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• Exact range-separated energy expression (Savin):

E0 = min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ne|Ψ〉+ Esr,µ
Hxc [nΨ]

}
• The minimizing wavefunction Ψµ0 is the ground state of a long-range interacting system whose

density equals the exact ground-state density n0.

• Ψµ0 fulfils the self-consistent equation

(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr

δEsr,µ
Hxc

δn(r)
[nΨ

µ
0

] n̂(r)

)
|Ψµ0 〉 = Eµ0 |Ψ

µ
0 〉

• standard KS-DFT is recovered when µ = 0

• pure WFT is recovered when µ→ +∞

• Short-range functionals: srLDA, srPBE, ... (Savin, Toulouse, Gori-Giorgi, Stoll, Goll, Scuseria, ...)

• Long-range wave function calculation: HF-srDFT, MC-srDFT, FCI-srDFT, ...
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• What about the excited states ?

• The spectrum
{
Eµi
}
i=0,1,...

of the long-range interacting Hamiltonian

Ĥµ = T̂ + Ŵ lr,µ
ee + V̂ne +

∫
dr

δE
sr,µ
Hxc

δn(r)
[n0] n̂(r)

is connected with the true physical spectrum
{
Ei
}
i=0,1,...

since Eµi → Ei when µ→ +∞

• How can we make this connection more explicit ?

• Interpolation techniques [E. Rebolini et al., Phys. Rev. A 91, 032519 (2015)]

• Time-dependent adiabatic linear response theory∗:(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr

[
δEsr,µ

Hxc

δn(r)
[nΨµ(t)] + δv(r, t)

]
n̂(r)

)
|Ψµ(t)〉 = i

∂

∂t
|Ψµ(t)〉

↓

time-dependent perturbation

∗E. Fromager, S. Knecht, and H.J. Aa. Jensen, J. Chem. Phys. 138, 084101 (2013).
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• Perturbation expansion of the density and the short-range DFT potential: nΨµ(t) = n0 + δn(t),(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr

δEsr,µ
Hxc

δn(r)
[n0] n̂(r) ←− Ĥµ

+

∫
dr

[∫
dr′

δ2Esr,µ
Hxc

δn(r′)δn(r)
[n0]︸ ︷︷ ︸δn(r′, t) + . . .+ δv(r, t)

]
n̂(r)

)
|Ψµ(t)〉 = i

∂

∂t
|Ψµ(t)〉

↓

short-range kernel

• Sum over states expression for the first excitation energy (within the Tamm–Dancoff approximation)

ω ≈ Eµ1 − E
µ
0 +

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r′)nµ01(r)

+

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r)nµ01(r′1)

∑
i>1

nµ0i(r1)nµ0i(r
′)

Eµ1 − E
µ
i

+ . . .
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Ensemble DFT
• Variational principle for an equi-ensemble (Theophilou): if Ψ and Ψ′ are orthonormal then

〈Ψ|Ĥ|Ψ〉+ 〈Ψ′|Ĥ|Ψ′〉 ≥ E0 + E1

• Generalization: for a given ensemble weight w,

(1− w)〈Ψ|Ĥ|Ψ〉+ w〈Ψ′|Ĥ|Ψ′〉 = (1− 2w) 〈Ψ|Ĥ|Ψ〉︸ ︷︷ ︸+w
(
〈Ψ|Ĥ|Ψ〉+ 〈Ψ′|Ĥ|Ψ′〉︸ ︷︷ ︸

)
≥ E0 ≥ E0 + E1

• Gross-Oliveira-Kohn variational principle:

for 0 ≤ w ≤ 1/2, (1− w)〈Ψ|Ĥ|Ψ〉+ w〈Ψ′|Ĥ|Ψ′〉 ≥ Ew

where Ew is the exact ensemble energy: Ew = (1− w)E0 + wE1 → ω =
dEw

dw
= E1 − E0

• Ew is a functional of the ensemble density nw = (1− w)n0 + wn1
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Range-separated ensemble DFT

• Exact range-separated expression for the ensemble energy [Pastorczak et al. PRA 87, 062501 (2013)]:

Ew = (1− w)〈Ψµ,w0 |T̂ + Ŵ lr,µ
ee + V̂ne|Ψµ,w0 〉+ w〈Ψµ,w1 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψµ,w1 〉+ Esr,µ,w
Hxc [nw],

where the auxiliary ground- and first-excited wavefunctions fulfil the self-consistent equation(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr
δEsr,µ,w

Hxc [nw]

δn(r)
n̂(r)

)
|Ψµ,wi 〉 = Eµ,wi |Ψµ,wi 〉, i = 0, 1

and reproduce the exact ensemble density nw = (1− w)nΨ
µ,w
0

+ wnΨ
µ,w
1

• Exact range-separated excitation energy:

ω = Eµ,w1 − Eµ,w0 +
∂Esr,µ,w

xc [n]

∂w

∣∣∣∣
n=nw

O. Franck and E. Fromager, Mol. Phys. 112, 1684 (2014).
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Range-separated ensemble DFT

• Connection with time-dependent linear response theory: in the w → 0 limit,

ω = Eµ1 − E
µ
0 +

∂Esr,µ,w
xc [n0]

∂w

∣∣∣∣
w=0

• Derivative discontinuity∗ ∆: if the first excitation is a single excitation then, in the µ = 0 limit,

ω =
(
εL + ∆xc

)
− εH where ∆xc =

∂Ewxc[n0]

∂w

∣∣∣∣
w=0

• From now on we shall refer to ∆µ,w
xc =

∂Esr,µ,w
xc [n]

∂w

∣∣∣∣
n=nw

as the short-range derivative

discontinuity (DD).

∗M.Levy, Phys. Rev. A 52, R4313 (1995).
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He[11S, 21S], srLDA, aug-cc-pVQZ

Weight-independent density-functional approximation (WIDFA): Esr,µ,w
Hxc [n]→ Esr,µ

Hxc [n],
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015)

27.04.2015 Workshop in honor of Andreas Savin, Paris, France Page 10



State-averaged multi-determinant density-functional theory based on ensembles and
range separation

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0  0.1  0.2  0.3  0.4  0.5

E
n

se
m

b
le

 e
n

er
g

y
 d

er
iv

at
iv

e

w

He [µ = 0, aug-cc-pVQZ, 1
1
S, 2

1
S]

FCI
WI-srLDA

27.04.2015 Workshop in honor of Andreas Savin, Paris, France Page 11



State-averaged multi-determinant density-functional theory based on ensembles and
range separation

Linear interpolation method (LIM)

• In the exact theory: 2(Ew=1/2 − E0) = ω =
dEw

dw

• The WIDFA ensemble energy Ẽw has curvature

• There is no clear definition for the WIDFA excitation energy from dẼw/dw = Ẽw1 − Ẽw0 = ∆Ẽw

• On the other hand we have ωLIM = 2(Ẽw=1/2 − E0) that can be chosen as excitation energy,

by analogy with the fundamental gap problem ∗

T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer, J. Phys. Chem. Lett. 3, 3740 (2012).
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Linear interpolation method (LIM)

17

w
0 1/2

E
µ,w

Ẽµ,w

1/4

Z w

0

d⇠ �µ,⇠
e↵

w
0 1/2

dE
µ,w

dw

dẼµ,w

dw

1/4

�µ,w
e↵

E0 + 2w
(
Ẽw=1/2 − E0

)︸ ︷︷ ︸ = Ẽw +

∫ w

0
dξ∆ξ

eff︸ ︷︷ ︸ ⇒ 2(Ẽw=1/2 − E0)︸ ︷︷ ︸ = Ẽw1 − Ẽw0 + ∆w
eff︸︷︷︸

↓ ↓ ↓ ↓
E
w curvature correction excitation energy effective DD

B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015)
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GOK-LDA (µ = 0) effective DD in He [11S → 21S]
�,� : no self-consistency
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EXACT AND APPROXIMATE KOHN-SHAM POTENTIALS IN . . . PHYSICAL REVIEW A 90, 042501 (2014)
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FIG. 11. (Color online) Equation (10) applied to self-consistent
quasi-LDA results. The correction to the quasi-LDA KS gap (dashed
green line) is not zero, but it is too small to be noticed on this scale.
This correction is inadequate to cancel the w dependence in the qLDA
KS gap (dot-dashed red line), resulting in inaccurate, w-dependent
calculated optical gaps (dotted blue line). The gaps have been shifted
by the optical gap ω for easier comparison, and the exact results of
Fig. 7 are also shown for context.

excitation energies. The less severe w dependence of the SEHX
KS gap is due to its closer replication of the exact ensemble
derivative discontinuity, although the SEHX cancellation of
excitation-energy w dependence is not exact. Figure 8 shows
that the position of the large w bump of SEHX is at smaller
r values than the exact one. This agrees with the less rapid
change of the SEHX KS gap in the large-w region. In Fig. 13,
the sharp change of the SEHX KS gap in the small-w region
is similar to that of the exact ensemble, which is due to the
bump created by the step in "vXC. qLDA and SD potentials
have neither the large-w bump nor the small-w derivative
discontinuity step, so the w dependencies of their KS gaps
are very different from the exact one. Comparing Fig. 9 to
Figs. 4 and 8, the r = 2.5 bump in the correlation potential
(Fig. 9) fixes the position of the bump in the exchange-only
(SEHX) potential and thereby sets the w dependence of the
KS gap and its correction.
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FIG. 12. (Color online) Equation (10) applied to self-consistent
SD results. The spin-up SD KS gap (dot-dashed red line) is
insufficiently corrected by the SD corrections to the KS gap (dashed
green line), yielding calculated optical gaps that are too small (dotted
blue line). Although the w dependence is less severe than for qLDA,
it is still non-negligible. The gaps have been shifted by the optical
gap ω for easier comparison, and the exact results of Fig. 7 are also
shown for context.
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FIG. 13. (Color online) Equation (10) applied to approximate
self-consistent SEHX results. SEHX produces far less variation in
calculated excitation energies with w (dotted blue line), which appears
to be the result of its ensemble derivative discontinuity. This produces
approximate KS gaps (dot-dashed red line) and KS gap corrections
(dashed green line) that most closely resemble the exact curves
in overall shape. The exact results (as in Fig. 7) are also shown
for context. The gaps have been shifted by the optical gap ω for
easier comparison, and the exact results of Fig. 7 are also shown for
context.

VII. CONCLUSION

This work provides a method for inverting ensemble
densities, so that the resulting exact ensemble KS systems
can be used as references for developing approximated
EDFT functionals. We show the density-inversion method
for spherically symmetric systems in this paper, but it is not
difficult to generalize the method for other types of systems.
We have tested the density-inversion method in cylindrically
symmetric systems, and it also yields good results [31]. For
systems with lower symmetry, the real-space approach shown
in this paper would not yield accurate results without a massive
grid-point set. Although expression in a basis set may solve
this problem, further study is required to determine the effect
this would have on the density-inversion method’s stability
and performance.

We applied the density-inversion method on the helium
singlet biensemble for its simplicity. This exposes the con-
tinuous emergence of the exact XC potential bump from the
ensemble derivative discontinuity and facilitates comparison
with approximations. The singlet biensemble is by no means
the limit of the applicability of the density-inversion method,
however. In Ref. [31], we applied the method to ensembles
of various real and model two-electron systems, in which
it retains the numerical stability and accuracy seen in this
paper. This work illustrates that EDFT properties deviate from
ground-state DFT ones in previously unseen ways. Also, some
exact conditions, such as Eq. (10), do not suggest obvious
methods for their satisfaction by approximations. Of the
approximations we tested, the SEHX version of GPG, the only
one with an ensemble derivative discontinuity, generated the
most accurate XC potentials and excitation energies. These
complications make developing a good EDFT functional
considerably harder than in the ground state, and we hope
the exact results shown in this work can alleviate some burden
on EDFT developers.

042501-7

B. Senjean et al. arXiv:1504.06477 (2015). Z-h. Yang et al., Phys. Rev. A 90, 042501 (2014).
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�,� : no self-consistency
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015)
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Comparing LIM with adiabatic linear response theory

• Taylor expansion for the LIM excitation energy:

ωLIM ≈ Eµ1 − E
µ
0 +

1

4

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨ

µ
1

(r′)− n0(r′)
)(
nΨ

µ
1

(r)− n0(r)
)

+
1

2

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)

(
nΨ

µ
1

(r)− n0(r)
)(
nΨ

µ
1

(r′1)− n0(r′1)
)

×
∑
i≥1

nµ0i(r1)nµ0i(r
′)

Eµ0 − E
µ
i

+ . . . .

• To be compared with the expression from time-dependent adiabatic linear response theory ...

ω ≈ Eµ1 − E
µ
0 +

∫ ∫
drdr′

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r′)nµ01(r)

+

∫ ∫ ∫ ∫
dr1dr′1drdr′

δ2Esr,µ
Hxc [n0]

δn(r′1)δn(r1)

δ2Esr,µ
Hxc [n0]

δn(r′)δn(r)
nµ01(r)nµ01(r′1)

∑
i>1

nµ0i(r1)nµ0i(r
′)

Eµ1 − E
µ
i

+ . . .

B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015)
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11S → 21S ◦, ◦ : Eµ1 −Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015).
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11Σ+ → 21Σ+ �,� : no self-consistency
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015).
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11Σ+ → 21Σ+ ◦, ◦ : Eµ1 − Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015).
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11Σ+
g → 21Σ+

g �,� : no self-consistency
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015).
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11Σ+
g → 21Σ+

g ◦, ◦ : Eµ1 − Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, arXiv:1504.06477 (2015).

Reference data: E. Rebolini, J. Toulouse, A. M. Teale, T. Helgaker, and A. Savin, J. Chem. Phys. 141, 044123 (2014).
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Conclusions and outlook

• Multi-determinant range-separated DFT can be extended to excited states within the
time-independent regime (ensembles).

• Self-consistent implementation at the long-range FCI level in the DALTON program package.

• Long-term project: use state-averaged CASSCF rather than FCI→ state-averaged CASDFT method !

• The linear interpolation method (LIM) gives very promising results for single excitations (including
charge transfer) already at the GOK-DFT level (µ = 0).

• It is worth using LIM rather than the (ground-state density-functional) auxiliary excitation energy
when µ ≤ 1.

• LIM can be extended to higher excitations (linear interpolations between equiensembles up the
multiplet of interest)

• Need for weight-dependent density-functional approximations, especially for modeling double
excitations. Model systems like electrons on a ring (Gill, Loos) are currently investigated.
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