Green's function approach to the nuclear many-body problem

Vittorio Somà
CEA Saclay

RPA workshop
Paris, 2 May 2017

Collaborators

- Thomas Duguet (CEA Saclay)
- Carlo Barbieri (University of Surrey, UK)
- Petr Navrátil (TRIUMF, Canada)

Outline

$\circ \mathrm{Ab}$ initio nuclear many-problem: state of the art

- Self-consistent Green's functions: current implementations and issues
- Benchmarks \& modelling of nuclear Hamiltonians
- Study of potential bubble nucleus Si34

Ab initio nuclear A-body problem

\odot Nucleus: system of A structure-less nucleons
© Nucleons interact via inter-nucleon ($2 \mathrm{~N}, 3 \mathrm{~N}, .$.) forces

- Hamiltonian H from an effective field theory (EFT)
- Systematic construction of H for a given set of d.o.f.
- Symmetries of underlying theory (here QCD) built in
\circ Couplings fixed by underlying theory or exp. data
- EFTs for nuclear systems: pionless or chiral EFT
\odot Solve $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ (as well as you can)

๑ Difficulties: costly many-body methods, highly nontrivial construction of interactions
\odot Benefits: systematic improvement, assessment of errors $\| \rightarrow$ controlled extrapolations
\odot Questions: does it work, to what accuracy and which are the limits of applicability?

Evolution of ab initio nuclear chart

Evolution of ab initio nuclear chart

- Ab initio approaches for closed-shell nuclei
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling

Evolution of ab initio nuclear chart

© Ab initio approaches for closed-shell nuclei

- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
© Ab initio approaches for open-shell nuclei
- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

Evolution of ab initio nuclear chart

- Ab initio approaches for closed-shell nuclei
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
© Ab initio approaches for open-shell nuclei
- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

Self-consistent Green's function approach

\odot Solution of the A-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, \ldots. A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \rightarrow$ one-body observables, etc..)

- Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

Self-energy expansion

Dyson equation

$$
\mathrm{G}=\mathrm{G}^{0}+\mathrm{G}^{0} \Sigma \mathrm{G}
$$

Self-consistent Green's function approach

\odot Solution of the A-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of $\mathbf{1 -}, \mathbf{2 -}, \ldots . \boldsymbol{A}$-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \rightarrow$ one-body observables, etc..)

- Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

Self-energy expansion

Dyson equation

$$
\mathbf{G}=\mathbf{G}^{0}+\mathbf{G}^{0} \Sigma \mathrm{G}
$$

$\odot G \rightarrow$ ground-state properties of even-even A + spectra of odd-even neighbours

- Advanced resummation schemes exist
- Some operators routinely computed, more to be implemented
- Optical potential for nucleon-nucleus scattering obtainable directly from Σ
$\odot \mathrm{G}_{2}$ (polarisation propagator) \rightarrow excited spectrum of even-even A
- To be developed

Self-energy approximation schemes

- Algebraic Diagrammatic Construction (ADC)
- Exploits spectral form of self-energy to reformulate its expansion into an algebraic form
$\circ \operatorname{ADC}(n)$ includes complete n-th order (dressed) perturbation theory diagrams for G
- Results in Hermitian eigenvalue problems within limited spaces of $N \pm 1$ systems

ADC(2)
$\operatorname{ADC}(3)$

Self-energy approximation schemes

- Algebraic Diagrammatic Construction (ADC)
[Schirmer, Cederbaum \& Walter 1983]
- Exploits spectral form of self-energy to reformulate its expansion into an algebraic form
- $\operatorname{ADC}(n)$ includes complete n-th order (dressed) perturbation theory diagrams for G
- Results in Hermitian eigenvalue problems within limited spaces of $N \pm 1$ systems

ADC(2)

[Barbieri \& Dickhoff 2007]

- Each ph and pp/hh channel is computed separately
- Two-body propagators are subsequently coupled to a third line
- All-order summation through a set of Faddeev equations

Ab initio methods for open-shell nuclei

\odot Standard expansion schemes fail when dealing with, e.g., pairing instabilities
\rightarrow Idea: use symmetry breaking (particle number) to account for pairing

$$
\begin{aligned}
H\left|\Psi_{k}^{A}\right\rangle & =E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \\
\left|\Psi_{0}^{A}\right\rangle & =\Omega_{0}|\phi\rangle
\end{aligned}
$$

where both Ω_{0} and $|\phi\rangle$ break symmetries

$$
E_{0}^{A}=\frac{\langle\phi| H \Omega_{0}|\phi\rangle}{\langle\phi| \Omega_{0}|\phi\rangle}
$$

- Gorkov self-consistent Green functions (GGF) [Somà, Duguet, Barbieri 2011]
- Multi-reference IMSRG [Hergert et al. 2013]
- Bogoliubov coupled-cluster (BCC) [Signoracci et al. 2015]
- Symmetry-restored BCC
[Duguet 2015; Duguet, Signoracci 2016]
\bigcirc Revisit basic/investigate new questions from an ab initio perspective
- Emergence of magic numbers and their evolution
- Limits of stability on neutron-rich side beyond $Z=8$
- Mechanism for nuclear superfluidity
- Emergence and evolution of quadrupole collectivity
\circ Role and validation of $A \mathrm{~N}$ forces

Gorkov-Green's functions

\odot Start expansion from symmetry-breaking reference $\left|\Psi_{0}\right\rangle \equiv \sum_{A}^{\text {even }} c_{A}\left|\psi_{0}^{A}\right\rangle$

Dyson/Gorkov equation
$\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)$

$$
\mathbf{G}_{a b}=\left(\begin{array}{cc}
G_{a b}^{11} & G_{a b}^{12} \\
G_{a b}^{21} & G_{a b}^{22}
\end{array}\right)=\left(\begin{array}{cc}
\|
\end{array}\right)
$$

\bigcirc Current self-energy truncation: first- and second-order diagrams

$$
\Sigma_{a b}^{11(2)}(\omega)=\uparrow \omega^{c}
$$

Gorkov-Green's functions

Inclusion of $\mathbf{A D C}(3)$ in progress: $\quad \Sigma^{11[A D C(3)]}$

A_{33}

B_{33}

$A_{32}=A_{31}$

$B_{32}=B_{31}$

$A_{23}=A_{13}$

$B_{23}=B_{13}$

$A_{11}=A_{22}=A_{12}=A_{21}$

$B_{11}=B_{22}=B_{12}=B_{21}$

C_{23}

C_{13}

C_{22}

C_{21}

C_{11}

ADC(n) diagrams $n=1 \quad 2 \quad 3$

Dyson	1	1	2
Gorkov	2	4	34

Three-body forces

© Hamiltonians for A-nucleon systems contain in principle up to A-body operators

- At least three-body forces need to be included in realistic ab initio calculations
© Diagrammatic expansion can be simplified by exploiting the concept of effective interactions
- Generalisation of normal ordering (fully correlated density matrices)
effective 1-body

effective 2-body

$$
E_{0}^{N}=\frac{1}{2 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} d \omega \sum_{\alpha \beta}\left(T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)-\frac{1}{2}\left\langle\Psi_{0}^{N}\right| \hat{W}\left|\Psi_{0}^{N}\right\rangle
$$

Oxygen anomaly as ab initio benchmark

Correct reproduction of drip line at ${ }^{24} \mathrm{O}$

Oxygen anomaly as ab initio benchmark

Correct reproduction of drip line at ${ }^{24} \mathrm{O}$

O chain as testing ground

Changing the strategy: $\mathrm{NNLO}_{\text {sat }}$

๑ Standard ChEFT interactions successful in the description of light nuclei

- Description worsens when going to heavier systems
- Spectra too spread out
- Radii severely underestimated
- Wrong saturation point of nuclear matter?

Changing the strategy: $\mathrm{NNLO}_{\text {sat }}$

๑ Standard ChEFT interactions successful in the description of light nuclei
\odot Description worsens when going to heavier systems

- Spectra too spread out
- Radii severely underestimated
- Wrong saturation point of nuclear matter?
\odot Prompted the development of NNLO $_{\text {sat }}$ Hamiltonian
- Simultaneous fit of LEC in 2- and 3-body sectors
- Data from not-so-light nuclei ($A=14-25$) included in fit
- Non-local regulators
[Ekström et al. 2015]

Bubble nuclei?

\odot Unconventional depletion ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei
\odot Purely quantum mechanical effect

- $\ell=0$ orbitals display radial distribution peaked at $r=0$
$\circ \ell \neq 0$ orbitals are instead suppressed at small r
- Vacancy of s states $(\ell=0)$ embedded in larger- ℓ orbitals might cause central depletion
\odot Conjectured associated effect on spin-orbit splitting
- Non-zero derivative at the interior
- Spin-orbit potential of "non-natural" sign
\circ Reduction of (energy) splitting of low- ℓ spin-orbit partners

© Bubbles predicted for hyper-heavy nuclei
[Dechargé et al. 2003]
\odot In light/medium-mass nuclei the most promising candidate is ${ }^{34} \mathbf{S i} \quad$ [Grasso et al. 2009, ...]

Convergence of the method

© Calculations performed within different many-body truncations

- $\operatorname{ADC}(1)=\mathrm{HF}, \mathrm{ADC}(2) \& \operatorname{ADC}(3)$

๑ Model space convergence

\odot Many-body convergence
Binding energies

$E[\mathrm{MeV}]$	ADC(1)	ADC(2)	ADC(3)	Experiment
${ }^{34} \mathrm{Si}$	-84.481	-274.626	-282.938	-283.427
${ }^{36} \mathrm{~S}$	-90.007	-296.060	-305.767	-308.714

$\mathrm{ADC}(3)$ brings only $\sim 5 \%$ additional binding

Charge radii

$\left\langle r_{\mathrm{ch}}^{2}\right\rangle^{1 / 2}$	$\mathrm{ADC}(1)$	$\mathrm{ADC}(2)$	$\mathrm{ADC}(3)$	Experiment
${ }^{34} \mathrm{Si}$	3.270	3.189	3.187	-
${ }^{36} \mathrm{~S}$	3.395	3.291	3.285	3.2985 ± 0.0024

Radii converged already at $\mathrm{ADC}(2)$ level

Charge density distribution

๑ Charge density computed through folding with the finite charge of the proton

$$
\rho_{\mathrm{ch}}(r)=\sum_{i=1}^{3} \frac{\theta_{i}}{r_{i} \sqrt{\pi}} \int_{0}^{+\infty} d r^{\prime} \frac{r^{\prime}}{r} \rho_{\mathrm{p}}\left(r^{\prime}\right)\left[\mathrm{e}^{-\left(\frac{r-r^{\prime}}{r_{i}}\right)^{2}}-\mathrm{e}^{-\left(\frac{r+r^{\prime}}{r_{i}}\right)^{2}}\right]
$$

$\left(\theta_{i}, r_{i}\right)$ fitted to reproduce proton charge form factor from e^{-}scattering

${ }^{34}$ Si	SCGF	SCGF*	SREDF [8]	MREDF [9]	MREDF [10]	SM [8]
F_{p}	0.34	0.34	0.38	0.21	0.22	0.41
$F_{c h}$	0.15	0.19^{*}	0.23	0.09	0.11	0.28

$$
F \equiv \frac{\rho_{\max }-\rho_{\mathrm{c}}}{\rho_{\max }}
$$

[8] [Grasso et al. 2009]
[9] [Yao et al. 2012]
[10] [Yao et al. 2013]

- Excellent agreement with experimental charge distribution of ${ }^{36} \mathrm{~S}$ [Rychel et al. 1983]
- Folding smears out central depletion $\rightarrow \rightarrow$ smaller depletion factor (cf. EDF calculations)

Charge form factor

\odot Charge form factor measured in (e,e) experiments sensitive to bubble structure?

- Central depletion reflects in larger $\mathrm{F}(\theta)$ for angles $\theta>70^{\circ}$ and shifted $2^{\text {nd }}$ minimum
- Future electron scattering experiments might be able to see its fingerprints

Spectroscopy

\odot Addition and removal spectra compared to transfer and knock-out reactions

One-neutron addition

[Thorn et al. 1984]
Exp. data: [Eckle et al. 1989]
[Burgunder et al. 2014]

One-proton knock-out

[Khan et al. 1985]
Exp. data: [Mutschler et al. 2016 (PRC)]
[Mutschler et al. 2016 (Nature Phys.)]

- Good agreement for one-neutron addition, to a lesser extent for one-proton removal
\circ Reduction of $\mathrm{E}_{1 / 2^{-}}-\mathrm{E}_{3 / 2}{ }^{-}$spin-orbit splitting (unique in the nuclear chart!) well reproduced

Conclusions

\odot Many-body formalism well grounded

- Closed- \& open-shell nuclei, g.s. observables \& spectroscopy, ...
- Two-body propagators to be implemented to access spectroscopy of even-even systems
- Symmetry-restored Gorkov theory?
© At present, interactions constitute main source of uncertainty
- ChEFT is undergoing intense development, facing fundamental \& practical issues
- Pragmatic $\mathrm{NNLO}_{\text {sat }}$ interaction performs well over good range of nuclei \& observables
$\odot ~ A b ~ i n i t i o ~ a p p l i c a t i o n s ~ b e c o m e ~ c o m p e t i t i v e ~ w i t h ~ o t h e r ~ m e t h o d s ~$
- Mid-mass region of the nuclear chart being scrutinised
- Example of potential bubble nucleus ${ }^{34} \mathrm{Si}$

Appendix

Spectral strength distribution

\odot Bonus: one-body Green's function contains information about $A \pm 1$ excitation energy spectra

- Spectral representation

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

where $\left\{\begin{aligned} & \mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\ & \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle\end{aligned}\right.$
and $\left\{\begin{aligned} E_{k}^{+(A)} \equiv E_{k}^{A+1}-E_{0}^{A} \equiv \mu+\omega_{k} \\ E_{k}^{-(A)} \equiv E_{0}^{A}-E_{k}^{A-1} \equiv \mu-\omega_{k}\end{aligned}\right.$
\odot Spectroscopic factors

$$
\begin{aligned}
S F_{k}^{+} & \left.\equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
S F_{k}^{-} & \left.\equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

Spectral strength distribution: Dyson vs Gorkov

Dyson 1st order (HF)

Dyson 2 ${ }^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)

Gorkov 2 ${ }^{\text {nd }}$ order
Dynamical fluctuations

Chiral EFT \& many-body problem in principle

\odot Chiral effective field theory as a systematic framework to construct $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)

- Symmetries of underlying theory built in
- Hierarchy dictated by power counting
- Coupling constants fixed by QCD (when possible) or low-energy data
- One hopes that $2 \mathrm{~N} \& 3 \mathrm{~N}$ (\& maybe 4 N) forces are sufficient to solve the many-body problem

๑ Ideally, perform order-by-order many-body calculations with propagated uncertainties

Three-body forces

- Galitskii-Migdal-Koltun sum rule needs to be modified to account for 3N term W

$$
E_{0}^{N}=\frac{1}{2 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} d \omega \sum_{\alpha \beta}\left(T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)-\frac{1}{2}\left\langle\Psi_{0}^{N}\right| \hat{W}\left|\Psi_{0}^{N}\right\rangle
$$

[Carbone, Cipollone, Barbieri, Rios, Polls 2013]

- Effective interactions can be seen as a generalisation of normal-ordered interactions
$\rightarrow \rightarrow$ Here contractions are performed with the fully correlated density matrix
- Extra correlation provided by the use of dressed propagators can be tested in realistic calculations

Residual three-body term neglected

[Barbieri et al. unpublished]

Symmetry breaking and restoration

\odot Variance in particle number as an indicator of symmetry breaking

$$
\sigma_{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}
$$

\rightarrow Only concerns neutron number
\rightarrow Decreases as many-body order increases

- Eventually, symmetries need to be restored
- Only recently the formalism was developed for MBPT and CC
- Case of SU(2) [Duguet 2014]
- Case of U(1) [Duguet \& Signoracci 2016]
© Symmetry-restored Gorkov GF formalism still to be developed

Point-nucleon densities

© Point-proton density of ${ }^{34} \mathrm{Si}$ displays a marked depletion in the centre
© Point-neutron distributions little affected by removal/addition of two protons
© Bubble structure can be quantified by the depletion factor $F \equiv \frac{\rho_{\max }-\rho_{\mathrm{c}}}{\rho_{\max }} \quad \quad \mathrm{m} \rightarrow F_{\mathrm{p}}\left({ }^{34} \mathrm{Si}\right)=0.34$

${ }^{\prime \prime} \rightarrow$ Going from proton to (observable) charge density will smear out depletion

Partial wave decomposition

© Point-proton distributions can be analysed (internally to the theory) in the natural basis
\odot Consider different partial-wave (ℓ, j) contributions $\quad \rho_{\mathrm{p}}(\vec{r})=\sum_{n \ell j} \frac{2 j+1}{4 \pi} n_{n \ell j} R_{n \ell j}^{2}(r) \equiv \sum_{\ell j} \rho_{\mathrm{p}}^{\ell j}(r)$

- Independent-particle filling mechanism qualitatively OK
- Quantitatively, net effect from balance between $\mathbf{n = 0 , 1 , 2}$
- Point-neutron contributions \& occupations unaffected

Impact of correlations

© Impact of correlations analysed by comparing different ADC truncations

- Dynamical correlations cause erosion of the bubble

${ }^{34} \mathrm{Si}$	$\mathrm{ADC}(1)$	$\mathrm{ADC}(2)$	$\mathrm{ADC}(3)$
F_{p}	0.49	0.34	0.34

- Wave functions get contracted $" \rightarrow 1 \mathrm{~s}_{1 / 2}$ peaked at $r=0$
- Largest net contribution from s orbitals

Spectroscopy

© Green's function calculations access one-nucleon addition \& removal spectra

One-nucleon separation energies

$$
E_{k}^{ \pm} \equiv \pm\left(E_{k}^{\mathrm{A} \pm 1}-E_{0}^{\mathrm{A}}\right)
$$

Spectroscopic factors

$$
S F_{k}^{ \pm} \equiv \sum_{p} S_{k}^{ \pm p p}
$$

\bigcirc In addition, effective single-particle energies can be reconstructed for interpretation

$$
e_{p}=\sum_{k \in \mathcal{H}_{A-1}} E_{k}^{-} S_{k}^{-p p}+\sum_{k \in \mathcal{H}_{A+1}} E_{k}^{+} S_{k}^{+p p}
$$

Bubble and spin-orbit

© Correlation between bubble structure and reduction of spin-orbit splitting?

Separation energies

- Different Hs lead to very different depletions
- Calculations support existence of a correlation

Effective single-particle energies

- Lower reduction of s.o. splitting
- Linear correlation holds also for ESPEs

Charge radius difference (${ }^{36} \mathrm{~S}-{ }^{34} \mathrm{Si}$)

- Radius difference also correlates with F_{ch}
- Motivation for measuring ${ }^{34}$ Si radius

Oxygen energies

\odot EM and $\mathbf{N N L O}_{\text {sat }}$ perform similarly along O binding energies

- Comparable spread between different many-body schemes for the two interactions
- Fair agreement with experiment (including drip-line)
- How do they perform on other observables, e.g. radii?

Point-proton and point-neutron radii

\odot Uncertainty from using different many-body schemes is

- Smaller than experimental uncertainty
\circ Smaller than the one associated the use of different interactions
\odot Point-proton radii (deduced from (e,e) scattering) available only for stable ${ }^{16-18} \mathrm{O}$

\circ Matter radii?

Oxygen matter radii: exp. vs theory

- $\mathrm{NNLO}_{\text {sat }}$ improves in absolute
\circ (Keep in mind that ${ }^{16} \mathrm{Or}_{\mathrm{ch}}$ is in $\mathrm{NNLO}_{\text {sat }}$ fit)
- Somewhat similar trend with N
- Wider many-body band \leftrightarrow Bare vs SRG?
© Clear improvement over standard EFT interactions, but deficiencies in isospin dependence
- This could reflect in a wrong prediction for the symmetry energy
\bigcirc Similar conclusions from analysis of charge radii in Ca isotopes
© $\mathrm{NNLO}_{\text {sat }}$ strategy raises questions about methodology and predictive power

