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Road	map

• Performance	of	DFT
• Magnetic	Exchange	Couplings	from	Local	Rotations
• Fe7 disks
• Spin	Dynamics	from	DFT

Outline



J	Couplings

Magnetic	Exchange	Couplings
• Energy	differences	methods:	The	different	states	of	the	HDVV	

Hamiltonian	are	“mapped”	into	DFT	solutions
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• It	provides	a	simple scheme	to	extract	J	couplings
• It	can	be	easily	extended	to	other	cases
• Widely	used	in	the	literature
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Noodleman, JCP 74, 5737 (1981)



Phillips	and	Peralta,	J.	Chem.	Phys.	134,	034108,	(2011)

J	couplings:	Performance	of	DFT



Assessment	in	a	set	of	bimetallic	TM	complexes	with	accurate	
experimental	reference	values

J	couplings:	Performance	of	DFT



■ Cu-Cu couplings
■ 7 triply bridged Cu-Cu complexes. 
■ Exp. values from 73 to104 cm-1.

Wannarit et	al.,	PCCP	6,	1966	(2013)
Phillips	and	Peralta,	JPCA	118,	5841	(2014)

J	couplings:	Performance	of	DFT



■ Fe-Fe couplings
■ 7 oxo-bridged Fe(III)-Fe(III) complexes.
■ Exp. values from -132 to -78 cm-1.

J	couplings:	Performance	of	DFT



■ Heterodinuclear complexes
■ 6 heterodinuclear complexes (Ni, Cu, V)
■ Exp. values from -117 to +118 cm-1.

Joshi	et	al.,	JCTC	12,	1728	(2016)

J	couplings:	Performance	of	DFT



Problems	with	the	energy	differences	method

• Multicenter	TM	complexes	can	have	several	target	states	and	convergence	to	
these	can	be	difficult.

• Cannot	be	done	as	a	“black-box”.
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Can	we	extract	J couplings	in	a	more	efficient	way

Consider	local	spin	rotations

Lagrange	multipliers

𝐸 = −𝐽	𝑆F𝑆G cos 𝜃
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J	couplings:	Local	Spin	rotations



In	order	to	“twist” by	a	certain	angle	local	magnetic	moments,	
we	define

QAB = (SA ×SB ) / SASB

and	minimize the	electronic	energy	with	the	constraint

QAB =θABŷ

where	SX is	the	total	magnetization	vector	of	atom	X.

SA SB

SX = Ŝ
X

J	couplings:	Local	Spin	rotations

(for	small	qAB)



• Implemented	as	a	constraint using	Lagrange	multipliers
• Uses	analytical linear	response
• All	couplings	can	be	extracted	from	a	single	reference	state
• Close	to	energy	differences	for	“Heisenberg”	like	systems
• Works	for	multinuclear	and	heteronuclear complexes
• Needs	noncollinear kernel

Other	approaches:	
• Liechtenstein	et	al.,	J.	Phys.	F	14,	L125	(1984)
• Bruno,	PRL	90,	087205	(2003)
• Zhekova et	al.,	JCTC	7,	1858	(2011)

W = EDFT −λAB (QAB −θAB ) where	lAB represents	is	a	Lagrange	multiplier	

0=Wd
…but	we	are	interested	in	

∂2E
∂θAB

2

Hθ =H λ
−1

Hθ

Since	it	can	be	shown	that

All	we	need	is																							that	can	be	calculated	using	perturbation	theory.	

Hessian	matrix

J	couplings:	Local	Spin	rotations
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JSP	(cm-1)
energy	diff.

JCP	(cm-1)
high	spin

JCP	(cm-1)
broken	symm.

[Cu2Cl6]2- 46 46 46
[Fe2OCl6]2- -64 -65 …
H-He-H	
(linear) -3961 -4066 -3860
H-He-H	
(bent) 835 847 832

H-He2-H	(square) -4784 -4843 -4723

He2-H-He2-H-He2	 -401 -403 -398
H-Ne-H
(linear) -603 -603 -602

Proof-of-concept

J	couplings:	Local	Spin	rotations



Fe7 disks



Complex	1 Complex	2 Complex	3

Fe(III)7 disks:	Mukherjee	et	al.,	Inorg.	Chem.	50,	3849	(2011)

Low-spin	ground	state High-spin	ground	state

• Fe(III)	typically	exhibits	antiferromagnetic	coupling
• Too	many	Fe	centers	to	fit	susceptibility	data:	
Couplings	are	very	difficult/impossible	to	determine	
experimentally

Fe7 disks

S=5/2 S=15/2 S=21/2



Complex	1

From	magneto-structural	
data	[Mukherjee	et	al.,	Inorg.	
Chem.	50,	3849	(2011)] Alternated	strong	and	weak	

couplings	

Couplings	in	cm-1

DFT

Fe7 disks
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Complex	2 Complex	3

Couplings	in	cm-1

Strong	AF	“radial”	
couplings

Fe7 disks



Complex	1
S=5/2

Complex	3
high-spin

Alternated	coupling	dominates Radial	coupling	dominates

Fe7 disks



Fe7 disks

(1) Low	spin
(S=5/2)

(2) High	spin
(S=15/2)

(3) High	spin
(S=21/2)
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DFT Magneto-
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TD-DFT



§ Liouville-von Neumann equation

§ Propagates the charge density and spin density vector
simultaneously

§ Propagation in the AO basis

§ Integrator: Second-order Magnus expansion

§ Exponential: Scaling and squaring

§ Non-collinear VXC in HKS
§ Implemented in an in-house version of Gaussian

§ How to initiate dynamics: Drive the system off equilibrium

!p = −i HKS, p[ ] p = n + s�m

Peralta,	Hod,	Scuseria,	JCTC	11,	3661	(2015).	

TD-DFT



§ Propagation	step:		0.5	au	=	0.012	fs
§ PBE	functional,	6-31G**	basis
§ Dynamics	started	from	an	off-

equilibrium	noncollinear spin	
configuration

§ At	each	step	<S>A is	recorded

• Classical	spin	precession
• J can	be	obtained	comparing	to	the	

dynamics	of	a	classical	HDVV	model

!SA = J  SA ×SB

Stamenova and	Sanvito,	PRB	(2013)
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TD-DFT
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• Start	dynamics	with	different	
constraint	angles	a

• Frequency	w increases	with	a
• J	can	be	calculated	from	w and	

total	magnetization

TD-DFT



§ Cu2 BISDOW	Complex
§ PBE	with	6-31G*	basis	for	Cu,	6-31G	for	others
§ Dt = 0.0048 fs (tmax = 48 fs)

Energy	Differences
Dynamics

J = −0.23 eV

J = −0.20 eV
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Cu1 Ligands Classical Spin Dimer

TD-DFT



Summary

Acknowledgements

• HFX	dominant	factor	for	J couplings
• Current	DFT	approximations	give	large	errors	for	J couplings		(ideas?)
• Local	spin	rotations
• Dynamics	including	spin	:	spin	precession

Questions?	Comments?


