

Molecular Architectures built from Heteroborane Clusters:

Electronic Structure and Beyond

Josep M. Oliva Institute of Chemical-Physics, Spanish Research Council

Paris 2012 Workshop on ab initio Valence-Bond theory July 2012

Three broad fields in Boron Chemistry

Context of the Scientific Problem

-This talk focusses mainly on electronic structure of polyhedral heteroboranes in combination with: themselves (nD), metals and biomolecules

- Polyhedral Boron chemistry has provided very rich molecular architectural constructs since the second half of XXth century and beginning of the XXIst century

- Scarce knowledge on electronic structure of Polyhedral Boron Chemistry and Solid-State Boron Chemistry

- Biological role for Boron unknown

POLYHEDRAL HETEROBORANE QUANTUM CHEMISTRY

Electronic Structure in $\underline{Spin \ge 0}$ one-, two- and three-Dimensional Architectural Constructs

Endohedral and Transition-Metal Complexes

Excited States

Experiments on Ion-Molecule Reactions

Electronic Structure as Function of Charge (q), Spin (S), Vertex/Cage Subtituents (R) and Wave-Function Nature (Ψ)

Valence-Bond Theoretic Approach \leftrightarrow Composite-System Models

Electronic Structure/Geometry as Function of Substituent R

Neutral Icosahedral *ortho*-carboranes 1,2-(R)₂-1,2-C₂B₁₀H₁₀

substituent R

Dianions: C…C distance as function of substituent R

Dianions

MO analysis

Topological Analysis

* Ring Critical Point• Bond Critical Point

Biradicals derived from Monomers and Dimers of $r - C_2B_{10}H_{12}$, $r = \{ortho, meta, para\}$

"Broken-Symmetry" - "Spin-Projected" Method

$$\Psi_{\text{unr},\mathbf{S}} = a\Psi_{\mathbf{S}} + b\Psi_{\mathbf{T}}$$

with
$$a^2 + b^2 = 1$$

 $b^2 = \frac{1}{2} \langle \Psi_{\text{unr,S}} | \hat{S}^2 | \Psi_{\text{unr,S}} \rangle$

$$E_{\text{unr},\mathbf{S}} = \langle \Psi_{\text{unr},\mathbf{S}} | \hat{H} | \Psi_{\text{unr},\mathbf{S}} \rangle = a^2 \langle \Psi_{\mathbf{S}} | \hat{H} | \Psi_{\mathbf{S}} \rangle + b^2 \langle \Psi_{\mathbf{T}} | \hat{H} | \Psi_{\mathbf{T}} \rangle$$

$$E_{\mathbf{s}} = \langle \Psi_{\mathbf{s}} | \hat{H} | \Psi_{\mathbf{s}} \rangle = \frac{E_{\mathrm{unr},\mathbf{s}} - b^{2} E_{\mathbf{T}}}{1 - b^{2}} \Rightarrow \Delta_{\mathbf{sT}} = E_{\mathbf{s}} - E_{\mathbf{T}} = \frac{E_{\mathrm{unr},\mathbf{s}} - E_{\mathbf{T}}}{1 - b^{2}}$$

Calibration for Singlet Diradicals: CASPT2 \Leftrightarrow "Broken-Symmetry" Model

Quantum-Chemical Computations of Singlet-Triplet Energy Gaps

Broken-Symmetry Solutions Calibrated with CASPT2 computations Singlet States lower than Triplet States for any Double Hydrogen Removal

Dimers: Unit structure $CB_{11}H_{12} \rightarrow Non-Metal Free (Poly)Radicals$

$$\Box = \{ -C \equiv C -, -CH = CH - \}$$

$$v_{R} = \frac{\Delta E}{h} = \frac{g\mu_{B}B}{h} = \frac{2.0037 \times (9.3 \times 10^{-24} \,\text{J/T}) \times 376 \times 10^{-4} \,\text{T/G}}{6.6 \times 10^{-34} \,\text{J} \cdot\text{s}^{-1}} \approx 1.043 \times 10^{8} \,\text{Hz}$$

Every vertex \rightarrow BH $\bigcirc = \{ \odot, - \}$

Energy as Function of q and $S \rightarrow E = E(q, S)$

Table 1

Relative energies (ΔE_r), vertical (ΔE_v) or adiabatic (ΔE_a) singlet-triplet energy gaps (all in eV), and other properties for the low-lying states of the dimers studied in this work at different levels of theory: DFT/(U)B3LYP/6-31+G(d) \rightarrow DFT and CASPT2//DFT/6-31+G(d) \rightarrow CP2.

System (q) ^a	<Ŝ ² >	PGS ^b	IMAG ^b	$\Delta E_{\rm r}^{\rm DFT,c}$	$\Delta E_{ m v}{}^{ m DFT,d}$	ΔE_{a}^{DFT}	$\Delta E_{\rm r}^{\rm CP2,c}$	$\Delta E_{\rm v}{}^{\rm CP2,d}$	ΔE_a^{CP2}
Dianion									
$S_0 (-2)^e$	0.0000	C_2	20i	0.00	5.12	_	0.00	5.51	_
<i>cis</i> -T ₁ (-2)	2.0043	C_2	-	_	_	3.79	-	_	3.64
trans- $T_1(-2)$	2.0066	C_2	_	_	_	3.78	_	_	3.49
Radical anion					•			•	
$D_0(-1)$	0.7521	C_2	-	2.83	-	-	3.11	-	_
Neutral biradical									
$S_0(0)^f$	1.0080	C_2	13i	9.19	0.013	- 1	8.88	0.007	—
$T_{1}(0)$	2.0075	Cs	8i	-	-	0.004	-	-	0.005

A closed-shell $S_0(C_{2x})$ structure is found with $\langle \hat{S}^2 \rangle$ zero 0.04 eV higher in energy than the biradical broken-symmetry solution.

^a System(q) \rightarrow singlet (S), doublet (D) or triplet (T) state with charge q.

^b Point-group symmetry (PGS) and residual imaginary frequency (IMAG) of the optimized structure.

^c ΔE_r is the relative energy of each compound from the singlet (ground) state of the dianion as the most stable case.

^d ΔE_v is the singlet-triplet gap at the singlet (ground) state geometry.

^e For the singlet dianion the pure DFT/(U)B3LYP and broken-symmetry solutions are equivalent.

^f Broken-symmetry solution. The DFT singlet–triplet energy gaps are approximated as $\Delta E = 2(E_{BS} - E_T)/(\langle \hat{S}^2 \rangle_T - \langle \hat{S}^2 \rangle_{BS})$.

ΔΕ_{ST}~ 0.005 eV < k_BT (0.025 eV)

Neutral Biradical with -HC=CH- bridge

 $E_T = -713.817812$ au $E_{unr,S} = -713.819606$ au $\langle \hat{S}^2 \rangle_{unr,S} = 0.7818$ UB3LYP/6-31+G(d) Computations

$$\Delta_{ST} = E_S - E_T = \frac{E_{unr,S} - E_T}{1 - b^2} = -0.003 \text{ eV}$$

$$\Delta_{DQ} = E_{1/2} - E_{3/2} = \frac{E_{unr,S=1/2} - E_{3/2}}{1 - b^2} = \frac{12 \cdot (E_{unr,S=1/2} - E_{3/2})}{15 - 4 \cdot \left\langle \hat{S}^2 \right\rangle_{unr,S=1/2}}$$

$$\Delta E_{DQ} (eV)$$

Figure 6. The four trimers derived from the two possible orientations A/B of carborane $CB_{11}H_{12}$ (s=1/2) – see Figure 5 above – connected through acetylene bridge unions: (a) A-CC-A-CC-A, (b) A-CC-B-CC-A, (c) A-CC-B-CC-B, and (d) B-CC-B-CC-A. The dot in each cage representes one unpaired electron.

+0.02

-0.015

-0.011

–0.054 far-IR

Cyclic Polyradical Systems

System, Spin	Energy (au)	$\langle \hat{S}^2 \rangle$	ΔE (eV)
(I)	-952.829852	3.76	
(I)	-952.829762	1.76	0.004
System, Spin	Energy (au)	$\langle \hat{S}^2 \rangle$	ΔE (eV)
(II)	-1181.351576	3.76	0.030
(II)	-1181.350845	1.75	

UB3LYP/6-31G* method

1D Heteroborane Chains with Transition Metals

Figure 8. (a) $C_2B_8H_{10}{}^4$ cluster, (b) $C_4B_6H_{10}{}^{2*}$ cluster. Optimized geometries at Hartree-Fock/6-31G* level. Energy minima.

Tetrahedron Supercluster: $[{(H_9B_{11}C)C \equiv C}^{\circ}]_4$

E(q = -4, S = 0) = -1725.452994 au q = -3, S = $\frac{1}{2}$ q = -2, S = 1 q = -1, S = $\frac{3}{2}$ q = 0, S = 2

Map onto model Hamiltonian (Heisenberg - Dirac - Van Vleck):

$$\widehat{H}_{spin} = \sum_{i,j} -J_{ij}\widehat{S}_i \cdot \widehat{S}_j$$

22

Dissociation: $H_2 \rightarrow H + H$

R(Å)

Model System: H_n clusters \rightarrow Map onto 1D, 2D and 3D Boron Cluster Architectures

Polyhedrons considered here:

i) Planar Cycles : Perfect triangle, square, pentagon and hexagon

ii) 3D Polyhedra: Octahedron, cube and icosahedron

(ii) Endohedral Complexes

 \rightarrow Reaction Coordinate \rightarrow

Figure 2. Energy landscape - to scale - in $Li_2B_{12}H_{12}$ groundstate S_0 : Thermal ejection mechanism $Li[Li@B_{12}H_{12}] \rightarrow Li_2B_{12}H_{12}$, showing reactant (R, *exo/endo* complex), transition state (TS) and product (P, *diexo* complex). B3LYP/6-311+G(d,p) computations.

(Photochemical) Energy Landscapes in LiCB₁₁H₁₂

 \rightarrow Reaction Coordinate \rightarrow

Energy Landscapes from Solid State Chemistry $[Sc@B_{24}H_{24}]^+$

O sym

The crystal structure of ScB₁₂ consists of fused large B₂₄ and small B₁₂ truncated octahedra and cubes respectively

$$B_{24}H_{24}]^{2-}$$

$$[Sc@B_{24}H_{24}]$$

B+0

(Excited State) Energy Landscapes of B₁₈H₂₂ isomers

anti - $B_{18}H_{22}$

syn - B₁₈H₂₂

Pitochelli, Hawthorne, JACS (1962)

anti- $B_{18}H_{22}$ (C_i)

syn-B₁₈H₂₂ (C₂)

anti- $B_{18}H_{22}$ (C_i)

Ion-Molecule Experiments with Heteroboranes

7-Tesla Fourier Transform Ion Cyclotron Resonance (7T FT-ICR)

Figure 1. FT-ICR spectrum of $LiCB_{11}H_{12}$ sample, showing peaks with an isotopic mass distribution corresponding to the following anions: (a) dimer $[CB_{11}H_{12}-Li-CB_{11}H_{12}]^{3-}$; (b) monomer $[CB_{11}H_{12}]^{-}$; (c) dimer $[CB_{11}H_{12}-Li-CB_{11}H_{12}]^{2-}$; (d) dimer $[CB_{11}H_{12}-Li-CB_{11}H_{12}]^{-}$; (e) dimer $[CB_{11}H_{12}-Na-CB_{11}H_{12}]^{-}$

$Li_2B_{12}H_{12}$

Figure 2. FT-ICR spectrum of $Li_2B_{12}H_{12}$ sample. It shows several peaks being the most intense: (a) $[LiB_{12}H_{12}]^-$ at m/z= 149.2 Da; (b) overlap of $[LiB_{12}H_{12}-Li_2B_{12}H_{12}]^-$ and $[LiB_{12}H_{12}-Li_2B_{12}H_{12}]_2^{-2}$ at m/z=304.5 Da. These peaks are very well resolved (enlargement is shown). The peaks for m/z> 370 are polymeric anions (with a charge of -2) of $[LiB_{12}H_{12}-Li_2B_{12}H_{12}]^-$ formed adding successively $Li_2B_{12}H_{12}$.

Figure 4. Optimized geometry of $(Li_2B_{12}H_{12})^-$ (left) and the most probable energy minimum for the dimer $(Li_2B_{12}H_{12})\cdots(LiB_{12}H_{12})^- \equiv [Li_{2n-1}(B_{12}H_{12})_n]^{-1}$ with n = 2 (right), calculated at the B3LYP/6-31G* level.

Boron Neutron Capture Therapy (BNCT)

Metalaboranes inhibit HIV protease

Two metallaboranes are joined by a linker chain with a central quaternary amine X-Ray structure of the inhibitor bound to the enzime

Rezácová et al, J. Med. Chem. (2009)

 $\begin{array}{lll} \mbox{Valence-Bond-} & |\Phi\rangle = \phi_1(1) & \phi_2(2) & \dots & \phi_N(N) \\ \mbox{theoretic model} & & <X\rangle = <\Phi|X|\Phi\rangle \\ \mbox{Want } \mathcal{H} \equiv \Sigma_P \ \mathcal{J}_P \cdot P \ \mbox{equivalent to Schrödinger H on space of $\{P \mid \Phi > : P = \mbox{permutation}$\} \\ \end{array}$

<u>Solution</u>: Find \mathcal{I}_P so that $\langle P \cdot H \rangle = \sum_Q \mathcal{I}_Q \cdot \langle P \cdot Q \rangle$, $P \in \mathcal{S}_N$

unique! (invert for \mathcal{I}_P 's)

 $\mathcal{J}_P = \mathcal{J}_{P^{-1}}$ real (for standard H)

 \mathcal{J}_P reflect point-group & space-group symmetries

 $\mathcal{J}_{I} \sim N^{1}$ & otherwise $\mathcal{J}_{P} \sim N^{0}$ (or less)

Conclusions and Future Directions

- We have explored properties on groundstate and excited state in polyhedral heteroboranes and endohedral derived systems
- Polyradical heteroborane superclusters as model systems for magnetism in 1D, 2D and 3D needs a mapping on Spin Hamiltonians or developing a <u>VB-based</u> Composite-System model (with Doug Klein)

 $\boldsymbol{P} = \boldsymbol{P} \left(\boldsymbol{R}, \boldsymbol{q}, \boldsymbol{S}, \boldsymbol{\Psi} \right)$

Large stability of polyhedral closed (closo) cages → ideal candidates for experimental and computational studies of soft interactions with biomolecules - role of boron in biology? (recently started research line with experimentalists)

Electronegativities: $\chi(C) > \chi(H) > \chi(B)$

Thanks

Gabriel Aullón Moisés Canle Juan Dávalos Antonio Laguna Manuela Merchán Arturo Santaballa Vicenta Sauri Francesc Teixidor Luis Serrano-Andrés⁺ Ángel Vegas Clara Viñas

Diego Alcoba Neil Allan Drahomír Hnyk Josef Holub Douglas J. Klein Josef Michl Paul Schleyer Alan J. Welch Bohumír Grüner Thomas Schmalz Itai Panas

