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1. (a) For the ground state of the helium atom, show that within the one-electron approximation
(ignores electron-electron repulsion), the wave function for the two electrons is the product of
two 1s orbitals, one for electron 1 and the other for electron 2.
(ANS. If we ignore electron-electron repulsion, the Hamiltonian can be written as the sum of
two Hamiltonians, one for electron 1 and one for electron 2. Therefore, we have

H = H1 + H2,

where, for the j’th electron,

Hj = − ℏ2

2me
∇j

2 − Ze2

4πε0rj
,

which is just the hydrogen atom Hamiltonian for electron j. If we assume that the wave function
(excluding spin) can be written as a product of functions, one depending upon the coordinates
of electron 1 and the other on the coordinates of electron 2, i.e., ψ1,2 = ψ1ψ2, then

Hψ1,2 = Eψ1,2,

H1 + H2 ψ1ψ2 = ψ2H1ψ1 + ψ1H2ψ2 = Eψ1ψ2.

The Hamiltonian, H1, for electron 1 operates only on the wave function for electron 1, etc.
Dividing by ψ1ψ2 from the left yields

1
ψ1

H1ψ1 + 1
ψ2

H2ψ2 = E.

1
ψ1

H1ψ1 = E − 1
ψ2

H2ψ2 = E1.

Since 1
ψ1

H1ψ1 depends upon electron 1 only and E − 1
ψ2

H2ψ2 depends only on

electron 2, they can only be equal if they equal a constant, say E1. Therefore, we end up with
the two equations

H1ψ1 = E1ψ1, H2ψ2 = E − E1ψ2 = E2ψ2,

where E = E1 + E2 and Ej is the energy of a hydrogen-like ion:

Ej = Enj = − 2π2me22e4

4πε02nj
2h2

.

The lowest energy state for the two electrons will correspond to the case when n1 = n2 = 1,
that is when each electron occupies a 1s type orbital. In that case, the energy is

E = 2 − 2π2me22e4

4πε02h2 = − 4π2me22e4

4πε02h2 .

We write the wave function as

ψ1,2 = ψ1,0,01ψ1,0,02 = 1s11s2.

We have ignored spin to this point.)
(b) Show that the total wave function, which is a product of space and spin functions is
antisymmetric with respect to an interchange of two electrons. (You may wish to write the total
wavefunction as a determinant.)
(ANS. For a 2-electron system, we can still write the wave function as a product of spatial and



spin functions

ψ1,2 = 1s11s2 1
2 α1β2 − β1α2.

Interchanging the two electrons, we get

ψ2,1 = 1s21s1 1
2 α2β1 − β2α1,

= 1s11s2 1
2 β1α2 − α1β2,

= −1s11s2 1
2 α1β2 − β1α2,

= −ψ1,2.

The wave function is antisymmetric with respect to an interchange of two electrons.)
(c) Show that the presence of spin makes no difference to the expression within the one-electron
model of the ground state.

(ANS. This follows directly from the fact that the 1-electron Hamiltonians, Hj, are
independent of spin. Therefore the spin function will simply divide out.)

2. The total spin angular momentum, S , for a two-electron system is defined by

S =

S x
e 1 +


S y
e 2 +


S z
e 3 = S 1 + S 2

where e 1,
e 2, and e 3 are the three mutually orthogonal unit vectors oriented along the x-, y-, and

z-axes, respectively, and

S x,


S y, and


S z are the three components of total spin angular

momentum. The spin angular momentum for each electron is

Sj =

S xj

e 1 +

S yj

e 2 +

S z j

e 3, j = 1,2.

(a) Show that

S x =


S x1 +


S x2 ,


S y =


S y1 +


S y2 ,


S z =


S z1 +


S z2 .

(ANS.

S =

S x
e 1 +


S y
e 2 +


S z
e 3 = S 1 + S 2 =


S x1 +


S x2

e 1 +

S y1 +


S y2

e 2 +

S z1 +


S z2

e 3.

Identifying the coefficients of the unit vectors gives us the result that we want.)
(b) Prove that the square of the total spin angular momentum is


S

2
=

S1

2
+

S2

2
+ 2S 1 ⋅ S 2

(ANS.

S

2
= S ⋅ S ,

= S 1 + S 2 ⋅ S 1 + S 2 ,

= S 1 ⋅ S 1 + S 2 ⋅ S 2 + S 1 ⋅ S 2 + S 2 ⋅ S 1,

=

S1

2
+

S2

2
+ 2S 1 ⋅ S 2.

We have S 1 ⋅ S 2 = S 2 ⋅ S 1 since the spin operators for electron 1 commute with the spin
operators for electron 2, i.e., Sx1 ,Sx2 = Sx1 ,Sy2 = Sx1 ,Sz2 = ⋯ = 0.)
(c) Show that

S 1 ⋅ S 2 = 1
2 

S1−


S2+ +


S1+


S2− +


S z1


S z2 ,

where Sj± = Sxj ± iSyj , with j = 1,2, and hence




S

2
=

S1

2
+

S2

2
+

S1−


S2+ +


S1+


S2− + 2


S z1


S z2 .

(ANS. Since

S 1 ⋅ S 2 =

S x1


S x2 +


S y1


S y2 +


S z1


S z2 ,

and from the definition above for Sj±, finding that

S xj =

1
2


S j− +


S j+ ,


S yj =

i
2


S j− −


S j+ ,

we can obtain

S 1 ⋅ S 2 = 1
4


S1− +


S1+


S2− +


S2+ − 1

4


S1− −


S1+


S2− −


S2+ +


S z1


S z2 ,

= 1
2


S1−


S2+ +


S1+


S2− +


S z1


S z2 .

Substituting this expression into that for

S

2
from part (b), we obtain the desired result.)

3. Using the results from the previous question, determine the eigenvalue of

S

2
and


S z for each of

the following two-electron spin functions:

ψ1 = α1α2

ψ2 = β1β2

ψ3 = 1
2 α1β2 + α2β1

ψ4 = 1
2 α1β2 − α2β1

If the spin quantum number for the two-electron system is denoted by S, then determine values
for S and 2S + 1. Which of these wave functions belong to a triplet state and which to a singlet
state.
(Note that a similar procedure may be used to calculate the square of the total orbital angular
momentum,


L

2
, and its z-component


Lz.)

(ANS. First, for

S

2
, appling this operator to the first function, we get


S

2
ψ1 =


S1

2
+

S2

2
+

S1−


S2+ +


S1+


S2− + 2


S z1


S z2 α1α2 = SS + 1ℏ2ψ1.

Keeping in mind that any spin operator for electron j operates only on the spin function for
electron j, we get


S

2
ψ1 =


S1

2
α1 α2 + α1


S2

2
α2 +


S1−α1


S2+α2

+

S1+α1


S2−α2 + 2


S z1α1


S z2α2 ,

= 3
4 ℏ

2α1α2 + 3
4 ℏ

2α1α2 + 0 + 0 + 2 1
2 ℏα1

1
2 ℏα2 ,

= 2ℏ2α1α2,

= 2ℏ2ψ1,

= SS + 1ℏ2ψ1.

This implies that SS + 1 = 2 and hence S = 1 or −2. The negative value of S is not possible
and hence S = 1. This implies that 2S + 1 = 3, a triplet spin state. Application of


S

2
to ψ2 and

ψ3 will yield the same result. Now, from part (a), we have




S zψ1 =


S z1 +


S z2 α1α2,

=

S z1α1 α2 + α1


S z2α2 ,

= + 1
2 ℏα1α2 +

1
2 ℏα1α2,

= +ℏα1α2,

= +ℏψ1,

= MSℏψ1.

Therefore, we have MS = +1. Similarly, we get

S zψ2 = −ℏψ2,

which implies that MS = −1. Next, we get

S zψ3 = 0,

and so MS = 0. Finally, we can show that

S

2
ψ4 = 0,

which means that S = 0 and 2S + 1 = 1. Therefore, ψ4 corresponds to a singlet state. Also, we
have


S zψ4 = 0,

and hence, MS = 0. These eigenstates of

S

2
and


S z are the states of two electrons whose spins

are coupled. This is an example of the addition of angular momenta for two electrons.)


