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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

balls in close contact

(high density case)
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

system oscillates forth and back
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

balls have larger distances

(low density case)
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

external perturbation
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

momentum transfer incomplete



Pendulum Coupled Drude oscillator RPA and RPA+X Green's function IP's & EA's

Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

collective motion damped

balls oscillating in random phases
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

reponse tends to average out to zero

for large number of particles
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Random-phase approximation

• Bohm and Pines: collective properties of the HEG (Phys. Rev. 82
(1951) 625, 85 (1952) 338, 92 (1953) 609)

• �nite 1-dim model of the HEG: Newtons pendulum:

external perturbation

momentum transfer

• RPA: in the high-density limit the (plasmon) modes can be decoupled
from the thermal random motions of the particles in the system and
the system can be described solely by collective motions
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Coupled quantum Drude oscillator
(T. Odbadrakh, K. Jordan, JCP 144 (2016) 034111)
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Coupled quantum Drude oscillator
(T. Odbadrakh, K. Jordan, JCP 144 (2016) 034111)

• CI using just the |00〉 and |11〉 con�guration gives:

E = 2ω − ωγ2

8k2
+

ωγ4

128k4
− . . .

which is exact only through 2nd order
• Adiabatic connection �uctuation-dissipation theorem:

Eint = − 1

2π

∫ ∞
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dν

∫
dx1

∫
dx2V̂ ×

(1
2
χ0V̂χ0 −
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3
χ0V̂χ0V̂χ0 + . . .

)
• Response function of noninteracting system for coupled Drude
oscillator (Hamiltonian real-valued, so need only real-valued
part):

χ0(x1, x2, iν) = −
∑
nm

2(Enm − E00)

(Enm − E00)2 + ν2
〈Ψ0|ρ̂(x1)|Ψnm〉〈Ψ0|ρ̂(x2)|Ψnm〉

with Enm = ω(n + 1
2

) + ω(m + 1
2

)
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Coupled quantum Drude oscillator

• Due to symmetry (orthogonality of harmonic oscillator wave
functions φ) Ψ11 = |11〉 can not contribute to the response
function (the same for all excited states Ψnm with
n 6= 0 ∧ m 6= 0). When all higher excited states are neglected
the response function reads

χ0(x1, x2, iν) = − 2ω

ω2 + ν2
(|01〉〈01|+ |10〉〈10|)

• E
(2)
int = − δ2

2ω ( γ
2ω = δ)

• E
(3)
int = 0 (since 〈01|V̂ |01〉 = 0 and 〈10|V̂ |10〉 = 0)

• E
(4)
int = −5

8
δ4

ω3

• E
(n)
int = −1·3·5·····(2n−3)

n(n−1)! · δn

ωn−1
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Coupled quantum Drude oscillator

• Why is this result exact, i.e., why do the oscillators not couple
in higher modes. Recall that the interaction matrix elements
all have to be of the type

〈0n|V̂ |m0〉 = 〈0n|γx1x2|m0〉
= γ〈0|x1|m〉〈n|x2|0〉

with m, n = 1, 2, . . . .
• Consider the matrix elements:

〈0|x |n〉 ∼
∫ ∞
−∞

dx H0(
√
ωx) · x · Hn(

√
ωx)e−ωx2 |

√
ωx → y

∼
∫ ∞
−∞

dy H0(y)Hn+1(y)e−y2 + (2n + 1)

∫ ∞
−∞

dy H0(y)Hn−1(y)e−y2

∼
√
πδ0,(n+1) + (2n + 1)

√
πδ0,(n−1)

∼ (2n + 1)
√
πδ0,(n−1)

which is zero for all n except n = 1.



Pendulum Coupled Drude oscillator RPA and RPA+X Green's function IP's & EA's

Coupled quantum Drude oscillator

• This means that the above given form of the response function
is su�cient if the interaction between the oscillators is a
coupled dipole-interaction.

oscillator 1 oscillator 2

0

1

oscillator 1 oscillator 2

0

1

• This means that in this system the oscillators can interact only
when they are 'in-phase' with each other. Since this actually is
the approximation usually made within the random phase
approximation, the RPA is exact for this particular model
system.
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Ring approximation

a

b
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k−l

polarisation propagator in the RPA

not described within the RPA:

hole line particle line

interaction

correlation energy  (Gell−Mann and Brueckner (1957))
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RPA correlation energy
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hole-hole interaction
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First−order amplitudes: Resolution−of−the−identity
technique:

two−electron integral:

Riccati equation:
(Sanderson (1965), Scuseria (2008))

RI approach to compute the amplitudes:
(A.H., PRA 85 (2012)  012517) 
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RPA correlation energy including exchange interactions
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energy difference to CCSD(T):

not described by RPAdescribed by RPA

(cancels EPV contribution)

second−order screened exchange:

(Grueneis, Kresse et al. (2009))
(SOSEX)

antisymmetrise during iterations:
(RPAX2) (A.H. (2012))

exchange contributions to correlation energy through 3rd order:

last diagram not described

by SOSEX
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Performance of Kohn-Sham RPA methods
reference determinant: PBE

reference: CCSD(T)/cbs
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Green's function method
(Szabo, Ostlund, Modern Quantum Chemistry, Dover Press, chapter 7)

• Solution to matrix equation

(ω1−H0)a = b

can be obtained by knowledge of the resolvent

G0(ω) =
1

ω1−H0
(G0(ω))ij =

∑

α

cαi c
α?
j

E − E
(0)
α

• Hartree-Fock Green's function

G0(ω) =
1

ω1− ε

with: ε: diagonal matrix containing the HF orbital energies

• Koopman's theorem: occupied HF orbital energies are
associated with the molecular ionisation energies and virtual
ones with the electron a�nities of the molecule
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Green's function for interacting many-body system

• Dyson equation:

G(ω) = G0(ω) + G0(ω)Σ(ω)G(ω)

=
1

ω1− ε−Σ(ω)

Σ(ω): self-energy matrix

• self-energy: εquasi particle − εbare particle = εself
bare particle

bare particle

= quasi particle

cloud
+

system particles
with opposite charge

+

+ +

+

++

particle 'interacts with itself' via the many-body system
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Green's function for interacting many-body system
• poles of the many-body Green's function correspond to the
'exact' ionisation energies and electron a�nities

• diagonal approximation:

ω = εi + Σii (ω)

• �rst-order solution:

ω = εi + Σii (εi )

• second-order self-energy contributions:

Σcorr
pq (ω) = −2

∑

i,a,b

(pa|jb)(jb|aq)
ω + εj − εa − εb

Σrelax
pq (ω) = −2

∑

i,j,b

(pi|jb)(jb|iq)
εi + εj − ω − εb

relaxation contribution

correlation contribution
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Correlation contribution to self-energy

Σcorr on the RPA level:
replace second-order amplitudes (associated with the neutral
system) by the RPA (RPAX2) amplitudes:

The correlation term Σcorr stabilses the neutral system relative to
the anion/cation. Correspondingly it

• leads to an increase of the ionisation energy

• reduces the electron a�nity
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Relaxation contribution to self-energy

Σrelx in second order:

Generate all time-forward ring-diagram contributiuons via:

which gives
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Relaxation contribution to self-energy

To take into account terms which include self-energy independet
fragments like

the equation above is modi�ed to

The relaxation contribution to Σ

• leads to a reduction of the ionisation energy

• increases the electron a�nity
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Static self-energy contributions
In third (and higher orders) the self-energy contains ω-independt
contributions of the form:

These describe the interaction of the extra electron with a nonlocal
correlation potential describing additional screening contributions
(to the HF potential).
Generalisation to the RPA:
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Quasiparticle energies of CO2

reference determinant: HF
electron correlation level: RPAX2

M
+

M
0

IP EA

correlation

−

M

relaxation
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Quasiparticle energies: comparison of methods
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Reference ionisation energies
GW27 set of molecules (M. van Setten et al., JCTC 9 (2013) 232)
(H2, Li2, F2, BF, H2O, NH3, SiH4, SF4, Au2,Au4, acetone, CH4, C4H10,

naphthalene, naphthacene, . . . )

structures: MP2/cc-pVTZ energies: CCSD(T)/cbs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

-0.5

0

0.5

1

1.5

2

∆
IP

 [
e
V

]

vertical

difference to experiment



Pendulum Coupled Drude oscillator RPA and RPA+X Green's function IP's & EA's

Reference ionisation energies
GW27 set of molecules (M. van Setten et al., JCTC 9 (2013) 232)
(H2, Li2, F2, BF, H2O, NH3, SiH4, SF4, Au2,Au4, acetone, CH4, C4H10,

naphthalene, naphthacene, . . . )

structures: MP2/cc-pVTZ energies: CCSD(T)/cbs
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Reference ionisation energies
GW27 set of molecules (M. van Setten et al., JCTC 9 (2013) 232)
(H2, Li2, F2, BF, H2O, NH3, SiH4, SF4, Au2,Au4, acetone, CH4, C4H10,

naphthalene, naphthacene, . . . )

structures: MP2/cc-pVTZ energies: CCSD(T)/cbs
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Reference ionisation energies
GW27 set of molecules (M. van Setten et al., JCTC 9 (2013) 232)
(H2, Li2, F2, BF, H2O, NH3, SiH4, SF4, Au2,Au4, acetone, CH4, C4H10,

naphthalene, naphthacene, . . . )

structures: MP2/cc-pVTZ energies: CCSD(T)/cbs
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Reference electron a�nities

GW27 set of molecules (M. van Setten et al., JCTC 9 (2013) 232)
(H2, Li2, F2, BF, H2O, NH3, SiH4, SF4, Au2,Au4, acetone, CH4, C4H10,

naphthalene, naphthacene, . . . )

structures: MP2/cc-pVTZ energies: CCSD(T)/cbs
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GW27: correlation & relaxation
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• 2nd order self-energy contribution overestimates relaxation
contribution to occupied and virtual energy levels

• RPA overestimates both, Σcorr and Σrelx

• ΣRPA
corr + ΣRPA

relx ≈ ΣRPAX2
corr + ΣRPAX2

relx

• the correlation contribution is less important relative to the
relaxation contribution for the unoccupied levels
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GW27: deviations to CCSD(T) reference energies

• blue bars: energy di�erence methods

• red bars: Green's function methods

• all methods: HF reference

• reference IP's and EA's: extrapolated CCSD(T)
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Summary

• RPA is exact for systems where incomplete momentum
transfers of particle interactions are negligible
examples: HEG at high density, coupled Drude oscillator with
dipole-dipole interaction

• for molecular systems RPA methods with additional exchange
interactions can signi�cantly improve the accuracy for
thermokinetic properties

• self-energy corrections to ionisation energies and electron
a�nities on the RPA and RPAX2 level are very similar because
the strong overestimation of the correlation contribution with
RPA is largely corrected by the relaxation contribution

• accuracies of IP's and EA's with RPA/RPAX2 are similar to
results using a 3rd-order propagator
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