

Explicitly Correlated Wave Functions in the Random-Phase Approximation to the Correlation Energy

Wim Klopper

Contact: klopper@kit.edu

Theoretical Chemistry Group, Institute of Physical Chemistry & Institute of Nanotechnology

Contents

- Adiabatic connection in density-functional theory (DFT)
- Random-phase approximation (RPA)
 - "direct" random-phase approximation: dRPA
- Including explicitly-correlated wave functions
 - The CCSD(F12) method
 - The drCCD(F12) or dRPA(F12) approach
- Including exchange
 - The rCCD(F12) or RPA(F12) approach
 - Szabo-Ostlund approaches, rCCD(F12)-SO1, -SO2

Adiabatic connection in DFT

$$\hat{H}^{\lambda} = \hat{T} + \hat{V}^{\lambda} [\rho] + \lambda \hat{V}_{ee}$$

 $0 \le \lambda \le 1$ (coupling strength)

$$\hat{V}_{ee} = \sum_{\mu=2}^{n_e} \sum_{\nu=1}^{\mu-1} \frac{1}{r_{\mu\nu}}$$

$$\hat{H}^{\lambda} |\Psi_{0}^{\lambda}\rangle = E_{0}^{\lambda} |\Psi_{0}^{\lambda}\rangle; \qquad \forall \lambda : |\Psi_{0}^{\lambda}\rangle \rightarrow \rho$$

 $\lambda = 0$ non-interacting particles, $\hat{V}^{\lambda}[\rho]$ is the Kohn–Sham potential $\lambda = 1$ interacting particles, $\hat{V}^{\lambda}[\rho]$ is the electron–nucleus potential

Adiabatic connection in DFT

If we solve the Schrödinger equations for all values of λ , then we can write the ground-state energy as follows:

$$E_0^1 = \left\langle \Psi_0^0 \middle| \hat{H}^1 \middle| \Psi_0^0 \right\rangle + \int_0^1 W^C(\lambda) \, \mathrm{d}\lambda$$
$$W^C(\lambda) = \left\langle \Psi_0^\lambda \middle| \hat{V}_{\mathrm{ee}} \middle| \Psi_0^\lambda \right\rangle - \left\langle \Psi_0^0 \middle| \hat{V}_{\mathrm{ee}} \middle| \Psi_0^0 \right\rangle$$

Adiabatic connection: Transition densities

The integrand can be written in terms of transition densities:

$$W^{C}(\lambda) = \sum_{n \neq 0} \left\{ J[\rho_{0n}^{\lambda}] - J[\rho_{0n}^{0}] \right\}$$
$$\rho_{0n}^{\lambda}(\mathbf{r}) = \sum_{pq} \varphi_{p}(\mathbf{r}) \ \varphi_{q}(\mathbf{r}) \ \left\langle \Psi_{0}^{\lambda} \right| a_{p}^{+} a_{q} \left| \Psi_{n}^{\lambda} \right\rangle$$
$$J[\rho_{0n}^{\lambda}] = \iint \frac{\rho_{0n}^{\lambda}(\mathbf{r})\rho_{0n}^{\lambda}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \ \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}'$$

6

We now switch to DFT and compute the transition densities using time-dependent density-functional theory (TD-DFT) in the randomphase approximation (RPA):

$$\rho_{0n}^{\lambda}(\mathbf{r}) \cong \sum_{ia} \varphi_{i}(\mathbf{r}) \varphi_{a}(\mathbf{r}) \left(X^{\lambda} + Y^{\lambda} \right)_{ia}^{n}$$

$$\mathbf{A}^{\lambda} \quad \mathbf{B}^{\lambda} \\ -\mathbf{B}^{\lambda} \quad -\mathbf{A}^{\lambda} \left(\mathbf{X}^{\lambda} \quad \mathbf{Y}^{\lambda} \\ \mathbf{Y}^{\lambda} \quad \mathbf{X}^{\lambda} \right) = \left(\begin{array}{c} \mathbf{X}^{\lambda} \quad \mathbf{Y}^{\lambda} \\ \mathbf{Y}^{\lambda} \quad \mathbf{X}^{\lambda} \end{array} \right) \left(\begin{array}{c} \mathbf{w}^{\lambda} & \mathbf{0} \\ \mathbf{0} & -\mathbf{w}^{\lambda} \end{array} \right)$$

$$\frac{\lambda}{ia,jb} = (\varepsilon_{a} - \varepsilon_{i}) \delta_{ij} \delta_{ab} + \lambda (ia \mid jb); \qquad B^{\lambda}_{ia,jb} = \lambda (ia \mid bj)$$

7

Review: H. Eshuis, J. E. Bates and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).

dRPA correlation energy (in E_h) of the He-atom ground state

aug-cc-pVXZ basis sets

TPSSh Kohn-Sham orbitals

X	<ks ĥ ks></ks ĥ ks>	E c _{dRPA}
2	-2.8554	-0.0589
3	-2.8609	-0.0728
4	-2.8612	-0.0772
5	-2.8613	-0.0789
6	-2.8613	-0.0796
		· ·
Ø	-2.8613	-0.0805

9

dRPA correlation energy (in mE_h) of the He-atom ground state

aug-cc-pVXZ basis sets

TPSSh Kohn–Sham orbitals

- Basis-set convergence of the dRPA method is X⁻³.
- This is the same slow basis-set convergence as in wave-function-based electron-correlation methods.
- This can be understood by noting that the dRPA correlation energy can be obtained by solving the direct ring-coupled-clusterdoubles (drCCD) equation:

$$E_{dRPA}^{C} = \frac{1}{2} tr(BT), \text{ with } B \equiv B^{1} \text{ and } A \equiv A^{1}$$

$\mathbf{B} + \mathbf{AT} + \mathbf{TA} + \mathbf{TBT} = \mathbf{0}$ (Riccati equation)

The dRPA(F12) method

The CCSD(F12) method uses two-electron functions f(r₁₂) that explicitly depend on the interelectronic distance r₁₂.

 The dRPA(F12) method can very easily be implemented when a program code for the CCSD(F12) approach is already available.

$$\hat{Q}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2) - \hat{V}_1 \hat{V}_2$$

 $f(r_{12}) = \gamma^{-1}(1 - e^{-\gamma r_{12}})$

The F12 double excitations

Removes conventional doubles

Permutes the spatial components of spin orbitals

(Valeev, CPL, 2004)

(Ten-no, CPL, 2004)

$$w_{\alpha\beta}^{xy} = \left\langle \alpha\beta \right| \, \hat{Q}_{12} \left(\frac{3}{8} + \frac{1}{8} \hat{S}_{xy} \right) f(r_{12}) \, \left| xy \right\rangle \tag{Ten-no, JCP, 2004}$$

$$w_{\alpha\beta}^{xy} = \left\langle \alpha\beta \right| \hat{Q}_{12} \left(\frac{3}{8} + \frac{1}{8} \hat{S}_{xy} \right) f(r_{12}) \left| xy \right\rangle$$
 (Ten-no, JCP, 2004)

$$w_{\alpha\beta}^{xy} = \left\langle \alpha\beta \right| \hat{Q}_{12} \left(\frac{3}{8} + \frac{1}{8} \hat{S}_{xy} \right) f(r_{12}) \left| xy \right\rangle$$
 (Ten-no, JCP, 2004)

$$w_{\alpha\beta}^{xy} = \left\langle \alpha\beta \right| \hat{Q}_{12} \left(\frac{3}{8} + \frac{1}{8} \hat{S}_{xy} \right) f(r_{12}) \left| xy \right\rangle$$
 (Ten-no, JCP, 200

$$\hat{T}_{2'} = \sum_{i < j} \sum_{\alpha < \beta} \sum_{x < y} c_{xy}^{ij} w_{\alpha\beta}^{xy} a_{\alpha}^{\dagger} a_{i} a_{\beta}^{\dagger} a_{j}$$
(Kutzelnigg, TCA, 1985;
Klopper, CPL, 1991)

Klopper, CPL, 1991)

CCSD(F12) approximation

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_{2'}$$

$$\begin{split} \hat{\tilde{H}} &= \exp(-\hat{T}_{1})\hat{H}\exp(\hat{T}_{1}) & \text{Simplifications in the doubles equations} \\ E_{\text{CCSD(F12)}} &= \left\langle \text{HF} \right| \hat{\tilde{H}} + \left[\hat{H}, \hat{T}_{2} + \hat{T}_{2'} \right] \left| \text{HF} \right\rangle \\ 0 &= \Omega_{a}^{i} = \left\langle {}^{i}_{a} \right| \hat{\tilde{H}} + \left[\hat{\tilde{H}}, \hat{T}_{2} + \hat{T}_{2'} \right] \left| \text{HF} \right\rangle \\ 0 &= \Omega_{ab}^{ij} = \left\langle {}^{ij}_{ab} \right| \hat{\tilde{H}} + \left[\hat{\tilde{H}}, \hat{T}_{2} + \hat{T}_{2'} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T}_{2} + 2\hat{T}_{2'} \right], \hat{T}_{2} \right] \left| \text{HF} \right\rangle \\ 0 &= \Omega_{xy}^{ij} = \left\langle {}^{ij}_{xy} \right| \hat{\tilde{H}} + \left[\hat{F}_{D}, \hat{T}_{2'} \right] + \left[\hat{\tilde{H}}, \hat{T}_{2} \right] \left| \text{HF} \right\rangle \end{split}$$

dRPA(F12) correlation energy (in $E_{\rm h}$) of the He-atom ground state

aug-cc-pVXZ basis sets TPSSh Kohn–Sham orbitals

X	<ks ĥ ks></ks ĥ ks>	E^c_{dRPA(F12)}
2	-2.8554	-0.0827
3	-2.8609	-0.0805
4	-2.8612	-0.0803
5	-2.8613	-0.0805
6	-2.8613	-0.0805
•	•	:
Ø	-2.8613	-0.0805

 The drCCD equation can be written as follows: (using Einstein summation convention)

$$g_{ij}^{ab} + \left(\varepsilon_{a} + \varepsilon_{b} - \varepsilon_{i} - \varepsilon_{j}\right)t_{ij}^{ab} + g_{ic}^{ak}t_{kj}^{cb} + t_{ik}^{ac}g_{cj}^{kb} + t_{il}^{ad}g_{dc}^{lk}t_{kj}^{cb} = 0$$

$$\mathbf{B} \qquad \mathbf{A}^{(0)}\mathbf{T} + \mathbf{T}\mathbf{A}^{(0)} \qquad \mathbf{A}^{(1)}\mathbf{T} + \mathbf{T}\mathbf{A}^{(1)} \qquad \mathbf{T}\mathbf{B}\mathbf{T}$$

The dRPA(F12) method

The equation for the conventional doubles amplitudes becomes:

$$g_{pq}^{rs} = \langle rs | r_{12}^{-1} | pq \rangle; \quad f_{pq}^{rs} = \langle rs | f(r_{12}) | pq \rangle$$

Diagrammatic dRPA(F12) theory

1st F12 diagram added to the conventional doubles amplitudes:

(diagram d4.8 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738)

Diagrammatic dRPA(F12) theory

• 2nd F12 diagram added to the **conventional doubles amplitudes**:

 $t_{il}^{ad} g_{dc'}^{lk} f_{op}^{c'b} c_{ki}^{op}$

(diagram d4.12 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738)

Diagrammatic dRPA(F12) theory

Diagram added to the F12 amplitudes:

(diagram d6.23 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738)

dRPA(F12) theory: The water dimer

Counterpoise (CP) corrected dRPA and **dRPA(F12)** interaction energies (kcal/mol) for the water dimer (fixed geometry from the S22 test set)

X	<ks ĥ ks></ks ĥ ks>	E^C_{dRPA}	E ^C _{dRPA(F12)}
2	-2.59	-0.77	-1.58
3	-2.60	-1.25	-1.62
4	-2.63	-1.46	-1.63
5	-2.63	-1.54	-1.64
6	-2.64	-1.58	
	•	:	
∞	-2.64	-1.64	

aug-cc-pVXZ basis

PBE Kohn-Sham orbitals

CABS singles correction

- We have a complementary auxiliary basis set (CABS).
- How can single excitations into this CABS be included into the computation of the ground-state energy?

CABS singles correction in CCSD(F12) theory

Singles amplitudes equation when an auxiliary basis is present:

$$\begin{aligned} f_{a}^{i} + f_{a}^{b'} t_{b'}^{i} + (\varepsilon_{a} - \varepsilon_{i}) t_{a}^{i} &= 0 \qquad \{a''\} = \{a\} \cup \{a'\} \\ f_{a'}^{i} + f_{a'}^{b'} t_{b'}^{i} + (\varepsilon_{a'} - \varepsilon_{i}) t_{a'}^{i} &= 0 \end{aligned}$$

Hartree–Fock matrix

The CABS singles correction is obtained from:

$$E_{\text{CABS}} = f_i^a t_a^i + f_i^{a'} t_{a'}^i$$

CABS singles correction in dRPA(F12) theory

Singles amplitudes equation when an auxiliary basis is present:

$$f_{a}^{i} + f_{a}^{b'} t_{b'}^{i} + (\varepsilon_{a} - \varepsilon_{i}) t_{a}^{i} = 0 \qquad \{a''\} = \{a\} \cup \{a'\}$$

$$f_{a'}^{i} + f_{a'}^{b'} t_{b'}^{i} + (\varepsilon_{a'} - \varepsilon_{i}) t_{a'}^{i} = 0$$
Hartree-Fock matrix

The CABS singles correction is obtained from:

 $E_{\text{CABS}} = f_i^a t_a^i + f_i^{a'} t_{a'}^i$

Kohn-Sham matrix

dRPA(F12) theory: The water dimer

Counterpoise (CP) corrected dRPA and **dRPA(F12)** interaction energies (kcal/mol) for the water dimer (fixed geometry from the S22 test set)

Including a CABS singles correction to the expectation value

X	<ks ĥ ks> + CABS</ks ĥ ks>	E^C_{dRPA}	E^C_{dRPA(F12)}
2	-2.60	-0.77	-1.58
3	-2.63	-1.25	-1.62
4	-2.64	-1.46	-1.63
5	-2.64	-1.54	-1.64
6	-2.64	-1.58	
∞	-2.64	-1.64	

dRPA(F12) theory: The water dimer

Counterpoise (CP) corrected dRPA and **dRPA(F12)** interaction energies (kcal/mol) for the water dimer (fixed geometry from the S22 test set)

Including exchange: The RPA(F12) method

- Why don't we stop at the rCCD(F12) level?
- Spin-flipped excitations must be accounted for.
- Hard to converge.
- Suffers from triplet instabilities.

 In the 1970s, Szabo and Ostlund (SO) proposed to solve singlet (s=1) and triplet (s=3) equations (for closed-shell systems):

$${}^{s}\mathbf{B} + {}^{s}\mathbf{A}{}^{s}\mathbf{T} + {}^{s}\mathbf{T}{}^{s}\mathbf{A} + {}^{s}\mathbf{T}{}^{s}\mathbf{B}{}^{s}\mathbf{T} = \mathbf{0}$$

$${}^{1}A_{IJ}^{AB} = 2(AI \mid JB) - (AB \mid JI)$$
$${}^{1}B_{IJ}^{AB} = 2(AI \mid BJ) - (AJ \mid BI)$$

$${}^{3}A_{IJ}^{AB} = -(AB \mid JI)$$
$${}^{3}B_{IJ}^{AB} = -(AJ \mid BI)$$

A. Szabo and N. S. Ostlund, *J. Chem. Phys.* 67, 4351 (1977).
A. Szabo and N. S. Ostlund, *Int. J. Quantum Chem.* S11, 389 (1977).

See also: B. Mussard, P. Reinhardt J. G. Ángyán, and J. Toulouse, *J. Chem. Phys.* **142**, 154123 (2015).

 In the 1970s, Szabo and Ostlund (SO) proposed to solve singlet (s=1) and triplet (s=3) equations (for closed-shell systems):

$$E_{\rm rCCD} = \frac{1}{4} \operatorname{tr} \left({}^{1}\mathbf{B}^{1}\mathbf{T} + 3^{3}\mathbf{B}^{3}\mathbf{T} \right)$$

$$E_{\text{rCCD-SO1}} = \frac{1}{2} \operatorname{tr} \left({}^{1}\mathbf{B} ({}^{1}\mathbf{T} - {}^{3}\mathbf{T}) \right)$$

$$E_{\text{rCCD-SO2}} = \frac{1}{2} \operatorname{tr} \left({}^{1}\mathbf{K}^{1}\mathbf{T} \right) \qquad \text{with} \quad {}^{1}K_{IJ}^{AB} = 2(AI \mid BJ)$$

• For the respective (F12) variants (using *fixed amplitudes*), we obtain:

$$E_{\mathsf{rCCD}(\mathsf{F12})-\mathsf{SO1}} = \frac{1}{2} \operatorname{tr} \left({}^{1}\mathbf{B} ({}^{1}\mathbf{T} - {}^{3}\mathbf{T}) \right) + E_{\mathsf{F12}}^{(2)} + \operatorname{tr} \left({}^{1}\mathbf{L} {}^{1}\mathbf{T} \right)$$

$$E_{\mathsf{rCCD}(\mathsf{F12})-\mathsf{SO2}} = \frac{1}{2} \mathsf{tr} \left({}^{1}\mathbf{K}^{1}\mathbf{T} \right) + E_{\mathsf{F12}}^{(2)} + \mathsf{tr} \left({}^{1}\mathbf{M}^{1}\mathbf{T} \right)$$

$${}^{1}L_{IJ}^{AB} = \sum_{KD'} {}^{1}A_{IK}^{AD'} \left({}^{1}F_{KJ}^{D'B} - {}^{3}F_{KJ}^{D'B} \right)$$

$${}^{1}M_{IJ}^{AB} = \sum_{KD'} \left({}^{1}A_{IK}^{AD'} - {}^{3}A_{IK}^{AD'} \right) {}^{1}F_{KJ}^{D'B}$$

The (F12) terms in the amplitudes equation (using fixed F12 amplitudes and neglecting coupling terms), are:

$$\mathbf{0} = {}^{s} \mathbf{\Omega}_{IJ}^{AB} (\text{conventional}) + {}^{s} \mathbf{Z} + {}^{s} \mathbf{T}^{s} \mathbf{Y} + ({}^{s} \mathbf{Z} + {}^{s} \mathbf{T}^{s} \mathbf{Y})^{T}$$

$${}^{s}Y_{IJ}^{AB} = \sum_{KD'} {}^{s}B_{IK}^{AD'} {}^{s}F_{KJ}^{D'B}$$

$${}^{s}Z_{IJ}^{AB} = \sum_{KD'} {}^{s}A_{IK}^{AD'} {}^{s}F_{KJ}^{D'B}$$

Atomization energies

dRPA+F12 theory: Correlation energy (in E_h) of leflunomide

MP2/aug-cc-pVTZ optimized equilibrium geometry

Limit: -6.21(1) *E*_h

Basis	Size	${oldsymbol{E}^{ extsf{C}}}_{ extsf{dRPA}}$	%	E^C_{dRPA+F12}	%
aug-cc-pVDZ	518	-4.426	71.3	-6.228	100.3
aug-cc-pVTZ	1081	-5.466	88.0	-6.186	99.6
aug-cc-pVQZ	1934	-5.858	94.3	-6.197	99.8
aug-cc-pV5Z	3133	-6.020	96.9	-6.202	99.9

dRPA+F12 theory: Relative energies of Ru₈⁻ isomers

Conclusions

- The basis-set convergence of methods that compute the correlation energy in the random-phase approximation (RPA) can be accelerated using Slater-type geminals.
- This is <u>not unexpected</u> in view of the close relation to ring-coupled-cluster-doubles (rCCD) theory.
- It is not straightforward to account for exchange, however.
- In this respect, the <u>rCCD(F12)-SO2 variant</u> looks very promising.
- We plan to use the method for computations of <u>interaction</u> <u>energies</u> between ground-state systems.

Acknowledgments

David P. Tew

Anna-Sophia Hehn

Christof Holzer

- Chem. Phys. Lett. **2011**, 510, 147
- J. Chem. Phys. 2013, 138, 181104
- J. Chem. Phys. 2015, 142, 194106
- Chem. Phys. 2016, 479, 160

