Rydberg Anions, Solvated-Electron Precursors and their Dyson Orbitals

Department of Chemistry and Biochemistry Auburn University www.auburn.edu/cosam/JVOrtiz

J. V. Ortiz

Current Topics in Theoretical Chemistry Universidad San Francisco de Quito Cumbayá, Quito, Ecuador 4 July 2019 90th anniversary ➡ →

Acknowledgments

- Sponsors: NSF, DTRA
- Auburn Group:
 - H. Hernández Corzo
 - M. Díaz Tinoco
 - F. Pawłowski
- Collaborators:
 - E. Miliordos, Auburn Gaussian, Inc.

Hosts: CTTC Organizers, USFQ & Ecuador

 Estudiantes - estoy disponible para contestar todas sus preguntas durante o después de esta charla

Quantum Chemistry's Missions

Deductive agenda:

Deduce properties of molecules from quantum mechanics

Calculate chemical data, especially if experiments are difficult or expensive

Inductive agenda:

Identify and explain patterns in structure, spectra, energetics, reactivity

Deepen and generalize the principles of chemical bonding

E. Schrödinger

G. N. Lewis

Ψ – Calculation versus Insight

Erwin with his Psi can do calculations – quite a few. But one thing has not been seen: *just what does Psi really mean?*

Psi remains not rightly understood

Simplified, molecular orbital concepts continue to inform chemical reasoning....

E. Hückel translation: F. Bloch

One-electron Concepts

- Can an exact theory retain molecular orbital concepts?
- Does electron propagator theory offer a solution to Mulliken's dilemma?

The more accurate the calculations become, the more the concepts vanish into thin air. - R. S. Mulliken

One-electron Equations

Hartree Fock Theory

Hartree Fock Equations:

$$(T_{kin} + U_{nucl} + J_{Coul} - K_{exch})\phi_i^{HF} \equiv$$

 $F \ \phi_i{}^{HF} = \epsilon_i{}^{HF} \ \phi_i{}^{HF}$

Same operator for all i: core, valence, occupied, virtual.

 ϵ_{i}^{HF} includes Coulomb and exchange contributions to IEs and EAs

Electron Propagator Theory

Dyson Equation:

 $[F + \Sigma(\epsilon_i^{\text{Dyson}})]\phi_i^{\text{Dyson}} = \epsilon_i^{\text{Dyson}}\phi_i^{\text{Dyson}}$

Self energy, $\Sigma(E)$: Energy dependent, nonlocal operator that varies for each electron binding energy

 $\epsilon_{i}^{\text{Dyson}}$ includes Coulomb, exchange, relaxation and correlation contributions to IEs and EAs

 ϕ_i^{Dyson} describes effect of electron detachment or attachment on electronic structure

Dyson Orbitals (Feynman-Dyson Amplitudes)

• Electron Detachment (IEs) $\Phi_i^{Dyson}(X_1) =$

 $\sum_{i=1}^{N^{-1/2}} \Psi_{N}(x_{1}, x_{2}, x_{3}, ..., x_{N}) \Psi_{i,N-1}^{*}(x_{2}, x_{3}, x_{4}, ..., x_{N})$ $dx_{2} dx_{3} dx_{4} ... dx_{N}$

 $\begin{array}{l} \bullet \quad \text{Electron Attachment (EAs)} \\ & \Phi_i^{\text{Dyson}}(x_1) = \\ & (N+1)^{-1/2} \int \Psi_{i,N+1}(x_1,x_2,x_3,\ldots,x_{N+1}) \Psi_N^*(x_2,x_3,x_4,\ldots,x_{N+1}) \\ & dx_2 dx_3 dx_4 \ldots dx_{N+1} \end{array}$

Pole Strengths

Pole strength – criterion of correlation

$$P_{i} = \int |\phi_{i}^{Dyson}(x)|^{2} dx$$
$$0 \le P_{i} \le 1$$

Sudden approximation:

Transition probabilities (intensities) proportional to pole strengths

Orbital Descriptions of Ground States

Hartree-Fock Theory
 Electron Propagator Theory

Dirac Density Matrix: $\rho(x, x') = \sum_{i}^{occ.} \phi_{i}^{HF}(x) [\phi_{i}^{HF}(x')]^{*}$ Correlated Density Matrix $\rho(x, x') = \sum_{i}^{IEs} \Phi_{i}^{Dyson}(x) [\Phi_{i}^{Dyson}(x')]^{*}$

Total Energy: $E = \frac{1}{2} \sum_{i}^{OCC.} (T_{ii} + U_{ii} + \varepsilon_{i}^{HF})$

Correlated Total Energy: $E = \frac{1}{2} \sum_{i}^{IEs} p_i (T_{ii} + U_{ii} + \epsilon_i^{Dyson})$

Electron Propagator Concepts

Electron Correlation

Dyson Orbital

Correlated Electron Binding Energy

> Intensity Factors Between 1 & 0

Energy-dependent, Self-Energy

Orbital Energy	 Corr Bi
Occupation Numbers of 1 or 0	 Ir B
ndependent-Particle Potential	 Ene

Canonical MO

Chemical Reactivity: Superacids & Superhalogens

- What is the strongest Brønsted-Lowry acid, HB?
- $HB_n \rightarrow H^+ + B_n^ \Delta E_{n,ion}$ (acidity) ■ $HB_n \rightarrow H + B_n$ $\Delta E_{n,cov}$
- Assume $\Delta[\Delta E_{cov}] = \Delta E_{n,cov} \Delta E_{n',cov} \approx 0$
- Hess's Law → relative acidities correlate with B electron affinities

 $\Delta[\Delta E_{ion}] \approx \Delta[EA(B)]$

Champion Superacids & Their Conjugate Bases: Icosahedral H[HCB₁₁X₁₁] & HCB₁₁X₁₁⁻

Superacid Champions: Icosahedral Carboranes H[CHB₁₁X₁₁]

- X = H, F or CI
- All conjugate bases are superhalides.
- Superacid H⁺ detaches from BX vertex *opposite* CH.
- ΔE_{ionic} correlates
 with 2nd, not 1st
 vertical e⁻ detach.
 energy (VEDE) of
 conjugate base.

Dyson Orbitals of CHB₁₁X₁₁⁻ Electron Detachment:

X = H

X = F

X = CI

Dyson	orbital	Dyson	orbital	Dysor	ı orbital
Front	Back	Front	Back	Front	Back

- Agreement with anion PES of L.S. Wang to within 0.1 eV in all cases
- 1st VEDE: front & back views are ≈
- 2nd VEDE: larger lobes on acidic vertex

How to Optimize Superacids

- For $HB_n \rightarrow H + B_n$, $\Delta[\Delta E_{cov}] \approx 0$ is a better approximation for 1st excited state of B_n .
- Therefore, optimize superacids by maximizing 2nd VEDE of B⁻ superhalide, i.e. electron affinity of B excited state
- Excited states can underlie ground-state reactivity.

Approximate Dyson Equations in HF Canonical MO Basis

Diagonal (quasiparticle) self-energies: D2, P3, P3+, D3, OVGF $E = \epsilon_p + \Sigma_{pp}(E)$ $\phi^{Dyson} = P^{0.5} \phi^{HF}$ Non-diagonal self-energies: 2ph-TDA, 3+, ADC(3), NR2

 $[\mathbf{F} + \boldsymbol{\Sigma}(\boldsymbol{E})]\mathbf{C} = \mathbf{C}\mathbf{E}$ $\boldsymbol{\Phi}^{\text{Dyson}} = \mathbf{P}^{0.5} \boldsymbol{\Sigma}_{r} \boldsymbol{\Phi}_{r}^{\text{HF}} \mathbf{C}_{r}$

Fock and Self-Energy Operators

Superoperator Metric: (X|Y) = <0|[X⁺,Y]₊|0>
 Superoperator Hamiltonian: ĤX = [H,X]₋

Primary operator couplings: $(a_p^{\dagger}|\hat{H}a_q^{\dagger}) = h_{pq} + \Sigma_{rs} < pr||qs > \rho_{rs} = F_{pq}$

Secondary operator couplings: Σ_{pq}(E)=(a_p[†]|Ĥf)(f|E-Ĥ|f)⁻¹(f|Ĥa_q[†])

Secondary ionization operator manifold: **f** = {**f**₃, **f**₅, **f**₇,...}

Accuracy & Efficiency: Composite EP Methods

- Small anion test set
- Larger anion cases: superhalogens anion-molecule organic rings inorganic rings
- Best N⁵ diag. method: $\Sigma^{P3+}(E) \rightarrow CP3+$
- Best N⁵ full method: $\Sigma^{NR2}(E) \rightarrow CNR2$
- MUEs ≈ 0.1 eV

Standard: extrap. ΔCCSD(T)

Strongly Correlated Reference States: BD-T1 Self-Energy

- Approximate Brueckner determinant & associated t₂ amplitudes in reference state
 - choose BD (Brueckner doubles, coupled-cluster)
- Retain all ring, ladder & mixed ring-ladder $\Sigma(E)$ diagrams
 - F₃ (2hp + 2ph) operator manifold
- Neglect only 2ph-2hp couplings
- Versatility:
 - Valence IEs & EAs
 - Biradicals
 - Core (1s) IEs

Photoelectron Spectrum of NH₄-

A: H⁻ detachment with vibrational excitation of NH₃

X: $H^{-}(NH_{3})$ NH₃ increases H^{-} EBE B: Strange low-EBE peak Not due to hot NH₄⁻ Variable relative intensity Another isomer of NH₄⁻?

Computational Search: What is the structure for the low-EBE peak?

Idea: $NH_2^{-}(H_2)$ anion-molecule complex Reject: peak would have higher (not lower) EBE

> Idea: NH₄⁻ has 5 valence e⁻ pairs Deploy in 4 N-H bonds and 1 unshared pair at the 5 vertices of a trigonal biprism or square pyramid

Calculations find no such structures! Instead, they spontaneously rearrange

Structural Confirmation: Experiment and Theory

NH ₄ ⁻ Structure	BD-T1	Experiment
H ⁻ (NH ₃)	1.07	1.11 ± 0.02 eV
Tetrahedron	0.48	0.47 ± 0.02

Predicted EBEs from Electron Propagator Theory for Anion(molecule) and Tetrahedral forms of NH_4^- coincide with peaks from photoelectron spectrum

Dyson Orbitals for EBEs of NH₄⁻

H⁻(NH₃) has 2 electrons in hydride-centered orbital with minor N-H delocalization. EBE is 1.07 eV

Tetrahedral NH_4^- has 2 diffuse electrons located chiefly outside of NH_4^+ core. EBE is 0.47 eV

Double Rydberg Anions

- Highly correlated motion of two diffuse (Rydberg) electrons in the field of a positive ion (NH₄⁺, OH₃⁺)
- United atom limit is an alkali anion: Na⁻
- Extravalence atomic contributions in Dyson orbitals

Photoelectron Spectrum of $N_2H_7^-$ X: H⁻(NH₃)₂ e⁻ detachment B & C: two low EBEs!

Calculated N₂H₇⁻ Structures

 H⁻(NH₃)₂ anionmolecule complex

 NH₄⁻(NH₃) anionmolecule complex with tetrahedral NH₄⁻

 N₂H₇⁻ with hydrogen bond (similar to N₂H₇⁺)

 \bigcirc

N₂H₇⁻ EBEs and Dyson Orbitals

 $H^{-}(NH_3)_2$ has hydride centered Dyson orbital BD-T1 predicts 1.49 eV for EBE Peak observed in spectrum at 1.46 ± 0.02 eV

Dyson orbital concentrated near NH_4^- BD-T1 predicts 0.60 eV for EBE Peak observed at 0.58 ± 0.02 eV

> Dyson orbital concentrated near 3 hydrogens BD-T1 predicts 0.42 eV for EBE Peak observed at 0.42 ± 0.02 eV

N₅H₁₆⁻ EBE & Dyson Orbital

- Experiment: relatively intense, low-energy peak at 0.43 eV
- EPT EBE = 0.39 eV for T_d DRA's
 ²A₁ final state
- First solvation sphere is complete
- Diffuse a₁ Dyson orbital

N₅H₁₆⁻ Shake-up EBE

- Experiment: shake-up peak with 0.70 eV displacement
- EPT shake-up displacement = 0.58 eV for ²T₂ final state

N₅H₁₆ Aufbau principle: 1s, 1p, 1d, 2s, 1f, 2p, 2d

Toward Diffuse Electron Pairs in Condensed Phases

 Require charge neutrality – replace central cation by a *dication*

E. Miliordos

Could Be(NH₃)₄ have two diffuse electrons that surround a T_d Be(NH₃)₄²⁺ core?
 Double Rydberg *Molecule* OR Solvated Electron Precursor

Aufbau Principle for Solvated Electron Precursors

- Dyson orbitals for EAs of Be(NH₃)₄ⁿ⁺ (n=1,2) → ground & excited states for n = 0, 1
- Diffuse Aufbau principle:
 1s 1p 1d 2s 1f 2p
- Be(NH₃)₁₆ⁿ⁺ has 1g level
- Paramagnetic cores
- Covalent oligomers

Electron Pair Concepts: Old and New

Chemical bonds arise from pairs of electrons shared between atoms

Unshared pairs localized on single atoms affect bond angles

G.N. Lewis

I. Langmuir W

W.N. Lipscomb

R.J. Gillespie R.S. Nyholm

Molecular cations may bind a diffuse e⁻ pair: Double Rydberg Anions & Solvated e⁻ Precursors

Insights from Electron Propagator Theory

 Ab initio prediction and interpretation of spectra and energetics

 Rigorous, one-electron concepts deepen and generalize qualitative chemical notions

