CHEMISTRY 373 -TUTORIAL-9 PRACTICE FOR SPIN AND MANY-ELECTRON ATOMS

March 15, 2000

1. (a) For the ground state of the helium atom, show that within the one-electron approximation (ignores electron-electron repulsion), the wave function for the two electrons is the product of two 1s orbitals, one for electron 1 and the other for electron 2.
(ANS. If we ignore electron-electron repulsion, the Hamiltonian can be written as the sum of two Hamiltonians, one for electron 1 and one for electron 2. Therefore, we have

$$
\widehat{H}=\widehat{H}(1)+\widehat{H}(2)
$$

where, for the j 'th electron,

$$
\widehat{H}(j)=-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{\left(4 \pi \epsilon_{0}\right) r_{j}},
$$

which is just the hydrogen atom Hamiltonian for electron j. If we assume that the wave function (excluding spin) can be written as a product of functions, one depending upon the coordinates of electron 1 and the other on the coordinates of electron 2, i.e., $\psi(1,2)=\psi(1) \psi(2)$, then

$$
\begin{gathered}
\widehat{H} \psi(1,2)=E \psi(1,2), \\
(\widehat{H}(1)+\widehat{H}(2)) \psi(1) \psi(2)=\psi(2) \widehat{H}(1) \psi(1)+\psi(1) \widehat{H}(2) \psi(2)=E \psi(1) \psi(2) .
\end{gathered}
$$

The Hamiltonian, $H(1)$, for electron 1 operates only on the wave function for electron 1 , etc. Dividing by $\psi(1) \psi(2)$ from the left yields

$$
\begin{gathered}
\frac{1}{\psi(1)} \widehat{H}(1) \psi(1)+\frac{1}{\psi(2)} \widehat{H}(2) \psi(2)=E . \\
\frac{1}{\psi(1)} \widehat{H}(1) \psi(1)=E-\frac{1}{\psi(2)} \widehat{H}(2) \psi(2)=E_{1} .
\end{gathered}
$$

Since $\frac{1}{\psi(1)} \widehat{H}(1) \psi(1)$ depends upon electron 1 only and $E-\frac{1}{\psi(2)} \widehat{H}(2) \psi(2)$ depends only on electron 2 , they can only be equal if they equal a constant, say E_{1}. Therefore, we end up with the two equations

$$
\widehat{H}(1) \psi(1)=E_{1} \psi(1), \quad \widehat{H}(2) \psi(2)=\left(E-E_{1}\right) \psi(2)=E_{2} \psi(2),
$$

where $E=E_{1}+E_{2}$ and E_{j} is the energy of a hydrogen-like ion:

$$
E_{j}=E_{n_{j}}=-\frac{2 \pi^{2} m_{e}(2)^{2} e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} n_{j}^{2} h^{2}} .
$$

The lowest energy state for the two electrons will correspond to the case when $n_{1}=n_{2}=1$, that is when each electron occupies a $1 s$ type orbital. In that case, the energy is

$$
E=2\left(-\frac{2 \pi^{2} m_{e}(2)^{2} e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} h^{2}}\right)=-\frac{4 \pi^{2} m_{e}(2)^{2} e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} h^{2}} .
$$

We write the wave function as

$$
\psi(1,2)=\psi_{1,0,0}(1) \psi_{1,0,0}(2)=1 s(1) 1 s(2) .
$$

We have ignored spin to this point.)
(b) Show that the total wave function, which is a product of space and spin functions is antisymmetric with respect to an interchange of two electrons. (You may wish to write the total wavefunction as a determinant.)
(ANS. For a 2-electron system, we can still write the wave function as a product of spatial and
spin functions

$$
\psi(1,2)=1 s(1) 1 s(2) \sqrt{\frac{1}{2}}(\alpha(1) \beta(2)-\beta(1) \alpha(2)) .
$$

Interchanging the two electrons, we get

$$
\begin{aligned}
\psi(2,1) & =1 s(2) 1 s(1) \sqrt{\frac{1}{2}}(\alpha(2) \beta(1)-\beta(2) \alpha(1)) \\
& =1 s(1) 1 s(2) \sqrt{\frac{1}{2}}(\beta(1) \alpha(2)-\alpha(1) \beta(2)) \\
& =-1 s(1) 1 s(2) \sqrt{\frac{1}{2}}(\alpha(1) \beta(2)-\beta(1) \alpha(2)) \\
& =-\psi(1,2)
\end{aligned}
$$

The wave function is antisymmetric with respect to an interchange of two electrons.)
(c) Show that the presence of spin makes no difference to the expression within the one-electron model of the ground state.
(ANS. This follows directly from the fact that the 1-electron Hamiltonians, $\widehat{H}(j)$, are independent of spin. Therefore the spin function will simply divide out.)
2. The total spin angular momentum, \vec{S}, for a two-electron system is defined by

$$
\vec{S}=\widehat{S}_{x} \widetilde{e}_{1}+\widehat{S}_{y} \widetilde{e}_{2}+\widehat{S}_{z} \widetilde{e}_{3}=\vec{S}_{1}+\vec{S}_{2}
$$

where $\widetilde{e}_{1}, \widetilde{e}_{2}$, and \widetilde{e}_{3} are the three mutually orthogonal unit vectors oriented along the x-, y-, and z-axes, respectively, and $\widehat{S}_{x}, \widehat{S}_{y}$, and \widehat{S}_{z} are the three components of total spin angular momentum. The spin angular momentum for each electron is

$$
\overrightarrow{S_{j}}=\widehat{S}_{x_{j}} \widetilde{e}_{1}+\widehat{S}_{y_{j}} \widetilde{e}_{2}+\widehat{S}_{z_{j}} \widetilde{e}_{3}, \quad j=1,2 .
$$

(a) Show that

$$
\widehat{S}_{x}=\widehat{S}_{x_{1}}+\widehat{S}_{x_{2}}, \quad \widehat{S}_{y}=\widehat{S}_{y_{1}}+\widehat{S}_{y_{2}}, \quad \widehat{S}_{z}=\widehat{S}_{z_{1}}+\widehat{S}_{z_{2}} .
$$

(ANS.

$$
\vec{S}=\widehat{S}_{x} \widetilde{e}_{1}+\widehat{S}_{y} \widetilde{e}_{2}+\widehat{S}_{z} \widetilde{e}_{3}=\vec{S}_{1}+\vec{S}_{2}=\left(\widehat{S}_{x_{1}}+\widehat{S}_{x_{2}}\right) \widetilde{e}_{1}+\left(\widehat{S}_{y_{1}}+\widehat{S}_{y_{2}}\right) \widetilde{e}_{2}+\left(\widehat{S}_{z_{1}}+\widehat{S}_{z_{2}}\right) \widetilde{e}_{3} .
$$

Identifying the coefficients of the unit vectors gives us the result that we want.)
(b) Prove that the square of the total spin angular momentum is

$$
\widehat{S}^{2}=\widehat{S}_{1}^{2}+\widehat{S}_{2}^{2}+2 \vec{S}_{1} \cdot \vec{S}_{2}
$$

(ANS.

$$
\begin{aligned}
\widehat{S}^{2} & =\vec{S} \cdot \vec{S} \\
& =\left(\vec{S}_{1}+\vec{S}_{2}\right) \cdot\left(\vec{S}_{1}+\vec{S}_{2}\right) \\
& =\vec{S}_{1} \cdot \vec{S}_{1}+\vec{S}_{2} \cdot \vec{S}_{2}+\vec{S}_{1} \cdot \vec{S}_{2}+\vec{S}_{2} \cdot \vec{S}_{1} \\
& =\widehat{S}_{1}^{2}+\widehat{S}_{2}^{2}+2 \vec{S}_{1} \cdot \vec{S}_{2}
\end{aligned}
$$

We have $\vec{S}_{1} \bullet \vec{S}_{2}=\vec{S}_{2} \bullet \vec{S}_{1}$ since the spin operators for electron 1 commute with the spin operators for electron 2, i.e., $\left[S_{x_{1}}, S_{x_{2}}\right]=\left[S_{x_{1}}, S_{y_{2}}\right]=\left[S_{x_{1}}, S_{z_{2}}\right]=\cdots=0$.)
(c) Show that

$$
\vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2}\left(\widehat{S}_{1-} \widehat{S}_{2+}+\widehat{S}_{1+} \widehat{S}_{2-}\right)+\widehat{S}_{z_{1}} \widehat{S}_{z_{2}},
$$

where $S_{j \pm}=S_{x_{j}} \pm i S_{y_{j}}$, with $j=1,2$, and hence

$$
\hat{S}^{2}=\widehat{S}_{1}^{2}+\widehat{S}_{2}^{2}+\widehat{S}_{1-} \widehat{S}_{2+}+\widehat{S}_{1+} \widehat{S}_{2-}+2 \widehat{S}_{z_{1}} \widehat{S}_{z_{2}} .
$$

(ANS. Since

$$
\vec{S}_{1} \cdot \vec{S}_{2}=\widehat{S}_{x_{1}} \widehat{S}_{x_{2}}+\widehat{S}_{y_{1}} \widehat{S}_{y_{2}}+\widehat{S}_{z_{1}} \widehat{S}_{z_{2}},
$$

and from the definition above for $S_{j \pm}$, finding that

$$
\widehat{S}_{x_{j}}=\frac{1}{2}\left(\widehat{S}_{j-}+\widehat{S}_{j+}\right), \quad \widehat{S}_{y_{j}}=\frac{i}{2}\left(\widehat{S}_{j-}-\widehat{S}_{j+}\right),
$$

we can obtain

$$
\begin{aligned}
\vec{S}_{1} \cdot \vec{S}_{2} & =\frac{1}{4}\left(\widehat{S}_{1-}+\widehat{S}_{1+}\right)\left(\widehat{S}_{2-}+\widehat{S}_{2+}\right)-\frac{1}{4}\left(\widehat{S}_{1-}-\widehat{S}_{1+}\right)\left(\widehat{S}_{2-}-\widehat{S}_{2+}\right)+\widehat{S}_{z_{1}} \widehat{S}_{z_{2}}, \\
& =\frac{1}{2}\left(\widehat{S}_{1-} \widehat{S}_{2+}+\widehat{S}_{1+} \widehat{S}_{2-}\right)+\widehat{S}_{z_{1}} \widehat{S}_{z_{2}} .
\end{aligned}
$$

Substituting this expression into that for \widehat{S}^{2} from part (b), we obtain the desired result.)
3. Using the results from the previous question, determine the eigenvalue of \widehat{S}^{2} and \widehat{S}_{z} for each of the following two-electron spin functions:

$$
\begin{aligned}
& \psi_{1}=\alpha(1) \alpha(2) \\
& \psi_{2}=\beta(1) \beta(2) \\
& \psi_{3}=\sqrt{\frac{1}{2}}(\alpha(1) \beta(2)+\alpha(2) \beta(1)) \\
& \psi_{4}=\sqrt{\frac{1}{2}}(\alpha(1) \beta(2)-\alpha(2) \beta(1))
\end{aligned}
$$

If the spin quantum number for the two-electron system is denoted by S, then determine values for S and $2 S+1$. Which of these wave functions belong to a triplet state and which to a singlet state.
(Note that a similar procedure may be used to calculate the square of the total orbital angular momentum, \widehat{L}^{2}, and its z-component \widehat{L}_{z}.)
(ANS. First, for \widehat{S}^{2}, appling this operator to the first function, we get

$$
\widehat{S}^{2} \psi_{1}=\left(\widehat{S}_{1}^{2}+\widehat{S}_{2}^{2}+\widehat{S}_{1-} \widehat{S}_{2+}+\widehat{S}_{1+} \widehat{S}_{2-}+2 \widehat{S}_{z_{1}} \widehat{S}_{z_{2}}\right) \alpha(1) \alpha(2)=S(S+1) \hbar^{2} \psi_{1}
$$

Keeping in mind that any spin operator for electron j operates only on the spin function for electron j, we get

$$
\begin{aligned}
\widehat{S}^{2} \psi_{1}= & \left(\widehat{S}_{1}^{2} \alpha(1)\right) \alpha(2)+\alpha(1)\left(\widehat{S}_{2}^{2} \alpha(2)\right)+\left(\widehat{S}_{1-} \alpha(1)\right)\left(\widehat{S}_{2+} \alpha(2)\right) \\
& \quad+\left(\widehat{S}_{1+} \alpha(1)\right)\left(\widehat{S}_{2-} \alpha(2)\right)+2\left(\widehat{S}_{z_{1}} \alpha(1)\right)\left(\widehat{S}_{z_{2}} \alpha(2)\right), \\
= & \frac{3}{4} \hbar^{2} \alpha(1) \alpha(2)+\frac{3}{4} \hbar^{2} \alpha(1) \alpha(2)+0+0+2\left(\frac{1}{2} \hbar \alpha(1)\right)\left(\frac{1}{2} \hbar \alpha(2)\right), \\
= & 2 \hbar^{2} \alpha(1) \alpha(2), \\
= & 2 \hbar^{2} \psi_{1}, \\
= & S(S+1) \hbar^{2} \psi_{1} .
\end{aligned}
$$

This implies that $S(S+1)=2$ and hence $S=1$ or -2 . The negative value of S is not possible and hence $S=1$. This implies that $2 S+1=3$, a triplet spin state. Application of \widehat{S}^{2} to ψ_{2} and ψ_{3} will yield the same result. Now, from part (a), we have

$$
\begin{aligned}
\widehat{S}_{z} \psi_{1} & =\left(\widehat{S}_{z_{1}}+\widehat{S}_{z_{2}}\right) \alpha(1) \alpha(2), \\
& =\left(\widehat{S}_{z_{1}} \alpha(1)\right) \alpha(2)+\alpha(1)\left(\widehat{S}_{z_{2}} \alpha(2)\right), \\
& =+\frac{1}{2} \hbar \alpha(1) \alpha(2)+\frac{1}{2} \hbar \alpha(1) \alpha(2), \\
& =+\hbar \alpha(1) \alpha(2), \\
& =+\hbar \psi_{1}, \\
& =M_{S} \hbar \psi_{1} .
\end{aligned}
$$

Therefore, we have $M_{S}=+1$. Similarly, we get

$$
\widehat{S}_{z} \psi_{2}=-\hbar \psi_{2},
$$

which implies that $M_{S}=-1$. Next, we get

$$
\widehat{S}_{z} \psi_{3}=0
$$

and so $M_{S}=0$. Finally, we can show that

$$
\widehat{S}^{2} \psi_{4}=0
$$

which means that $S=0$ and $2 S+1=1$. Therefore, ψ_{4} corresponds to a singlet state. Also, we have

$$
\widehat{S}_{z} \psi_{4}=0
$$

and hence, $M_{S}=0$. These eigenstates of \widehat{S}^{2} and \widehat{S}_{z} are the states of two electrons whose spins are coupled. This is an example of the addition of angular momenta for two electrons.)

