Topological approaches to intermolecular interactions

Paris 26 – 28 June

Indicators based on electron density inhomogeneity

Kati Finzel

Max Planck Institute for Chemical Physics of Solids

Introduction

ω-restricted partitioning

A.M. Pendas, M. Kohout, M.A. Blanco and E. Francisco, Beyond Standard Charge Density Topological Analyses, in Modern Charge Density Analyses, by C. Gatti and P. Macchi, Springer, 2012

ω-restricted space partitioning

 μ_{i}

ω-restricted space partitioning

electron density inhomogeneity I_p

$$I_{p}(i) = \sqrt[p]{\int_{\mu_{i}} |\rho - \overline{\rho}_{i}|^{p} dV}$$

$$I_{p}(i) \approx \frac{1}{2(p+1)^{1/p}} |\nabla \rho(a_{i})| V_{i}^{\frac{p+3}{3p}}$$

$$V_i \approx \omega_p^{\frac{3p}{p+3}} \left[\frac{2^p (p+1)}{|\nabla \rho(a_i)|^p} \right]^{\frac{3}{p+3}}$$

ω-restricted space partitioning

electron density inhomogeneity I_p

$$I_{p}(i) = \sqrt[p]{\int_{\mu_{i}} |\rho - \overline{\rho}_{i}|^{p} dV}$$

$$I_{p}(i) \approx \frac{1}{2(p+1)^{1/p}} |\nabla \rho(a_{i})| V_{i}^{\frac{p+3}{3p}}$$

$$V_i \approx \omega_p^{\frac{3p}{p+3}} \left[\frac{2^p (p+1)}{|\nabla \rho(a_i)|^p} \right]^{\frac{3}{p+3}}$$

$$\tilde{C}_{1}(r) = 4^{3/4} \frac{1}{|\nabla \rho(r)|^{3/4}} \rho(r)$$

$$\tilde{C}_{1}^{4/3}(r) = 4 \frac{1}{|\nabla \rho(r)|} \rho(r)^{4/3}$$
Proportional to the inverse of the NCI indicator
$$s(r) = \frac{1}{2k_{F}} \frac{|\nabla \rho(r)|}{\rho(r)^{4/3}}$$

The functional C_p

Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

Adjustment of C_p to ELI-D

CH₄, H₂O: ADF/HF/QZ4P

N₂: G09/HF/cc-pVQZ

 CH_4

ELI-D

Core regions are alike

Lone pair regions are similar

Bonding regions are different

non polar bonds

polar bonds

non bonded systems non covalent interactions

non bonded systems non covalent interactions

Summary

