat{T}_{\mathbf{I}i} | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | \left(\hat{T}_{\mathbf{I}i} \right)^{\dagger} \hat{T}_{\mathbf{I}i} | \Psi^{(0)} \rangle}$$

- Leads to strictly separable energies ! ②
- Linked to MR-CC formalism

Some mumerical proof of separability

TABLE – Total energies (a. u.) for the numerical separability check on $F_2 \dots FH$.

	CASSCF	JM-HeffPT2
F_2	-198.746157368569	-199.085305155169
FH	-100.031754985880	-100.262424667296
$F_2 + FH$	-298.777912354448	-299.34772982246 <mark>6</mark>
$F_2 \ldots FH$	-298.77791235444 <mark>3</mark>	-299.34772982246 <mark>2</mark>
Absolute error (a.u.)	5.0×10^{-12}	4.4×10^{-12}
Relative error	1.7×10^{-14}	1.4×10^{-14}

Summary

What we briefly saw ...

- No definitive answer unlike SR methods
- Still room for improvements in MR methods
 - Coupling betweem static / dynamic
 - Size extensivity
- Requires flexible formalisms (and codes ! !)

Main developpements

- Flexible MRCC / MRPT
- Coupling MR-WFT with range-separated DFT
- Using local orbitals

Why worrying so much about that?

- Energy is an extensive property :
 - scales linearly with the number of non interacting systems
 - Correlation energy also does
- Such a property requires a product wave function

$$E(A \cdots B) = E(A) + E(B) \Leftrightarrow |\Psi_{A+B}\rangle = |\Psi_A\rangle \times |\Psi_B\rangle$$

ullet Consider two wave function $|\Psi_A\rangle$ and $|\Psi_B\rangle$ and their product

$$\begin{split} |\Psi_A\rangle &= \sum_{\mathbf{I}_A}^{N_A} c_{\mathbf{I}_A} |\mathbf{I}_A\rangle, \quad |\Psi_B\rangle = \sum_{\mathbf{I}_B}^{N_B} c_{\mathbf{I}_B} |\mathbf{I}_B\rangle \\ |\Psi_{A+B}\rangle &= \sum_{\mathbf{I}_A}^{N_A} \sum_{\mathbf{I}_A}^{N_B} c_{\mathbf{I}_B} c_{\mathbf{I}_A} |\mathbf{I}_A\rangle \times |\mathbf{I}_B\rangle \end{split}$$

Variational methods

• In a variational calculation one has an expectation value

$$E_{\Psi} = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
$$= \sum_{I}^{N_{I}} \sum_{J}^{N_{I}} c_{I} c_{J} \langle J | H | I \rangle$$

- It is typically a $(N_{\rm I})^2$ calculations
- $|\Psi_{A+B}
 angle = |\Psi_A
 angle imes |\Psi_B
 angle$ contains $N_A imes N_B$ Slater determinants
- $\bullet\,$ Typically for practical QM calculation, $N_{A/B}\approx 10^6$
- Computing the variational energy of $|\Psi_{A+B}
 angle$ requires :
 - \blacktriangleright the storage of typically 10^{12} Slater determinants \bigcirc
 - 10²⁴ floating points operations ⁽²⁾
- Doesn't looks afordable

Projection methods

• Now these wave functions are written as :

$$\begin{split} |\Psi_A\rangle &= |\Psi_A^{(0)}\rangle + \sum_{i=S,D}^{N_{SD}^A} c_i^A |i_A\rangle + |\mathcal{R}_A\rangle, \quad |\Psi_B\rangle = |\Psi_B^{(0)}\rangle + \sum_{i=S,D}^{N_{SD}^B} c_i^B |i_B\rangle + |\mathcal{R}_B\rangle \\ \text{with} \quad \langle \Psi^{(0)} | H | \mathcal{R}_A\rangle &= 0 \end{split}$$

 ${\scriptstyle ullet}$ The energy can be computed by ${\it projection}$ of $\langle \Psi^{(0)}_{A/B}|$:

$$E_A = \langle \Psi_A^{(0)} | H | \Psi_A \rangle = \langle \Psi_A^{(0)} | H | \Psi_A^{(0)} \rangle$$
$$+ \langle \Psi_A^{(0)} | H \left(\sum_{i=S,D}^{N_{SD}^A} c_i^A | i_A \rangle \right)$$
$$\underline{\langle \Psi_A^{(0)} | H | \mathcal{R}_A \rangle}$$

Which is

$$E_A = E_{\Psi_A^{(0)}} + E_{\rm corr}^A$$

Projection methods

 $\bullet\,$ The wave function of $A\cdots B$ can also be written as :

$$\begin{split} |\Psi_{A+B}\rangle = &|\Psi_A^{(0)}\rangle \times |\Psi_B^{(0)}\rangle \\ &+ |\Psi_A^{(0)}\rangle \times \left(\sum_{i=S,D}^{N_{SD}^B} c_i^B |i_B\rangle\right) + |\Psi_B^{(0)}\rangle \times \left(\sum_{i=S,D}^{N_{SD}^A} c_i^A |i_A\rangle\right) \\ &+ \left(\sum_{i=S,D}^{N_{SD}^B} c_i^B |i_B\rangle\right) \times \left(\sum_{i=S,D}^{N_{SD}^A} c_i^A |i_A\rangle\right) \\ &+ \left(\sum_{i=S,D}^{N_{SD}^B} c_i^B |i_B\rangle\right) \times |\mathcal{R}_A\rangle + \left(\sum_{i=S,D}^{N_{SD}^A} c_i^A |i_A\rangle\right) \times |\mathcal{R}_B\rangle \end{split}$$

 ${\ensuremath{\bullet}}$ The zeroth-order wave function for $A \cdots B$ is

$$|\Psi_{A+B}^{(0)}\rangle = |\Psi_A^{(0)}\rangle \times |\Psi_B^{(0)}\rangle$$

Link with variational / projected method

 \bullet If we compute the energy by projection on $\langle \Psi^{(0)}_{A+B}|$ it gives

$$\begin{split} \langle \Psi_{A+B}^{(0)} | H | \Psi_{A+B} \rangle &= \left(\langle \Psi_{A}^{(0)} | \times \langle \Psi_{B}^{(0)} | \right) H \left(| \Psi_{A}^{(0)} \rangle \times | \Psi_{B}^{(0)} \rangle \right) (= E_{\Psi_{A}^{(0)}} + E_{\Psi_{B}^{(0)}}) \\ &+ \left(\langle \Psi_{A}^{(0)} | \times \langle \Psi_{B}^{(0)} | \right) H | \Psi_{A}^{(0)} \rangle \times \left(\sum_{i=S,D}^{N_{SD}^{B}} c_{i}^{B} | i_{B} \rangle \right) (= E_{\text{corr}}^{B}) \\ &+ \left(\langle \Psi_{A}^{(0)} | \times \langle \Psi_{B}^{(0)} | \right) H | \Psi_{B}^{(0)} \rangle \times \left(\sum_{i=S,D}^{N_{SD}^{A}} c_{i}^{A} | i_{A} \rangle \right) (= E_{\text{corr}}^{A}) \\ &+ \left(\langle \Psi_{A}^{(0)} | \times \langle \Psi_{B}^{(0)} | \right) H \left(\sum_{i=S,D}^{N_{SD}^{B}} c_{i}^{B} | i_{B} \rangle \right) \times \left(\sum_{i=S,D}^{N_{SD}^{A}} c_{i}^{A} | i_{A} \rangle \right) (= 0) \end{split}$$

• That's a $N^A_{SD} + N^B_{SD}$ CPU operation and storage !! \bigcirc