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Adiabatic connection in DFT  

Ĥ λ = T̂ + V̂ λ ρ[ ]+λV̂ee

V̂ee =
1
rµνν=1

µ−1

∑
µ=2

ne

∑

Ĥ λ Ψ0
λ = E0

λ Ψ0
λ ;           ∀ λ :  Ψ0

λ → ρ    

0 ≤ λ ≤ 1  (coupling strength) 

λ = 0  non-interacting particles, Vλ[ρ]  is the Kohn−Sham potential 
 

λ = 1  interacting particles, Vλ[ρ] is the electron−nucleus potential 

^ 

^ 
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Adiabatic connection in DFT  

E0
1  =  Ψ0

0 Ĥ 1 Ψ0
0  +  W C λ( )

0

1

∫  dλ

W C λ( )  =  Ψ0
λ V̂ee Ψ0

λ  −  Ψ0
0 V̂ee Ψ0

0

If we solve the Schrödinger equations for all values of λ, then we 
can write the ground-state energy as follows: 
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Adiabatic connection: Transition densities 

WC (λ) = J[ρ0n
λ ]− J[ρ0n

0 ]{ }
n≠0
∑

ρ0n
λ (r) = ϕ p(r)

pq
∑  ϕq (r) Ψ0

λ ap
+aq Ψn

λ

J[ρ0n
λ ]= ρ0n

λ (r)ρ0n
λ (r ')

| r− r ' |
 ∫∫ drdr '

The integrand can be written in terms of transition densities: 
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Direct RPA theory (dRPA) 

ρ0n
λ (r) ≅ ϕi (r)ϕa (

ia
∑ r) X λ +Y λ( )ia

n

We now switch to DFT and compute the transition densities using 
time-dependent density-functional theory (TD-DFT) in the random-
phase approximation (RPA): 

  Aλ   Bλ

−Bλ −Aλ

⎛
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⎟

A
ia, jb

λ = (εa −εi )δijδab +λ(ia | jb);            B
ia, jb

λ = λ(ia | bj)
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Direct RPA theory (dRPA) 

E0
1 =  Ψ0

0 Ĥ 1 Ψ0
0  +  W C λ( )

0

1

∫  dλ

=  KS Ĥ KS  +  EdRPA
C

Expectation value of the   Correlation energy 
Kohn−Sham determinant   (from TD-DFT) 
(from DFT) 

 Review: H. Eshuis, J. E. Bates and F. Furche, Theor. Chem. Acc. 131, 1084 (2012). 
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Direct RPA theory (dRPA) 

dRPA correlation energy (in Eh) of the He-atom ground state 
 

aug-cc-pVXZ basis sets               TPSSh Kohn−Sham orbitals  

X <KS|H|KS> Ec
dRPA

2 −2.8554 −0.0589 

3 −2.8609 −0.0728 

4 −2.8612 −0.0772 

5 −2.8613 −0.0789 

6 −2.8613 −0.0796 
. 
. 

. 

. 
. 
. 

∞ −2.8613 −0.0805 

^ 
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Direct RPA theory (dRPA) 

dRPA correlation energy (in mEh) of the He-atom ground state 
 

aug-cc-pVXZ basis sets               TPSSh Kohn−Sham orbitals  
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Direct RPA theory (dRPA) 

  Basis-set convergence of the dRPA method is X−3. 

  This is the same slow basis-set convergence as in 
wave-function-based electron-correlation methods. 

  This can be understood by noting that the dRPA correlation energy 
can be obtained by solving the direct ring-coupled-cluster- 
doubles (drCCD) equation: 

    EdRPA
C =

1
2
tr BT( ),     with     B ≡ B1      and     A ≡A1

B+AT+TA+TBT = 0 (Riccati equation)  
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The dRPA(F12) method 

  The CCSD(F12) method 
uses two-electron functions 
f (r12) that explicitly depend 
on the interelectronic 
distance r12.

  The dRPA(F12) method can 
very easily be implemented  
when a program code for the 
CCSD(F12) approach is 
already available. 
 
 

    

No single excitations 
 
 
 
 
Ring diagrams only 
 
 
 

 
No exchange terms 

CCSD(F12)   
 
 
CCD(F12) 
 
 
rCCD(F12) 
 
 
drCCD(F12) ≅ dRPA(F12) 
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The F12 double excitations 

T̂ ʹ2 =  cxy
ij

x<y
∑

α<β

∑
i< j
∑  wαβ

xy  aα
+aiaβ

+aj

wαβ
xy = αβ  Q̂12

3
8 +

1
8 Ŝxy( ) f (r12 ) xy

f (r12 ) = γ −1(1− e−γ  r12 )

Q̂12 = (1− Ô1)(1− Ô2 )− V̂1V̂2

Ŝxy

Removes 
conventional 
doubles 

Permutes the spatial components of spin orbitals 
x and y  in the determinant | xy > 

(Kutzelnigg, TCA, 1985; 
Klopper, CPL, 1991) 

 
 
 
 

(Ten-no, JCP,  2004) 
 
 
 

(Ten-no, CPL, 2004) 
 
 
 

(Valeev, CPL, 2004) 
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€ 

ˆ T  = ˆ T 1 + ˆ T 2 + ˆ T " 2 

˜ ˆ H = exp(− ˆ T 1) ˆ H exp( ˆ T 1)

ECCSD(F12) = HF  ˜ ˆ H + ˆ H ,  ˆ T 2 + ˆ T " 2 [ ] HF

0 =Ωa
i = a

i  ˜ ˆ H + ˜ ˆ H ,  ˆ T 2 + ˆ T " 2 [ ] HF

0 =Ωab
ij = ab

ij  ˜ ˆ H + ˜ ˆ H ,  ˆ T 2 + ˆ T " 2 [ ] + 1
2

ˆ H ,  ˆ T 2 + 2 ˆ T " 2 [ ],  ˆ T 2[ ] HF

0 =Ωxy
ij = xy

ij  ˜ ˆ H + ˆ F D,  ˆ T " 2 [ ] + ˜ ˆ H ,  ˆ T 2[ ] HF

CCSD(F12) approximation 

Simplifications in the 
doubles equations 

(Fliegl et al., JCP, 2005) 
 
 
 
 



W. Klopper 14 May 2, 2017  Workshop on "Theory and applications of RPA-and-beyond methods in physics and chemistry“, Paris, France 

Explicit correlation: dRPA(F12) 

dRPA(F12) correlation energy (in Eh) of the He-atom ground state 
 

aug-cc-pVXZ basis sets               TPSSh Kohn−Sham orbitals  

X <KS|H|KS> Ec
dRPA(F12)

2 −2.8554 −0.0827 

3 −2.8609 −0.0805 

4 −2.8612 −0.0803 

5 −2.8613 −0.0805 

6 −2.8613 −0.0805 
. 
. 

. 

. 
. 
. 

∞ −2.8613 −0.0805 

^ 
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Direct RPA theory (dRPA) 

  The drCCD equation can be written as follows: 
(using Einstein summation convention) 

    gij
ab + εa +εb −εi −ε j( )tijab + gicaktkjcb + tikacgcjkb + tiladgdclk tkjcb = 0

B        A(0)T+TA(0)       A(1)T+TA(1)    TBT
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gij
ab + εa +εb −εi −ε j( )tijab + gicaktkjcb + tikacgcjkb + tiladgdclk tkjcb +
Cop

abcij
op + gi ʹc

ak fop
ʹc bckj

op + cik
op fop

a ʹc g ʹc j
kb + til

adgd ʹc
lk fop

ʹc bckj
op + cil

op fop
a ʹd g ʹd c

lk tkj
cb = 0

Vij
mn +Bop

mn (ij)cij
op +Cab

mntij
ab + f ʹa b

mngic
ʹa ktkj

cb + tik
acgcj

k ʹb fa ʹb
mn = 0

gpq
rs = rs r12

−1 pq ;     fpq
rs = rs f (r12 ) pq

The dRPA(F12) method 

  The equation for the conventional doubles amplitudes becomes: 

 
  The equation for the F12 amplitudes is: 

    

dMP2-F12 
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Diagrammatic dRPA(F12) theory 

gi !c
ak fop

!c bckj
op

i              a 

j              b 

!c
o            p 

k 

  1st F12 diagram added to the conventional doubles amplitudes: 

 

 
      (diagram d4.8 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738) 

    

complementary 
auxiliary basis set 
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  2nd F12 diagram added to the conventional doubles amplitudes: 

 
     (diagram d4.12 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738) 

    

til
adgd !c

lk fop
!c bckj

op

i              a j              b 
!c

o            p 

k l            d 

Diagrammatic dRPA(F12) theory 
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f !a b
mngic

!a ktkj
cb

Diagrammatic dRPA(F12) theory 

!a
m                n 

b 

k               c j 

i 

  Diagram added to the F12 amplitudes: 

 
     (diagram d6.23 in J. Noga and W. Kutzelnigg, J. Chem. Phys. 1994, 101, 7738) 
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X <KS|H|KS>  EC
dRPA EC

dRPA(F12) 

2 −2.59 −0.77 −1.58 

3 −2.60 −1.25 −1.62 

4   −2.63 −1.46 −1.63 

5 −2.63 −1.54 −1.64 

6 −2.64 −1.58 
. 
. 

. 

. 
. 
. 

∞  −2.64 −1.64 

dRPA(F12) theory: The water dimer 

Counterpoise (CP) corrected dRPA and dRPA(F12) interaction energies 
(kcal/mol) for the water dimer (fixed geometry from the S22 test set) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aug-cc-pVXZ basis 

PBE Kohn−Sham orbitals 
 

^ 
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CABS singles correction 

  We have a complementary auxiliary basis set (CABS). 

  How can single excitations into this CABS be included into the 
computation of the ground-state energy? 
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CABS singles correction in CCSD(F12) theory 

  Singles amplitudes equation when an auxiliary basis is present: 

  The CABS singles correction is 
obtained from: 

 

 

0 

0 

!

"

#
#
#
#

$

%

&
&
&
&

i

a

a '

!!a{ }= a{ }∪ !a{ }fa
i + fa

!b t !b
i + εa −εi( ) tai = 0

f !a
i + f !a

!b t !b
i + ε !a −εi( ) t !ai = 0

ECABS = fi
ata
i + fi

!a t !a
i

Hartree−Fock matrix 
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CABS singles correction in dRPA(F12) theory 

  Singles amplitudes equation when an auxiliary basis is present: 

  The CABS singles correction is 
obtained from: 

 

 

!

"

#
#
#
#

$

%

&
&
&
&

i

a

a '
ECABS = fi

ata
i + fi

!a t !a
i

!!a{ }= a{ }∪ !a{ }fa
i + fa

!b t !b
i + εa −εi( ) tai = 0

f !a
i + f !a

!b t !b
i + ε !a −εi( ) t !ai = 0

Hartree−Fock matrix Kohn−Sham matrix 
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X <KS|H|KS>  
+ CABS  EC

dRPA EC
dRPA(F12) 

2 −2.60 −0.77 −1.58 

3   −2.63 −1.25 −1.62 

4  −2.64 −1.46 −1.63 
5 −2.64 −1.54 −1.64 

6 −2.64 −1.58 
. 
. 

. 

. 
. 
. 

 ∞ −2.64 −1.64 

dRPA(F12) theory: The water dimer 

Counterpoise (CP) corrected dRPA and dRPA(F12) interaction energies 
(kcal/mol) for the water dimer (fixed geometry from the S22 test set) 

Including a CABS singles correction to the expectation value 

^ 
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dRPA(F12) theory: The water dimer 

Counterpoise (CP) corrected dRPA and dRPA(F12) interaction energies 
(kcal/mol) for the water dimer (fixed geometry from the S22 test set) 

AVTZ                               AVQZ    AV5Z 
AV6Z  5-6 1/X3 

in
te

ra
ct

io
n 

en
er

gy
 (k

ca
l/m

ol
) 

−4.28 kcal/mol 

dRPA  
dRPA(F12) 
dRPA CBS 
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CCSD(F12)   
 
 
CCD(F12) 
 
 
rCCD(F12) ≅ RPA(F12) 
 
 

Including exchange: The RPA(F12) method 

  Why don’t we stop at the 
rCCD(F12) level? 

  Spin-flipped excitations 
must be accounted for. 

  Hard to converge. 

  Suffers from triplet 
instabilities. 

 
 
 

    

No single excitations 
 
 
 
 
Ring diagrams only 
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SO1 and SO2 approaches for closed shells 

  In the 1970s, Szabo and Ostlund (SO) proposed to solve singlet 
(s=1) and triplet (s=3) equations (for closed-shell systems): 

 

 
 
 

    

sB+ sA sT+ sT sA+ sT sB sT = 0

1AIJ
AB = 2(AI | JB)− (AB | JI )

1BIJ
AB = 2(AI | BJ )− (AJ | BI )

3AIJ
AB = −(AB | JI )

3BIJ
AB = −(AJ | BI )

A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977). 
A. Szabo and N. S. Ostlund, Int. J. Quantum Chem. S11,  
389 (1977). 
 
See also: B. Mussard, P. Reinhardt J. G. Ángyán, 
and J. Toulouse, J. Chem. Phys. 142, 154123 (2015). 
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SO1 and SO2 approaches for closed shells 

  In the 1970s, Szabo and Ostlund (SO) proposed to solve singlet 
(s=1) and triplet (s=3) equations (for closed-shell systems): 

 

 
 
 

    

ErCCD =
1
4

tr 1B1T+33B 3T( )

ErCCD-SO1 =
1
2

tr 1B(1T− 3T)( )

ErCCD-SO2 =
1
2

tr 1K1T( )            with  1KIJ
AB = 2(AI | BJ )
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  For the respective (F12) variants (using fixed amplitudes), we obtain: 

 

 
 
 

    

ErCCD(F12)-SO1 =
1
2
tr 1B(1T− 3T)( )  +  EF12

(2)  +  tr 1L1T( )

ErCCD(F12)-SO2 =
1
2
tr 1K1T( )  +  EF12

(2)  +  tr 1M1T( )

1LIJ
AB = 1AIK

AD ' 1FKJ
D 'B − 3FKJ

D 'B( )
KD '
∑

1MIJ
AB = 1AIK

AD ' − 3AIK
AD '( ) 1FKJD 'B

KD '
∑

SO1 and SO2 approaches for closed shells 
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  The (F12) terms in the amplitudes equation (using fixed F12 
amplitudes and neglecting coupling terms), are: 

 

 
 
 

    

0 = sΩ IJ
AB(conventional) + sZ + sT sY +  sZ + sT sY( )

T

sYIJ
AB = sBIK

AD ' sFKJ
D 'B

KD '
∑

sZIJ
AB = sAIK

AD ' sFKJ
D 'B

KD '
∑

SO1 and SO2 approaches for closed shells 
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Atomization energies 
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aug-cc-pVXZ
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(TQ
)

def2-X
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The rCCD(F12)-SO2 energy can also be computed with UHF or UKS reference! 
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dRPA+F12 theory:  
Correlation energy (in Eh) of leflunomide 

MP2/aug-cc-pVTZ 
optimized equilibrium 
geometry 
 
Limit: −6.21(1) Eh 

Basis Size EC
dRPA % EC

dRPA+F12 % 
aug-cc-pVDZ   518 −4.426 71.3 −6.228 100.3 

aug-cc-pVTZ 1081 −5.466 88.0 −6.186   99.6 

aug-cc-pVQZ 1934 −5.858 94.3 −6.197   99.8 

aug-cc-pV5Z 3133 −6.020 96.9 −6.202   99.9  

F

O

N

C 
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dRPA+F12 theory:  
Relative energies of Ru8

− isomers 
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Conclusions 

  The basis-set convergence of methods that compute the 
correlation energy in the random-phase approximation (RPA) 
can be accelerated using Slater-type geminals. 

  This is not unexpected in view of the close relation to 
ring-coupled-cluster-doubles (rCCD) theory. 

  It is not straightforward to account for exchange, however. 

  In this respect, the rCCD(F12)-SO2 variant looks very 
promising. 

  We plan to use the method for computations of interaction 
energies between ground-state systems. 
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