Green's function approach to the nuclear many-body problem

Vittorio Somà CEA Saclay RPA workshop Paris, 2 May 2017

Collaborators

- Thomas Duguet (CEA Saclay)
- Carlo Barbieri (University of Surrey, UK)
- Petr Navrátil (TRIUMF, Canada)

Outline

- Ab initio nuclear many-problem: state of the art
- Self-consistent Green's functions: current implementations and issues
- Benchmarks & modelling of nuclear Hamiltonians
- \circ Study of potential bubble nucleus Si34

Ab initio nuclear *A*-body problem

Nucleus: system of A structure-less nucleons
Nucleons interact via inter-nucleon (2N, 3N, ..) forces
Hamiltonian H from an effective field theory (EFT)

Systematic construction of H for a given set of d.o.f.
Symmetries of underlying theory (here QCD) built in
Couplings fixed by underlying theory or exp. data

• EFTs for nuclear systems: **pionless** or **chiral EFT** • Solve $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ (as well as you can)

Difficulties: costly many-body methods, highly nontrivial construction of interactions
Benefits: systematic improvement, assessment of errors - controlled extrapolations
Questions: does it work, to what accuracy and which are the limits of applicability?

Self-consistent Green's function approach

• Solution of the A-body Schrödinger equation $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, A-body objects $G_1=G$, G_2 , ... G_A (Green's functions)

2) Expanding these objects in perturbation (in practise **G** → **one-body observables**, etc..)

• **Self-consistent** schemes resum (infinite) subsets of perturbation-theory contributions

Self-consistent Green's function approach

• Solution of the A-body Schrödinger equation $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, A-body objects $G_1=G$, G_2 , ... G_A (Green's functions)

2) Expanding these objects in perturbation (in practise **G** → **one-body observables**, etc..)

• Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

● G → ground-state properties of even-even A + spectra of odd-even neighbours
 ○ Advanced resummation schemes exist

 \circ Some operators routinely computed, more to be implemented

 \circ Optical potential for nucleon-nucleus scattering obtainable directly from Σ

 \odot **G**₂ (polarisation propagator) \rightarrow excited spectrum of even-even A

 \circ To be developed

Self-energy approximation schemes

• Algebraic Diagrammatic Construction (ADC)

[Schirmer, Cederbaum & Walter 1983]

- Exploits spectral form of self-energy to reformulate its expansion into an algebraic form
- \circ ADC(*n*) includes complete *n*-th order (dressed) perturbation theory diagrams for *G*

• Results in Hermitian eigenvalue problems within limited spaces of *N*±1 systems

Self-energy approximation schemes

• Algebraic Diagrammatic Construction (ADC)

[Schirmer, Cederbaum & Walter 1983]

- Exploits spectral form of self-energy to reformulate its expansion into an algebraic form
- \circ ADC(*n*) includes complete *n*-th order (dressed) perturbation theory diagrams for *G*

• Results in Hermitian eigenvalue problems within limited spaces of *N*±1 systems

• Faddeev-RPA

[Barbieri & Dickhoff 2007]

- \circ Each ph and pp/hh channel is computed separately
- \circ Two-body propagators are subsequently coupled to a third line
- All-order summation through a set of Faddeev equations

Ab initio methods for open-shell nuclei

● Standard expansion schemes fail when dealing with, e.g., pairing instabilities
 → Idea: use symmetry breaking (particle number) to account for pairing

$$\begin{split} H|\Psi_k^A\rangle &= E_k^A|\Psi_k^A\rangle\\ |\Psi_0^A\rangle &= \Omega_0|\phi\rangle \end{split}$$
 where both Ω_0 and $|\phi\rangle$ break symmetries

 $E_0^A = \frac{\langle \phi | H\Omega_0 | \phi \rangle}{\langle \phi | \Omega_0 | \phi \rangle}$

- Gorkov self-consistent Green functions (GGF) [Somà, Duguet, Barbieri 2011]
- Multi-reference IMSRG [Hergert *et al.* 2013]
- Bogoliubov coupled-cluster (BCC) [Signoracci *et al.* 2015]
- Symmetry-restored BCC [Duguet 2015; Duguet, Signoracci 2016]

• Revisit basic/investigate new questions from an ab initio perspective

- Emergence of magic numbers and their evolution
- **Limits of stability** on neutron-rich side beyond *Z*=8
- **•** Mechanism for nuclear superfluidity
- \circ Emergence and evolution of quadrupole collectivity
- \circ Role and validation of AN forces

Gorkov-Green's functions

Gorkov-Green's functions

ADC(n)) diagrams	<i>n</i> =1	2	3	
	Dyson	1	1	2	
	Gorkov	2	4	34	

Three-body forces

Hamiltonians for A-nucleon systems contain in principle up to A-body operators

 At least three-body forces need to be included in realistic ab initio calculations

 Diagrammatic expansion can be simplified by exploiting the concept of effective interactions

 Generalisation of normal ordering (fully correlated density matrices)

effective 1-body

$$figure 2-body$$

 $figure 2-body$
 $figure 2-body$
 $figure 2-body$
 $figure 2-body$
 $figure 2-body$

• One introduces **interaction-irreducible** diagrams

● Galitskii-Migdal-Koltun sum rule needs to be modified to account for 3N term W

$$E_0^N = \frac{1}{2\pi} \int_{-\infty}^{\epsilon_F^-} d\omega \sum_{\alpha\beta} (T_{\alpha\beta} + \omega\delta_{\alpha\beta}) \operatorname{Im} G_{\beta\alpha}(\omega) - \frac{1}{2} \langle \Psi_0^N | \hat{W} | \Psi_0^N \rangle$$

Oxygen anomaly as ab initio benchmark

Correct reproduction of drip line at ²⁴O

Oxygen anomaly as ab initio benchmark

Correct reproduction of drip line at ²⁴O

Changing the strategy: NNLO_{sat}

• Standard ChEFT interactions successful in the description of light nuclei

- Description **worsens** when going to heavier systems
- \circ Spectra too spread out
- Radii severely underestimated
- Wrong saturation point of nuclear matter?

Changing the strategy: NNLO_{sat}

• Standard ChEFT interactions successful in the description of light nuclei

Bubble nuclei?

 \odot Unconventional depletion ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei

• Purely quantum mechanical effect

- $\circ \ell = 0$ orbitals display radial distribution peaked at r = 0
- \circ *ℓ* ≠ 0 orbitals are instead suppressed at small *r*
- Vacancy of *s* states ($\ell = 0$) embedded in larger- ℓ orbitals might cause central depletion

Conjectured associated effect on spin-orbit splitting

- \circ Non-zero derivative at the interior
- Spin-orbit potential of "non-natural" sign
- \circ Reduction of (energy) splitting of low- ℓ spin-orbit partners
- Bubbles predicted for hyper-heavy nuclei [Dechargé et al. 2003]
- In light/medium-mass nuclei the **most promising candidate is** ³⁴Si

[Grasso et al. 2009, ...]

Convergence of the method

ADC(3) brings only ~5% additional binding

Radii converged already at ADC(2) level

Charge density distribution

-5

Excellent agreement with experimental charge distribution of ³⁶S [Rychel et al. 1983]
 Folding smears out central depletion → smaller depletion factor (cf. EDF calculations)

• Charge form factor measured in (e,e) experiments sensitive to bubble structure?

Spectroscopy

• Addition and removal spectra compared to transfer and knock-out reactions

• Good agreement for one-neutron addition, to a lesser extent for one-proton removal

• Reduction of E_{1/2}⁻ - E_{3/2}⁻ spin-orbit splitting (unique in the nuclear chart!) well reproduced

Conclusions

• Many-body formalism well grounded

- Closed- & open-shell nuclei, g.s. observables & spectroscopy, ...
- \circ Two-body propagators to be implemented to access spectroscopy of even-even systems
- \circ Symmetry-restored Gorkov theory?

• At present, interactions constitute main source of uncertainty

- ChEFT is undergoing intense development, facing fundamental & practical issues
- *Pragmatic* NNLO_{sat} interaction performs well over good range of nuclei & observables

• Ab initio applications become competitive with other methods

- Mid-mass region of the nuclear chart being scrutinised
- Example of potential bubble nucleus ³⁴Si

Appendix

Spectral strength distribution

• Bonus: one-body Green's function contains information about *A***±1** excitation energy spectra

• Spectral representation

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$
where
$$\begin{cases} \mathcal{U}_{a}^{k*} \equiv \langle \Psi_{k} | a_{a}^{\dagger} | \Psi_{0} \rangle \\ \mathcal{V}_{a}^{k*} \equiv \langle \Psi_{k} | \bar{a}_{a} | \Psi_{0} \rangle \end{cases}$$
and
$$\begin{cases} E_{k}^{+(A)} \equiv E_{k}^{A+1} - E_{0}^{A} \equiv \mu + \omega_{k} \\ E_{k}^{-(A)} \equiv E_{0}^{A} - E_{k}^{A-1} \equiv \mu - \omega_{k} \end{cases}$$

• Spectroscopic factors

$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

Spectral strength distribution: Dyson vs Gorkov

Chiral EFT & many-body problem in principle

• **Chiral effective field theory** as a systematic framework to construct *A*N interactions (*A*=2, 3, …)

- \circ Symmetries of underlying theory built in
- \circ Hierarchy dictated by power counting
- Coupling constants fixed by QCD (when possible) or low-energy data
- \circ One hopes that 2N & 3N (& maybe 4N) forces are sufficient to solve the many-body problem

● **Ideally**, perform order-by-order many-body calculations with **propagated uncertainties**

Three-body forces

 \odot Galitskii-Migdal-Koltun sum rule needs to be modified to account for 3N term W

$$E_0^N = \frac{1}{2} \int_{-\infty}^{\epsilon_F} d\omega \sum \tilde{\psi} \hat{\psi} |\Psi_0^N\rangle$$

ements of Green Function theory

• Ef

F carrenter the diagrams in three different ways

• Extra correlation provided by the use of dressed propagators can be tested in realistic calculations effining 1- and 2-body effective interaction and e only *irreducible* diagrams

eware that defining Residual three-body term neglected

hannah

'ipollone, Barbieri, Rios, Polls 2013]

[Barbieri et al. unpublished]

atrix

l interactions

SURREY

• Variance in particle number as an indicator of symmetry breaking

$$\sigma_A = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$$

Only concerns neutron number
 Decreases as many-body order increases

• Eventually, symmetries need to be restored

● Only recently the formalism was developed for MBPT and CC

- Case of **SU(2)** [Duguet 2014]
- Case of **U(1)** [Duguet & Signoracci 2016]

• Symmetry-restored Gorkov GF formalism still to be developed

Point-nucleon densities

• **Point-proton** density of ³⁴Si displays a marked depletion in the centre

• **Point-neutron** distributions little affected by removal/addition of two protons

• Bubble structure can be quantified by the **depletion factor** $F \equiv \frac{\rho_{\text{max}} - \rho_{\text{c}}}{\rho_{\text{max}}} \longrightarrow F_{\text{p}}(^{34}\text{Si}) = 0.34$

Going from proton to (observable) charge density will smear out depletion

Partial wave decomposition

• Point-proton distributions can be analysed (internally to the theory) in the **natural basis**

• Consider different partial-wave (ℓ, j) contributions $\rho_{p}(\vec{r}) = \sum_{n\ell j} \frac{2j+1}{4\pi} n_{n\ell j} R_{n\ell j}^{2}(r) \equiv \sum_{\ell j} \rho_{p}^{\ell j}(r)$

Independent-particle filling mechanism qualitatively OK
Quantitatively, net effect from balance between n=0, 1, 2
Point-neutron contributions & occupations unaffected

Impact of correlations

Spectroscopy

• Green's function calculations access **one-nucleon addition & removal spectra**

• In addition, effective single-particle energies can be reconstructed for interpretation

$$e_p = \sum_{k \in \mathcal{H}_{A-1}} E_k^- S_k^{-pp} + \sum_{k \in \mathcal{H}_{A+1}} E_k^+ S_k^{+pp}$$

Bubble and spin-orbit

• **Correlation** between bubble structure and reduction of spin-orbit splitting?

Separation energies

- \circ Different Hs lead to very different depletions
- Calculations support existence of a correlation

Effective single-particle energies Lower reduction of s.o. splitting Linear correlation holds also for ESPEs

Charge radius difference (³⁶S-³⁴Si)

- \circ Radius difference also correlates with F_{ch}
- Motivation for measuring ³⁴Si radius

Oxygen energies

● EM and NNLO_{sat} perform similarly along O binding energies

- Comparable spread between different many-body schemes for the two interactions
- Fair agreement with experiment (including drip-line)
- How do they perform on other observables, e.g. radii?

Point-proton and point-neutron radii

• **Uncertainty** from using different many-body schemes is

- Smaller than experimental uncertainty
- Smaller than the one associated the use of different interactions

• Point-proton radii (deduced from (e,e) scattering) available only for stable ¹⁶⁻¹⁸O

• Matter radii?

Oxygen matter radii: exp. vs theory

NNLO_{sat} improves in absolute
(Keep in mind that ¹⁶O r_{ch} is in NNLO_{sat} fit)
Somewhat similar trend with N
Wider many-body band ↔ Bare vs SRG?

Clear improvement over standard EFT interactions, but deficiencies in isospin dependence

 This could reflect in a wrong prediction for the symmetry energy
 Similar conclusions from analysis of charge radii in Ca isotopes [Garcia Ruiz *et al.* 2016]
 NNLO_{sat} strategy raises questions about methodology and predictive power