Densities, NBOs, and Lewis Structures

Robustness of Lewis-like Concepts in the Computational Age

Clark R. Landis & Frank Weinhold

2012 Ab Initio VB Paris

"The nature of the chemical bond is the problem at the heart of all chemistry" Bryce Crawford, Jr. (1953)

"The more accurate the computations become, the more the concepts tend to vanish into thin air" R. S. Mulliken, J. Chem. Phys. 43, 52 (1965).

"It is at least arguable that, from the point of view of quantum chemistry as usually practiced, the supercomputer has dissolved the bond" B. T. Sutcliffe, Int. J. Quantum Chem. 58, 645 (1996)

"It is nice to know that the computer understands the problem. But I would like to understand it too." E. P. Wigner as quoted in E. J. Heller and S. Tomsovic, Physics Today (July 1993, p. 38)

Discovering Chemistry with NBOs

Valency and Bonding

A Natural Bond Orbital Donor-Acceptor Perspective

Discovering Chemistry with Natural Bond Orbitals

Frank Weinhold and Clark Land

Frank Weinhold Clark R. Landis

WILEY

NBO Translates Accurate Calculations into Chemical Insights

- Charges
- Lewis Structures
- Bond Types
- Hybrid Descriptors
- Bond Orders
- Charge Transfer
- Resonance Weights
- NMR Descriptors
- Steric Analysis
- (Natural) Energy Decomposition Analysis
- Bond Critical Points

How to describe the complex of an N-Heterocyclic carbene bonded to AuCl?

You run a quick Gaussian (or Jaguar, GAMESS, Orca, ADF, etc.) calculation with geometry optimization and quickly verify that the computation reproduces experiment. But what about the bonding?

One approach is to analyze canonical molecular orbital (CMO) coefficients and Mulliken populations and perhaps visualize the orbital shapes.

The NBO approach is to :

- create effective atomic orbitals for each atom in the molecular environment
- examine the bonding from a Lewis-like perspective
- quantify the primary donor-acceptor interactions using perturbation theory
- describe delocalizations through resonance configurations
- visualize interactions of localized lone pair, hybrid, bond, and antibond orbitals
- and so on...

(NHC)AuCl

(NHC)AuCI Canonical MOs

Homo Lumo	energy: energy:	-0.2359 -0.0404	93 45					H N ₃
0rbi -101. -9. -2. -0. -0.	tal ene 46464 37784 28786 68674 44770 29784	rgies: -14.38676 -7.13949 -2.28672 -0.68130 -0.43812 -0.29614	-14.38656 -7.13433 -1.05212 -0.58647 -0.43567 -0.29434	-10.29210 -7.13421 -0.93173 -0.54378 -0.41755 -0.28681	-10.26306 -4.16373 -0.81437 -0.52834 -0.32862 -0.26195	-10.26286 -2.31225 -0.72825 -0.49192 -0.32549 -0.23631		C ₂ —Au——Cl N ₁ H
-0. 0.	23593 .00183	-0.04045 0.01508	-0.03908 0.02385	-0.01938 0.02989	-0.00909 0.03162	-0.00481	9 H L 5 C 74H 3	3н
4 C 74H	1N 2 3 N 13 H							C-Au-Cl bond HOMO-10
919H 9 0 4 0 79H	6 H 1 N 2 C 3 N 13 H		+ • *	20 11 m 13H				
					U	LU		

(NHC)AuCl

(NHC)AuCI NBO Analysis

WISCONSIN

Summary of Natural Population Analysis: Н Natural Population Natural Charge Rydberg Atom No Core Valence Total (-)C 2 0.22582 1.99941 3.71769 0.05708 5.77418 CI Au 5.59195 Ν 3 -0.60891 1.99940 0.01756 7.60891 Au 11 0.36956 67.99429 10.60876 0.02738 78.63044 Cl 12 -0.63292 9.99994 7.62286 0.01012 17.63292 н Natural Electron Configuration Atom No [core]6s(0.97)5d(9.63)6p(0.01)7p(0.01) Au 11 [core]3s(1.96)3p(5.67)3d(0.01) Cl 12 (Occupancy) Bond orbital/ Coefficients/ Hybrids 1. (1.99010) BD (1) N 1- C 2 0.7958* N 1 s(38.53%)p 1.59(61.35%) (63.32%)(36.68%)0.6056* C 2 s(31.59%)p 2.16(68.29%) 2. (1.97386) BD (2) N 1- C 2 0.8993* N 1 s(0.00%)p 1.00(99.97%) (80.87%)0.4374* C 2 s(0.00%)p 1.00(99.59%) (19.13%)5. (1.99010) BD (1) C 2- N 3 0.6056* C 2 s(31.59%)p 2.16(68.29%) (36.67%)(63.33%)0.7958* N 3 s(38.54%)p 1.59(61.35%) 6. (1.95643) BD (1) C 2-Au 11 0.8662* C 2 s(37.14%)p 1.69(62.85%) (75.03%)(24.97%)0.4997*Au 11 s(80.71%)d 0.24(19.07%) SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS E(2) E(j)-E(i) F(i,j)Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. 37. LP (4)Cl12 221. BD*(1) C 2-Au11 134.79 0.42 0.214 Ab Initio VB Theory, Paris 2012: Clark Landis and Frank Weinhold

• Find orbitals and electron configurations for *atoms* in molecules

Natural Atomic Orbitals (NAOs) and Natural Population Analysis (NPA)

• Find Lewis structure, bonds and bond-forming orbitals

Natural Bond Orbitals (NBOs) and Natural Hybrid Orbitals (NHOs) and Natural Lewis Structures

• Describe departures from idealized Lewis structures

Natural Resonance Theory (NRT) and Natural Localized Molecular Orbitals (NLMOs)

Transformation Summary

Density Matrices of HF in different basis sets.

Ab Initio VB Theory, Paris 2012: Clark Landis and Frank Weinhold

HF

Solution Analysis: HF

Summary of N	Natural Popul	ation Analy	vsis:				
	No						
Atom No	Charge	Core	Valence	Rydberg	Т	otal	
F 1 - H 2	-0.54846 0.54846	1.99995 0.00000	7.54234 0.44626	0.00617 0.00528	9. 0.	54846 45154	
* Total *	0.00000	1.99995	7.98860	0.01145	10.	00000	
		No	ation 		Contra	action from 22	
Core Valence Natural M Natural R	Minimal Basis Rydberg Basis	1.999 7.988 9.988 0.011	95 (99.997 60 (99.857 55 (99.885 45 (0.114	3% of 2) 5% of 8) 5% of 10) 5% of 10)		AO ba NAOs electr	sis functions to 6 describes 99.89% of on density (this
Atom No	Natu	ral Electro	on Configura	tion		numb trace	er comes from the of the Cor and Val
H 2	lcorejzs 1s	(0.45)	5.05)			in the	NAO basis, divided
Natural Cha	rges:					by the	e total e count)

weak dependence on basis set

WISCONSIN

rigorous treatment of overlaps avoids many problems that

plague other population analyses

S Natural Lewis Structures - HF

ATURAL E	BOND ORBITA	L ANALYS	IS:								
	066	0ccu	pancies	Lewi	s St	ruct	ure	Low	High		
Cycle	Thresh.	Lewis	Non-Lewis	CR	BD	3C	LP	(L)	(NL)	Dev	
1(1)	1.90	9.99523	0.00477	1	1	0	3	0	0	0.00	
Structure accepted: No low occupancy Lewis orbitals Is HF well-described a single bond with 3								ed as 3 lone			
Core Valeno	ce Lewis		1.99995 (7.99528 (99.997 99.941	% of % of	2 8)	pairs	on F?		
Total	Lewis	= :	9.99523 (99.952	==== % of	10	==)	The N	IAO →	→ NBO t	ransformatio
Valeno Rydber	ce non-Lewi rg non-Lewi	S S	0.00000 (0.00477 (0.000 0.048	 % of % of	10 10))	locate	es 1 cc	ore (CR) pair of
Total	non-Lewis		0.00477 (0.048	 % of	 10)		UIIS, 1	. []-F D(אוע (סט), anu

These natural bond orbitals account for 99.95% of the total electron density.

Solution Nature of Lone Pairs in HF

(Occupancy) Bond orbital/ Coeff	icients/ Hybrids	
1. (2.00000) BD (1) F 1- H 2 (77.66%) 0.8813*	F 1 s(20.39%)p 3.90(79.49%)d 0.01(0.12%) 0.0000 -0.4506 0.0287 0.0000 0.0000	
sp ^{3.9} hybrid	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8912 -0.0274 -0.0019 0.0000 0.0000 0.0000 0.0000	Useful relations
(22.34%) 0.4726*	H 2 s(99.88%)p 0.00(0.12%) -0.9994 0.0000 0.0000 0.0000 0.0000 0 0000 -0 0341	$h_{A} = \frac{1}{\sqrt{1+\lambda}} \left[s_{A} + \sqrt{\lambda} p_{A} \right]$
3. (1.99939) LP (1) F 1	s(79.68%)p 0.25(20.31%)d 0.00(0.00%) 0 0000 0.8926 0 0112 0 0000 0 0000	sp^{λ} hybrid orbitals
sp ^{0.25} hybrid	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4506 -0.0074 0.0045 0.0000 0.0000 0.0000 0.0000	%p = 100% $\frac{\lambda}{1+\lambda}$
4. (1.99795) LP (2) F 1	0.0000 -0.0041 s(0.00%)p 1.00(99.98%)d 0.00(0.02%) 0.0000 0.0000 0.0000 0.0000 0.0000 0 9998 0 0112 -0 0003 0 0000 0 0000	%s = $100\% \frac{1}{1+\lambda}$
p _x	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0156 0.0000 0.0000 0.0000	
5. (1.99795) LP (3) F 1	s(0.00%)p 1.00(99.98%)d 0.00(0.02%)	
py	0.0000 0.0000 0.0000 0.0000 0.0000 0.0112 -0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0156 0.0000 0.0000	

Polarity and Ionicity

For a 2c/2e bond between atoms A and B, the form of the NBO is:

 $\sigma_{AB} = c_A h_A + c_B h_B$

where c_A and c_B are *polarization coefficients*

The polarity of the NBO is succinctly described by the *natural ionicity* parameter, i_{AB}

$$i_{AB} = \frac{C_A^2 - C_B^2}{C_A^2 + C_B^2}$$

This parameter smoothly varies from i_{AB} = -1 (c_A = 0, pure ionic hybrid on atom B) to i_{AB} = -0 (purely covalent) to i_{AB} = +1 (c_B = 0, pure ionic hybrid on atom A)

	(0	ccupancy) Bond or	bital/ Coef	ficients/ Hybr	ids			
_	1. (2.00000) BD (1) F	1-H2					
1	$00\% \times c_A^2$	(77.66%)	0.8813* F 0 4726* H	1 s(20.39%)p 2 s(99 88%)p	3.90(0.00(79.49%)d 0.12%)	0.01(0.12%)
1	$00\% \times C_B^2$				0.000	0.12/09		

For HF: *i*_{AB}=0.554 polar but far removed from the ionic limit In NBO searches, natural ionicities of |*i*_{AB}|>0.95 result in an ionic Lewis structure

Bent's Rule and Natural Electronegativity

Henry Bent formulated a remarkable rule correlating electronegativity with orbital hybridizations:

A central atom tends to direct hybrids of higher p-character (greater λ) toward more electronegative substituents. or equivalently, Atomic s-character (lower λ) tends to accumulate in hybrids directed toward the least electronegative substituents

Least electronegative substituent = vacuum => lone pairs tend to high s-character

Bent's rule suggests that

electronegativities can be determined from NBO polarizations.

Two useful equations:
$$i_{AH} = 1 - \exp[-0.45(\Xi_A - \Xi_H)]$$

$$\Xi_A = \Xi_H - \frac{\ln(1 - i_{AH})}{0.45}$$
For HF, $\Xi_F - \Xi_H = -\ln(1 - 0.556)/0.45 = 1.80$
(Pauling $\Xi_F - \Xi_H = 3.98 - 2.2 = 1.78$)

Symmetry about Group 6 \rightarrow 12e rule

(b)

?

PtO

PtCl₂

11 12

AuR

Au₂O

AuCl

Symmetry about Group $14 \rightarrow 8e$ rule

(a)

Transition Metal Complexes

Common ML_n **stoichiometries** (chem. supply catalog, \$, quantity)

Compositional Symmetry about Group 6 \rightarrow 12e rule

CsH	BaH ₂	LaR ₃	HfMe ₄	TaMe₅	WMe ₆	ReMe ₆	OsR ₄	IrR ₃	?	AuR
Cs ₂ O	BaO	La ₂ O ₃	HfO ₂	Ta ₂ O ₅	WO ₃	Re ₂ O ₇	OsO ₂	Ir ₂ O ₃	PtO	Au ₂ O ₃
CsCl	BaCl ₂	LaCl ₃	HfCl ₄	TaCl₅	WCl ₆	ReCl ₅	OsCl ₃	IrCl ₃	PtCl ₂	AuCl

Duodectet Rule (Rule of 12)

Lewis-like structures using one s + five d orbitals for valence

 sd^{μ} hybrid orbitals

negligible p-character In metal bonding

$$h_{M} = \frac{1}{\sqrt{1+\mu}} \left[s_{M} + \sqrt{\mu} d_{M} \right]$$

Lewis Structures for the D-Block

• Begin with a Lewis Structure

s and d orbitals dominate bonding: 12 e⁻ rule

- Determine Hybridizations
 - Lone pairs: pure d

 σ bonds: sdⁿ⁻¹ where n= # of sigma bonds

- π bonds: pure d
- Structure: The best geometry is that which minimizes overlap of bonding orbitals (lone pairs only occupy d-orbitals)

Crigin of 4 Minima for WH₆

Only four arrangements of 6H's on the vertices of an icosahedron avoid trans arrangements For sd^{μ} hybrids, orthonormality condition

$\mu =$	$\sqrt{\mu_1 \mu_2}$
sd ⁵	63°,117°
sd ⁴	66°,114°
sd ³	71°,109°
sd ²	90°
sd1	90°

 WH_{6}

How "true" are sd^µ hybrids? 12 e MH_n

Table 4.5. The NBO descriptors of group 6–11 MH_n metal hydrides of the third transition series, showing the percentage accuracy ($\%\rho_L$) of the Lewis-like description (valence shell and total), metal hybrid (h_M), percentage polarization toward M ($100c_M^2$), and occupancy of bonding σ_{MH} NBOs (see Fig. 4.8).

	%ρ	Ľ		σ_{M}	н		
MH_n	Valence	Total	h _M	$100c_{\rm M}^2$	Occupancy (e)	(No.)	
WH ₆	97.40	99.56	sd ^{6.35} sd ^{3.98}	49.76 42.36	1.9201 1.9759	(3) (3)	sd ⁵
ReH ₅ (C _s)	98.31	99.70	sd ^{3.07} sd ^{4.59} sd ^{3.98}	48.28 52.68 46.72	1.9876 1.9140 1.9856	(1) (2) (2)	sd ⁴
$OsH_4(T_d)$ $OsH_4(C_{3v})$	99.93 98.83	99.95 99.78	$sd^{2.97}$ $sd^{2.66}$ $sd^{3.10}$	48.56 55.80 50.48	1.9981 1.9191 1.9808	(4) (4)	sd ³
IrH ₃ PtH ₂ AuH	99.41 99.31 99.93	99.87 99.87 99.98	sd ^{2.01} sd ^{1.21} sd ^{0.20}	52.68 54.22 49.40	1.9768 1.9622 2.0000	(3) (2) (1)	sd² sd¹ s
	high ac	curacy	hi	gh cova	lency		

(*i_{MH}*≈0 apolar)

near-ideal hybridization

5 Where are the lone pairs on IrMe₃?

NATURAL BOND ORBITAL ANALYSIS:											
	0.55		Occupancies		s St	ruct	ure	Low	High		
Cycle	Thresh.	Lewis	Non-Lewis	CR	BD	3C	LP	(L)	(NL)	Dev	
1(1)	1.90	103.69240	0.30760	7	12	0	3	0	0	0.04	
Effect Core Valend	tive Core ce Lewis		60.00000 13.96311 29.72929	(99.736 (99.098	 % of % of	 14 30	·)))				
Total	Lewis		103.69240	(99.704	==== % of	104					

Rapid convergence to single Lewis structure With 3 Ir LPs and 3 Ir-C σ bonds (sd^{2.20})

IrMe₃

HW-WH Multiple bonds in abundance ! 3

Wisconsin

 W_2H_2

IrOMe₃

S OIrMe₃: Single, Double, or Triple Ir-O?

Effective Core Core Valence Lewis ============= Total Lewis Valence non-Lewis Rydberg non-Lewis	60.00000 15.96480 (99.780% of 35.12384 (97.566% of 111.08864 (99.186% of 1 0.85035 (0.759% of 1 0.06101 (0.054% of 1	16) 36) ==== 12) 12) 12)	NBO conve structure w but notice the O pπ lp deficiency of	rges on a Lewis /ith Ir-O <i>single</i> bond the low occupancy of /s and the 0.82 e
Total non-Lewis	0.91136 (0.814% of 1	==== 12) 	density.	
(occupancy) Bond on 1. (1.97623) BD (1)Ir (40.20%) (59.80%) 2. (1.96204) BD (1)Ir (46.37%) (53.63%) 24. (1.97183) LP (1) 0	1-02 0.6341*Ir 1 s(14.19%)p 0.7733* 0 2 s(9.77%)p 1- C 3 0.6810*Ir 1 s(28.66%)p 0.7323* C 3 s(18.49%)p 2 s(90.23%)p	0.02(0.24%)d 9.22(90.11%)d 0.00(0.09%)d 4.40(81.41%)d 0.11(9.77%)	6.03(85.58%) 0.01(0.12%) 2.49(71.24%) 0.01(0.10%) d 0.00(0.00%)	Me ^{lr} "Me Me
25. (1.73076) LP (2) 0 26. (1.72995) LP (3) 0 22. (1.96962) LP (1)Ir 23. (1.96957) LP (2)Ir	2 s(0.00%) 1 s(0.00%) 1 s(0.00%)	1.00(99.96%) 1.00(99.96%) 1.00(0.04%) 1.00(0.04%)	d 0.00(0.04%) d 0.00(0.04%) d99.99(99.96%) d99.99(99.96%)	Ir-O bonds have more d-character than Ir-C bonds.

Solution Open Shell Lewis Structures - O2

Just as UHF calculations have DODS - Different Orbitals for Different Spins NBO analysis of α - and β -densities yields

DLDS - Different Lewis Structures for Different Spins

	α spin	β spin						
occ.	α-ΝΒΟ	occ.	β-NBO					
1.0000(1)	$\sigma_{OO} = 0.71(sp^{4.10})_1 + 0.71(sp^{4.10})_2$	1.0000(1)	$\sigma_{\rm OO} = 0.71({\rm sp}^{3.53})_1 + 0.71({\rm sp}^{3.53})_2$					
0.9994(2)	$n_0^{(\sigma)} = (sp^{0.22})_{1,2}$	1.0000(2)	$\pi_{\rm OO}^{({\rm x},{\rm y})}\!=\!0.71(p_{{\rm x},{\rm y}})_1\!+\!0.71(p_{{\rm x},{\rm y}})_2$					
0.9975(4)	$n_{O}^{(x,y)} = (p_{x,y})_{1,2}$	0.9990(2)	$n_0^{(\sigma)} = (sp^{0.26})_{1,2}$					

 O_2

5 For Every Bond an Antibond

Analysis of Delocalization: Formamide

SECOND ORDER PERTUR	RBATION THEORY ANALYSIS	OF FOCK MATRI	X IN NBO) BASIS	2 e donor-ąc <u>cepto</u> r Perturba	tion
		E(2) E	(j)-E(i)) F(i,j)	Antibond or LI) *
Donor NBO (i)	Acceptor NBO (j)	kcal/mol	a.u.	a.u.		L)
=======================================				=====		
10. LP (1) N 1	85. BD*(1) C 2- O 3	59.58	0.29	0.117		
11. LP (1) 0 3	30. RY*(1) C 2	13.32	1.83	0.139		
11. LP (1) 03 11. LP (1) 03	31. KY*(2) (2 45 RY*(16) (2	1.32	1.88	0.044 0.054	Bond on LP	
11. LP (1) 0 3	50. RY*(4) 0 3	0.53	1.84	0.028		
11. LP (1) 0 3	53. RY*(7) 0 3	0.50	1.80	0.027	$\epsilon_1^{(L)}$	
11. LP (1) 0 3	82. BD*(1) N 1- C 2	1.29	1.14	0.035	$ \qquad \downarrow \qquad $	
11. LP (1) 03 12 LP (2) 03	87. BD*(1) (2-H6	0.99	1.04	0.029		
12. LP (2) 0 3	34. RY*(5) C 2	0.54	2.56	0.035	ϵ_{-}	
12. LP (2) 0 3	82. BD*(1) N 1- C 2	23.52	0.71	0.117		
12. LP (2) 0 3	87. BD*(1) C 2- H 6	22.03	0.60	0.105	$\Delta E_{ij}^{(2)} = (2) F_{ij} ^{2} / (\epsilon_j^{(NL)} - \epsilon_i^{(L)})$	
Donor	Acceptor	Overlap			More generally, the occupancy	(a)
					of the NDO	(Yi)
					of the NBO	
			Est	imate d	donor-acceptor matrix elemen	nt
			by		ovorlan	
			IJУ			
				image ma appears,	nay have been corrupted. Restart your computer, and then open the file again. If the red x still you may have to delete the image and then insert it again.	
					r(2)	
			IN.I	B. The	E ⁽²⁾ Values appear large becau	se
			the	v do n	not include steric terms	
			CIIV	-,		

Resonance and Arrow Pushing

LP (1) N 1 BD*(1) C 2- 0 3 59.58 kcal/mol

LP (2) 0 3 BD*(1) N 1- C 2 23.52 kcal/mol

$$n_{O}^{(y)} \rightarrow \sigma^{*}_{CH} : \begin{array}{c} H & \ddot{O}^{+} \\ \ddot{N} - C \\ H & H \end{array}$$

$$LP(2) 0 3 \quad BD^{*}(1) C 2 - H 6 \quad 22.03 \text{ kcal/mol}$$

Strong delocalizations imply significant contributions from other resonance structures π delocalizations - conjugation σ Delocalizations - hyperconjugation

IrOMe₃

Delocalizations and Occupancy Shifts

(Occupancy) Bond orbital/ Coefficier	nts/ Hybrids
25. (1.73076) LP (2) 0 2 26. (1.72995) LP (3) 0 2	s(0.00%)p 1.00(99.96%)d 0.00(0.04%) s(0.00%)p 1.00(99.96%)d 0.00(0.04%)
184. (0.22732) BD*(1)Ir 1- C 3 (53.63%) 0.7323*Ir	1 s(28.66%)p 0.00(0.09%)d 2.49(71.24%)
(46.37%) -0.6810* (185. (0.22732) BD*(1)Ir 1- C 7 (53.63%) 0.7323*Ir	3 s(18.49%)p 4.40(81.41%)d 0.01(0.10%) 1 s(28.66\%)p 0.00(0.09%)\text{d} 2.49(71.24\%)
(46.37%) -0.6810* C 186. (0.22737) BD*(1)Ir 1- C 11	7 s(18.49%)p 4.40(81.41%)d 0.01(0.10%)
(53.63%) 0.7323*Ir (46.37%) -0.6810* C 1	1 s(28.66%)p 0.00(0.09%)d 2.49(71.25%) L1 s(18.48%)p 4.41(81.42%)d 0.01(0.10%)

Me

Me

Natural Localized MOs (NLMO)

The delocalization of Lewis NBOs into non-Lewis NBOs creates symmetric and antisymmetric combinations with a small mixing coefficient (t_{ii})

$$\tilde{\Omega}_{i}^{(L)} = (1 - t_{ij}^{2})^{2} \Omega_{i}^{(L)} + t_{ij}^{2} \Omega_{j}^{(NL)}$$

$$\tilde{\Omega}_{j}^{(\text{NL})} = (1 - t_{ij}^2)^2 \Omega_{j}^{(\text{NL})} - t_{ij}^2 \Omega_{i}^{(\text{L})}$$

Or more generally over many delocalizations as

$$\tilde{\Omega}_{i}^{(L)} = t_{ii}\Omega_{i}^{(L)} + \sum_{j}^{NL} t_{ij}\Omega_{j}^{(NL)} , i = 1, 2, ..., N/2$$
$$\tilde{\Omega}_{j}^{(NL)} = t_{jj}\Omega_{j}^{(NL)} + \sum_{i}^{L} t_{ji}\Omega_{i}^{(L)} , j = N/2 + 1, ...$$

This mixing produces exactly doubly occupied Natural Localized Molecular Orbitals (NLMOs) that are *unitarily equivalent* to Canonical Molecular Orbitals (CMOs). NLMOs are equaly valid to CMOs as descriptors of the density and, thus, all computed observable properties.

NLMOs are the *least delocalized* orbitals that are unitarily equivalent to CMOs.

		de the MD	o hania.							
NATURAL LOCALIZED MOLECULAR ORBITAL (NLMO) ANALYSIS:	NLMOS	in the NB	o basis:							
Maximum off-diagonal element of DM in NLMO basis: 0.99147D-10		NBO	1	2	3	4	5	6	7	8
Hybridization/Polarization Analysis of NLMOs in NAO Basis:	1.	N 1- C 2	0.9992	-0.0003 -	0.0003	0.0000	0.0000	-0.0002	0.0000	0.0001
NLMO/Occupancy/Percent from Parent NBO/ Atomic Hybrid Contributions	2.	N 1- H 4	-0.0011	0.9978	0.0005	0.0000	0.0002	-0.0001	0.0003	0,0001
	3.	№ 1- Н 5	0.0011	0.0016	0.9980	0.0000 -	-0.0001	0.0003	0.0004	0.0000
1. (2.00000) 99.8363% BD (1) N 1- C 2	4.	C 2- O 3	0.0000	0.0000	0.0000	0.9995	0.0000	0.0000	0.0000	0.0000
62.004% N 1 s(38.56%)p 1.59(61.34%)d 0.00(0.10%)	5.	C 2- O 3	-0.0002	-0.0001 -	0.0001	0.0000	0.9992	0.0003	0.0000	-0,0001
37.864% C 2 s(33.01%)p 2.03(66.87%)d 0.00(0.12%)	6.	С 2- Н 6	0.0008	0.0003	0.0006	0.0000	0.0015	0.9959	-0.0001	-0.0001
0.071% O 3 s(6.27%)p14.77(92.69%)d 0.17(1.04%)				0.0000		0.0001	0.0000	0 0000	0 0000	0 0000
0.013% H 4 s(75.65%)p 0.32(24.35%)	10,	N 1 (1p)	0.0000	0.0000	0000	0.0001	0.0000	0.0000	0.0000	-0.0004
0.012% H 5 s(73.57%)p 0.36(26.43%)	11.	0 3 (1p)	0.0005	-0.0014	-9.0002	0.0000 -	-0.0003	-0.0039	-0.0002	-0.0004
0.036% H 6 s(98.35%)p 0.02(1.65%)	12.	03(Ip)	0.0032	0.0114	.0015	0.0000	0.0005	-0.0038	-0.0008	-0.0005
12. (2.00000) 92.5780% LP (2) O 3	82.	N 1- C 2*	0.0000	-0.0066 ·	0.0052	0.0000 ·	-0.0150	0.0238	-0.0010	-0,0005
1,292% N 1 s(66.44%)p 0.50{ 33.05%}d 0.01{ 0.50%}	83.	N1-H4*	-0.0031	0.0000	0.0007	0.0000	0.0108	-0.0722	-0.0005	-0.0021
3.787% C 2 s(1.46%)p64.45(94.17%)d 2.99(4.37%)	84.	N 1-H 5*	-0.0065	0.0006	0.0000	0.0000	-0.0260	0.0106	-0.0003	-0.0038
92.578% 0 3 s(0.01%)p 1.00(99.91%)d 0.00(0.09%)	85.	C 2- O 3*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.086% H 4 s(98.90%)p 0.01(1.10%)	86.	C 2- O 3*	-0.0165	-0.0267	0.0474	0.0000	0.0000	-0.0075	-0.0023	0.0013
0.294% H 5 s(99.85%)p 0.00(0.15%)	87.	С 2- Н 6*	-0.0153	-0.0450	0.0165	0.0000	0.0064	0.0004	0.0010	0.0015
1.962% H 6 s(99.58%)p 0.00(0.42%)										

NLMO 1: $\tilde{\sigma}_{CN} = 0.9992 \sigma_{CN} - 0.0165 \sigma_{CO}^* - 0.0153 \sigma_{CH}^* - ...$

NLMO 2: $\tilde{\sigma}_{\text{NH(s)}} = 0.9978 \sigma_{\text{NH(s)}} - 0.0450 \sigma_{\text{CH}}^* - 0.0267 \sigma_{\text{CO}}^* - \dots$

IrOMe₃

Partial multiple Ir-O bond character arise from O LP to Ir-C σ^* delocalizations This means that the C₃ symmetry of IrMe₃ is retained.

\$CHOOSE an Alternate Lewis Structure


```
#N b3lyp/6-311++g** NoSymm POP=NBODel IOP(5/48=10000)
H2NCHO deletion
0 1
N
C 1 1.361
0 2 1.212 1 124.90
H 1 1.009 2 119.42 3 0.00
H 1 1.007 2 121.45 3 180.00
H 2 1.107 1 112.44 4 180.00
$NBO file=h2ncho $END
$DEL
delete 1 element 10 85
$END
```

In this example we delete the $F_{10,85}$ element of the Fock matrix in the NBO basis. This element is: N LP \rightarrow C-O π^* Would formamide be planar if the N LP to π^* C=O delocalization were eliminated?

A unique feature of the NBO program Is the ability to *selectively delete elements of the Fock matrix* (F_{ij}) and perform *reoptimizations* with this deletion.

Here is an input file for deleting the matrix element using Gaussian 03.

Special Features of \$DELete

- Requires intimate linking (NBO linked
- to ESS) with ab initio program
- POP=NBODel is required
- Turn off symmetry (NoSymm)
- IOP only needed for initial release of G03

5 \$DELete N LP → C-O π*: Occupancy

Deletion of the following NBO Fock matrix elements:

10, 85;

Orbital occupancies:

Orbital	No deletions	This deletion	Change
1. BD (1) N 1- C 2	1.99673	1.99673	0.00000
2. BD (1) N 1- H 4	1.99130	1.99130	0.00000
3. BD (1) N 1- H 5	1.99200	1.99200	0.00000
4. BD (1) C 2- O 3	1,99816	1.98933	-0.00883
5. BD (2) C 2- O 3	1.99684	1.99684	0.00000
6. BD (1) C 2- H 6	1.98379	1.98379	0.00000
7. CR (1) N 1	1,99949	1.99949	0.00000
8. CR (1) C 2	1.99961	1.99961	0.00000
9. CR (1) O 3	1.99976	1.99976	0.00000
10. LP (1) N 1	1.75091	1.98942	0.23851
11. LP (1) O 3	1.98437	1.98437	0.00000
12. LP (2) O 3	1.85188	1.85188	0.00000
82. BD*(1) N 1- C 2	0.06363	0.06363	0.00000
83. BD*(1) N 1- H 4	0.01244	0.01244	0.00000
84. BD*(1) N 1- H 5	0.00842	0.00842	0.00000
85. BD*(1) C 2- O 3	0.24274	0.00912	-0.23362
86. BD*(2) C 2- O 3	0.00660	0.00660	0.00000
87. BD*(1) C 2- H 6	0.07204	0.07204	0.00000

Gaussian has rediagonalized the modified Fock matrix and obtained a new density matrix. NBO analysis of the density (pre- and post-deletion) is shown to the left as NBO occupancies .

What is the result of our deletion?

To transfer, density out of C-O π^* and back to N LP!

SDELete N LP \rightarrow C-O π^* : Energy

NEXT STEP:	Evaluate the energy of the new d	ensity matrix
	that has been constructed from t	he deleted NBO
	Fock matrix by doing one SCF cyc	le.
Requested c	onvergence on RMS density matrix=	1.00D-04 within 1 cycles.
Requested c	onvergence on MAX density matrix=	1.00D-02.
Requested c	onvergence on energy=	1.00D-02.
No special	actions if energy rises.	
Keep R1 int	egrals in memory in canonical for	m, NReq= 9267406.
	Convergence criterion not met.	
SCF Done:	E(RB+HF-LYP) = -169.856275512	A.U. after 2 cycles
	Convg = 0.6106D-02	-V/T = 2.0006
	S**2 = 0.0000	
Energy of	deletion : -169.856275512	
Total S	CF energy : -169.954780172	
Ener	cov change : 0.098505 a.u	1., 61.813 kcal/mol

Gaussian has rediagonalized the modified Fock matrix in one cycle (so we don't revert to original density)

Ignore the Convergence warning!

What is the result of our deletion?

An *increase* in energy (we deleted a stabilizing interaction) by 61.8 kcal/mol

Does this make sense? Recall previous perturbative estimate:

SECOND ORDER PERTURBATION THEORY ANALY Threshold for printing: 0.50 kc	YSIS OF FOCK MATRIX IN NBO BASIS cal/mol
Donor NBO (i) Acceptor NBO (E(2) E(j)-E(i) F(i,j) (j) kcal/mol a.u. a.u.
10. LP (1) N 1 85. BD*(1) C 2-	0 3 59.58 0.29 0.117

Will the perturbative estimates always be close to the deletion results?

Beoptimize with ALL F(NBO,*) \$DELeted

#b3lyp/6-311++G** pop=nbodel nosymm opt

\$delete/nostar optimization of formamide

```
01
n
c 1 cn
o 2 co 1 nco
h 1 nh 2 cnh 3 ocnh
h 1 nhp 2 cnhp 3 ocnhp
h 2 ch 1 nch 4 hnch
 cn 1.26
 co 1.11
nco 134.
nh 1.09
 cnh 129.
ocnh 10.
nhp 1.01
 cnhp 121.
ocnhp 158.
 ch 1.10
nch 112.
hnch 160.
$NBO PRINT=0 $END
$DEL
NOSTAR
$END
```

Required elements for this job:

- •pop=nbodel, nosymm, opt
- •Z-matrix with symbolic names (no more than 50 variables)
- \$DEL and \$END bracketing the requested delentions)
- •Patience! All derivatives are computed numerically

The result is dramatic!

```
C-N 1.57(1.26)Å
C-O 1.35(1.11)Å
C-H 1.04(1.10)Å
C-N-H 102(129)°
C-N-O 104(134)°
N-C-H 146(112)°
```


Natural Resonance Theory (NRT)

The foregoing suggests that multiple resonance structures contribute to the full description of formamide and $IrOMe_3$. In the spirit of NBO analysis, optimal resonance structures are those that, in combination, best account for the true density ($D^{(true)}$). $D^{(true)} = \sum w_a D_a$

NATURAL RESONANCE THEORY ANALYSIS: Maximum reference structures : 20 Maximum resonance structures : 1439 9927226 available 9917757 words of Memory requirements : 5 candidate reference structure(s) calculated by SR LEWIS 5 candidate reference structures. Total of 7 bonding pattern(s); all but 3 were discarded Initial loops searched 1: rho*=0.45516, f(w)=0.93270 converged after 26 iterations Reference 2: rho*=0.73148, f(w)=0.95934 converged after 21 iterations Reference Reference 3: rho*=0.97867, ionic; deleted Multi-ref(2): D(W)=0.07563, F(W)=0.11941 converged after 214 iterations fractional accuracy f(w) non-Lewis d(0) all NBOs val+core valence density Ref Wgt 0.94991 0.66505 0.45516 0.04199 0.93270 0.94988 1 0.95934 0.96773 0.96774 0.33495 0.73148 0.08125 2

 $\sum w_{\alpha} \mathbf{D}_{\alpha}^{(L)}$ $\mathbf{D}^{(\text{true})} =$ α

Use the keyword NRT to request this analysis. Initial output for formamide shows:

5 initial candidates, settling on 2 F(w) is the fractional improvement: 0 = no improvement 0.5 = error halved 1 = infinitely better

Multicenter 3c/4e "Hyperbonding" (ЗСНВ)

#B3LYP/6-311++G** SCF=TIGHT POP=NBORead
F3(-), E=-299.5209374
-1 1 $(F(2))$ 1.745 Å $(F(1))$ 1.745 Å $(F(3))$
F C
x 1 1.0
F 1 dist 2 90.
F 1 dist 2 90. 3 180.
dist 1.7448 Looks for 3c/4e bonds \$NBO file=F3_m 3CHB NRT \$END
\$NRTSTR
STR1 ! omega F(2): F(1)-F(3)
LONE 1 3 2 4 3 3 END
BOND S 1 3 END
END
STR2 ! omega F(2)-F(1) :F(3)
LONE 1 3 2 3 3 4 END
BOND S 1 2 END
END
STR3 ! lambda F(2)-F(3) :F(1)
LONE 1 4 2 3 3 3 END
BOND S 2 3 END
END
\$END

Too many electrons for normal Lewis valence space = Hypervalent

Where do they go? Coulson recognized that F_3^- does not exceed valence counts as fragments shown below in general form:

$$L: \dots A \dots : L' \qquad \begin{array}{c} L: + A: L' \\ I \\ L: A + : L' \\ II \end{array}$$

Resonance between structures I and II gives rise to an ω -bond

In principle, another resonance contributor is the Harcourt "Long-bond" or $\hat{\sigma}\text{-bond}$

 F_3^{-1}

3c/4e ω-Bond is a Donor-Acceptor Bond

3-Center, 4-Electron A:-B-:C Hyperbonds (A-B :C <=> A: B-C)								
(threshold for detection: 33.3%)								
					,			
			NBO:	s .	3-cen	ter hy	brids	
Hyperbond A:-B-:C	%A-B/%B-C	occ.	BD (A-B)	LP (C)	h (A)	h (B)	h (C)	
1. F 2:- F 1-: F 3	50.5/49.5	3.9865	1	14	1	2	15	

TOPO r	natr	ix f	or	the	le	ad	ing	, r	es	ona	nce	e e	tr	uc	tυ	ire	:		
А	tom	1	2	3						÷									
					-														
1.	F	3	1	0															
2.	F	1	3	0											,				
З.	F	0	0	4						,									
RS	F	lesor Jeigh	ianco it (%	e }							Ā	dde	ed ((Re	mc	ove	d)		
				, 															
1*		43.	55							÷									
2*		43.	55	(F	1-	F	2)	,	F	1-	F	з,		F	2,	(F	3)
3*		12.	90	(F	1-	F	2)	,	F	2-	F	з,		F	1,	(F	3)

3c/4e ω-Bond is a Donor-Acceptor Bond

The lone pair of an F⁻ donates into the F-F antibond

$n_{\rm F} \rightarrow \sigma^*_{\rm FF}$ (133.8 kcal/mol)

w-bond "long"-bond

Summary NRT Output: 3c/4e Bond

Natur	al F	Bor	d Order	:: (tot	al/	covale	ent/io	onic)
,	tom		,	2		3		
	COIL		-	-		5		
-								
1.	F	t	3.1290	0.4355	0.4	355		
		С		0.2320	0.2	2320		
		i		0.2035	0.2	2035		
2.	F	t	0.4355	3.4355	0.1	1290		
		с	0.2320		0.3	1290		
		i	0.2035		0.0	0000		
з.	F	t	0.4355	0.1290	3.4	1355	-	
		c	0.2320	0.1290				
		i	0 2035	0.0000				
		-		0.0000				
Natu	ral)	Ato	omic Val	lencies	:			
				Co-		Elect	ro-	
2	Atom	1	Valency	Valen	су	Valen	су	
1.	F		0.8710	0.46	39	0.40	71	
2.	F		0.5645	0.36	10	0.20	35	
з.	F		0.5645	0.36	10	0.20	35	

Main Points: F1-F2 bond order ~ 0.5 (ca. 50% covalent)

F2-F3 bond order ~ 0.13 (100% covalent)

The standard chemical valency of F=1 is NOT exceeded

This is the resonance equivalent of the Pimentel-Rundle 3c/4e bond.

Trihalides, NRT, and Ab Initio VB

Density-based resonance weights are similar to Ab Initio VB[‡]

	: x - x :: x :	$\vdots \times \vdots \times \longrightarrow \times \vdots$: x : x : x :
X = F	43% (<mark>37%</mark>)	43% (<mark>37%</mark>)	13% (<mark>26%</mark>)
X = Cl	44% (<mark>42%</mark>)	44% (<mark>42%</mark>)	12% (<mark>15%</mark>)
X = Br	43% (<mark>41%</mark>)	43% (<mark>41%</mark>)	14% (<mark>15%</mark>)
X = I	43% (<mark>41%</mark>)	43% (<mark>41%</mark>)	14% (<mark>15%</mark>)

"long-bond" structures

[‡]Braïda & Hiberty J. Phys. Chem. A **2008**, 112, 13045-13052.

 F_3^{-}

b Long-Bonds ($\hat{\sigma}$) and Long-Antibonds ($\hat{\sigma}^*$)

ArF ₂ vs.	Metastable NeF ₂	vs. Metastable HeF ₂
87% <mark>ω-bonded</mark>	26% <mark>ω-bonded</mark>	46% <mark>ω-bonded</mark>
13% $\hat{\sigma}$ -bonded	74% ô-bonded	53% $\hat{\sigma}^*$ -bonded

The ω -, $\hat{\sigma}$ -, and $\hat{\sigma}^*$ -bonds are donor-acceptor interactions

F-F antibond acceptor for Ne *p*-lone pair F-F bond acceptor for He *s*-lone pair

b Long-Bonds ($\hat{\sigma}$) and Long-Antibonds ($\hat{\sigma}^*$)

ArF ₂ vs.	Metastable NeF ₂	vs. Metastable HeF ₂
87% <mark>ω-bonded</mark>	26% <mark>ω-bonded</mark>	46% <mark>ω-bonded</mark>
13% ô-bonded	74% <mark>ô-bonded</mark>	53% $\hat{\sigma}^*$ -bonded

The ω -, $\hat{\sigma}$ -, and $\hat{\sigma}^*$ -bonds are donor-acceptor interactions

Many Types of Hypervalency

L-A-L'	$R_{\scriptscriptstyle m AL}$	$Q_{\scriptscriptstyle \mathrm{A}}$	${\cal W}_{ m I/II}$	${\cal W}_{ m III}$	$\Delta E^{\scriptscriptstyle (2)}{}_{\rm D \to A}$	type
F-F-F [−]	1.745	-0.107	43.6	12.9	133.8	ω
F-Ne-F	1.874	+0.228	13.1	73.7	57.1	$\hat{\sigma}$
F-He-F	1.246	+0.515	23.6	52.8	421.1	$\hat{\sigma}$ *
F-Ar-F	1.878	+0.756	41.6	16.9	169.9	ω
Li-Li-Li⁻	3.011	+0.026	43.2	13.6	27.0	ω
Li-Be-Li	2.504	-0.006	19.2	61.7	55.7	$\hat{\sigma}$ *
Cu-Cu-Cu⁻	2.383	-0.014	41.7	16.7	81.9	ω
Cu-Zn-Cu	2.350	+0.228	29.8	40.5	114.7	$\hat{\sigma}$ *

ΔEN and Long-Bond Contributions

Long-bond resonance structures play a greater role with increasing EN of the termini relative to the central atom.

Li(BeLi)_n Chains and Isotropic Polarizability

Be is both a Donor (Be 2s) to empty Li-Li "bond" and Acceptor (Be 2p) from filled Li-Li "antibond" : *Reciprocal D-A*

D-block Hypervalency and Buildup

Strong 3c/4e delocalization is evident in the NLMOs

Hypervalency is the rule rather than the exception for TM's
Strong 3c-4e interactions arise from centrosymmetry of sd^μ NHOs

 PtH_{A}^{2-}

Understanding "Real" D-Block Complexes

The transition from 12e to 18e complexes Involves 3c/4e bonding

VISCONSIN

W(CO) - 8e, hypovalent, 1"sd¹" hybrid, 3 LPs, 2 LP* W(CO)₂- 10e, hypovalent, 2 "sd¹" hybrids, 3 LPs, 1 LP*

 $W(CO)_3$ - 12e, e-precise, 2 sd² hybrids, 3 LPs, 0 LP* $W(CO)_4$ - 14e, hypervalent, 3 sd² hybrids, 3 LPs, 1 ω -bond

W(CO)₅ - 16e, hypervalent, 2 sd² hybrids, 3 LPs, 2 ω -bonds W(CO)₆ - 18e, hypervalent, 3 sd² hybrids, 3LPs, 3 ω -bonds In all cases there is significant W LP \rightarrow C=O π^* delocalization

Some "Real" D-Block Complexes

	Electron-count frequency (%)				Localized bonding				
Group	14	16	18	Formula	Examples	l.p.	2c/2e	ω	sd″
3	27	30	18	ML_5X_3 ML_4X_3	Cp ₂ YMe(THF) Cp ₂ Y- <i>t</i> -Bu	0 0	4 5	2 1	sd ⁵ sd ⁵
4	4	55	21	ML_4X_4	Cp_2ZrCl_2	0	4	2	sd ⁵
5	13	15	45	ML ₆ X ML ₅ X ₃	CpNb(CO) ₄ Cp ₂ Nb(CO)Cl	2 1	1 2	3 3	sd ³ sd ⁴
6	1	7	82	ML ₅ X ₂ ML ₆ ML ₄ X ₄	CpMo(CO) ₃ Me Mo(CO) ₆ Cp ₂ MoMeBr	2 3 1	1 0 2	3 3 3	sd ³ sd ² sd ⁴
7	2	2	90	ML ₅ X ML ₄ X ₃	Re(CO) ₅ Me CpRe(CO) ₂ Me ₂	3 2	0 1	3 3	sd² sd ³
8	1	1	97	ML_4X_2	Ru(PPh ₃)(CO) ₃ Cl ₂	3	0	3	sd ²
9	1	25	72	ML ₃ X ML ₃ X ₃	Rh(PPh ₃) ₂ (CO)Cl Rh(PMe ₃) ₂ (CO)Cl ₃	4 3	0 0	2 3	sd ¹ sd ²
10	1	70	27	ML_2X_2	Pd(PMe ₃) ₂ (Me)I	4	0	2	sd1

^{*a*} Data taken from a preliminary survey of compounds in the *Dictionary of Organometallic Compounds*, compiled by G. Parkin and C. Zachmanoglou.

Some "Real" D-Block Transformations

Schematic reaction	Reaction type	Donor(s)	Acceptor(s)
(A) $\mathbf{M} - \mathbf{\Box} + \rightarrow \mathbf{M} - $	Dative C=C coordination	$\pi_{\rm CC}$	$n_{M}^{*}(or \sigma_{ML}^{*})$
(B) M ⁺ -□ + → M/	Carbocation formation	$\pi_{\rm CC}$	$n_{M}^{*}(or \sigma_{ML}^{*})$
(C) M̃-□ + → M̃ ⊷	Synergistic C=C coordination	$\pi_{\rm CC}/n_{\rm M}$	$n_{M}^{*}(or \sigma_{ML}^{*})/\pi_{CC}^{*}$
(D) \ddot{M} - \Box + \rightarrow M \swarrow R	Metallacyclic insertion	$\pi_{\rm CC}/n_{\rm M}$	$n_{M}^{*}(\text{or }\sigma_{ML}^{*})/\pi_{CC}^{*}$
(E) $\mathbf{R} - \mathbf{M} - \mathbf{\Box} + \rightarrow \mathbf{M} - \mathbf{\Box}$	Migratory insertion	$\pi_{\rm CC}/\sigma_{\rm MR}$	$n_{M}^{*}(or \sigma_{ML}^{*})/\pi_{CC}^{*}$
(F) $M^{-}: + \rightarrow M^{-}$	Carbanion formation	n _M	π^*_{CC}

CuF & CuF₂⁻: Analogs of HF & FHF⁻

Idealized Geometries of CuL_n

Cu ^(III)	Cu ^(I)		Cu ^(III)
CuL ₂ ,12e 2 2c/2e	CuL ₂ ,14e 1 3c/4e bonds	CuL ₃ , 12e 3 2c/2e	CuL ₃ , 14e 1 2c/2e & 1 3c/4e
L Cu-L C _{2v}	L-Cu−L D∞h	L ⊂ Cu., 'L C _{3v}	L L-Cu–L C _{2v}
CuL ₃ , 16e 1 4c/6e bond	CuL ₄ , 14e 2 2c/2e, 1 3c/4e	CuL ₄ , 16e 2 3c/4e bonds	CuL ₄ , 18e 1 5c/8e bond
$L^{Cu}L$ D_{3h} $Cu^{(I)}$	L Cu L L C _{2v}	L L-Cu-L L D _{4h} Cu ^(III)	$L^{L'} L^{L'} L^{L'}$

A Localized Perspective on JT Effects

Any non-linear molecule with a spatially degenerate electronic ground state will undergo a geometrical distortion that removes that degeneracy ... but which motion and by how much?

Example: Cyclopropenyl radical

Start at the D_{3h} geometry, closed-shell cations and anions.

5_{3} C₃H₃ Radical = Avg. of Anion and Cation

PES for 13e CuL₂ = Mean of 12e & 14e

Lewis Structure of FeO(porphyrin)

The Nature of Hydrogen Bonding

The structure of HF•••FH is not the linear structure expected if the H-bond were electrostatic in nature.

At the B3LYP level the dimer is stabilized by -5 kcal/mol.

How do we characterize this weak but ubiquitous interaction?

NBO analysis shows strong delocalization involving the $F^{\pi}LP$ (off-axis) donating into the H-F σ^* antibond.

 $n_{\rm F(2)} \rightarrow \sigma^*_{\rm H(4)F(3)}: \Delta E^{(2)}_{\rm D \rightarrow A} = 6.64 \text{ kcal/mol}$

HF•••HF: A Donor-Acceptor Complex

\$DELETE all delocalizations from Lewis to non-Lewis orbitals (NOSTAR) and reoptimize:

- Collinear HF•••HF !
- Dimerization Energy reduced by 1/2
- F-F distance increases by 0.6Å
- After deletion, best described as dipole-dipole complex.

 $F^- + CICH_3$

NRT Analysis of S_N2 Reaction

- In proceeding through TS[‡], strong F⁻ LP $\rightarrow \sigma^*$ C-Cl delocalization (3c/4e)
- NRT characterizes TS[‡] as "reactant-like" in terms of Hammond Postulate

Ab Initio VB Theory, Paris 2012: Clark Landis and Frank Weinhold

5

- NBO Methods generate localized bond descriptions from Densities
- Localized bond descriptions strongly support Lewis and Lewis-like bonding descriptions across the periodic table
- Lewis-like structures, hybridization, and 3c/4e bonding and other resonance motifs describe the majority of bonding situations
- For unrestricted calculations, "Different Lewis Structures for Different Spins"
- \bullet Interpolation between Lewis-like tendencies of α and β spins provides the localized bond alternative to Jahn-Teller rationalizations

