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The Levy Constrained Search Functional

I The ground-state energy with external potential v and coupling strength λ:

Eλ[v ] = inf
Ψ→N

˙
Ψ
˛̨
Hλ[v ]

˛̨
Ψ
¸

Hλ[v ] = T + Wλ +
P

i v(ri ), Wλ =
P

i>j λ/rij , 0 ≤ λ ≤ 1

I It is possible to perform this minimization in two steps

Eλ[v ] = inf
ρ→N

“
Fλ[ρ] +

R
v(r)ρ(r) dr

”
Hohenberg–Kohn variation principle

Fλ[ρ] = inf
Ψ→ρ

˙
Ψ
˛̨
Hλ[0]

˛̨
Ψ
¸

Levy constrained-search functional

I In applications of DFT, approximations to Fλ[ρ] are made

I typically assessed by comparison with experiment

I We are going to present evaluations of Fλ[ρ] using wavefunction techniques

I provide insight into Fλ[ρ] and its dependence on static and dynamical correlation
I test approximate Fλ[ρ] and a constructive route to new ones

I Our tool will be the adiabatic connection

I the dependence of Fλ[ρ] on λ for fixed ρ: F0[ρ] → F1[ρ]

I For such studies, a slightly different formulation of DFT is useful
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The Lieb Convex-Conjugate Functional
I In Lieb’s theory, Fλ[ρ] is defined as the convex conjugate to Eλ[v ]:

Fλ[ρ] = sup
v

`
Eλ[v ]−

R
v(r)ρ(r) dr

´
the Lieb variation principle

Eλ[v ] = inf
ρ

`
Fλ[ρ] +

R
v(r)ρ(r) dr

´
the Hohenberg–Kohn variation principle

I the two variation principles are Legendre–Fenchel (LF) transforms

I The possibility of the LF formulation follows from the convexity of −Eλ[v ] in v :

x1 x2

f!x1"
f!x2"

c f!x1"!!1"c" f!x2"
f!x2"

c x1!!1"c"x2

f!c x1!!1"c"x2"

I it then has a convex conjugate partner: the Lieb functional Fλ[ρ]
I conjugate functions have inverse first derivatives

I A convex functional and its conjugate partner satisfy Fenchel’s inequality:

Fλ[ρ] ≥ Eλ[v ]−
R

v(r)ρ(r) dr ⇔ Eλ[v ] ≤ Fλ[ρ] +
R

v(r)ρ(r) dr

I either variation principle sharpens Fenchel’s inequality into an equality

I We shall use Lieb’s variation principle to calculate Fλ[ρ] at different levels of theory
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Performing the Lieb Maximization

I For a given density ρ(r) and chosen level of theory Eλ[v ], we wish to calculate

Fλ[ρ] = max
v

„
Eλ[v ]−

Z
v(r)ρ(r) dr

«
by maximizing the right-hand side with respect to variations in the potential v(r)

I Direct-Optimization techniques are used. The potential is parameterized as

vc(r) = vext(r) + (1− λ)vref(r) +
X

t

ct gt(r)

where the three terms are

I the physical, external potential vext(r)
I the Fermi–Amaldi reference potential to ensure correct asymptotic behaviour

vref(r) =

„
1−

1

N

«Z
ρ(r′)

|r − r′|
dr′

I an expansion in Gaussians gt(r) with coefficients ct
I we use large orbital basis sets, typically augmented with diffuse functions

I Implemented levels of theory of Eλ[v ] are: HF, RPA, dRPA, MP2, CCD, CCSD, CCSD(T)

I Colonna and Savin, JCP 110, 2828, (1999)
Wu and Yang, JCP 118, 2498 (2003),
Teale, Coriani and Helgaker, JCP 130, 104111 (2009)
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First- and second-order Lieb maximizations

I We determine vc(r) and hence Fλ[ρ] by maximizing with respect to ct the quantity

Gλ,ρ(c) = Eλ[vc]−
Z

vc(r)ρ(r) dr

vc(r) = vext(r) + (1− λ)vref(r) +
P

t ct gt(r)

I Our convergence target is a gradient norm smaller than 10−6

I The quasi-Newton method requires only the gradient

∂Gλ,ρ(c)

∂ct
=

Z ˆ
ρλ,c(r)− ρ(r)

˜
gt(r) dr

I implemented with BFGS update
I converges in 100–200 iterations

I The Newton method also requires the Hessian

∂2Gλ,ρ(c)

∂ct∂cu
=

Z Z
gt(r)gu(r′)

δρ(r)

δv(r′)
dr dr′

I calculated (exactly or approximately) from (CCSD) linear response theory
I expensive but robust convergence
I converges in 5–10 iterations

I All code is implemented in DALTON
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Calculating Fλ[ρ]

I HF, MP2, CCSD and CCSD(T) plots of Fλ[ρ] for the neon atom in the cc-pVQZ basis
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I These are very boring curves: almost indistinguishable and nearly linear

Fλ[ρ] = min
Ψ→ρ

˙
Ψ
˛̨
T + λW

˛̨
Ψ
¸
← slight concavity from variation principle

I Note the noninteracting limit:

F0[ρ] = min
Ψ→ρ

˙
Ψ
˛̨
T
˛̨
Ψ
¸

= Ts[ρ] noninteracting kinetic energy
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The Decomposition of Fλ[ρ]

I We usually decompose Fλ[ρ] into known and unknown contributions

Fλ[ρ] = Ts[ρ] + Jλ[ρ] + Ex,λ[ρ] + Ec,λ[ρ]

I Let’s focus on the latter two components of interest (Exc,λ on the left, Ec,λ on the right)
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I For Exc,λ the exchange energy dominates in this example → almost linear
I Removing the exchange contribution shows the dependence of the correlation energy

on λ → almost quadratic
I Importantly, both are concave in λ

A. M. Teale (CTCC, University of Oslo) The Decomposition of Fλ [ρ] RPA and the adiabatic connection 8 / 27



The Decomposition of Fλ[ρ]

I We usually decompose Fλ[ρ] into known and unknown contributions

Fλ[ρ] = Ts[ρ] + Jλ[ρ] + Ex,λ[ρ] + Ec,λ[ρ]

I Let’s focus on the latter two components of interest (Exc,λ on the left, Ec,λ on the right)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Λ

E
X

C
,Λ

@Ρ
D�

a.
u.

0.0 0.2 0.4 0.6 0.8 1.0

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Λ
E

C
,Λ

@Ρ
D�

a.
u.

I For Exc,λ the exchange energy dominates in this example → almost linear
I Removing the exchange contribution shows the dependence of the correlation energy

on λ → almost quadratic
I Importantly, both are concave in λ

A. M. Teale (CTCC, University of Oslo) The Decomposition of Fλ [ρ] RPA and the adiabatic connection 8 / 27



The Decomposition of Fλ[ρ]

I We usually decompose Fλ[ρ] into known and unknown contributions

Fλ[ρ] = Ts[ρ] + Jλ[ρ] + Ex,λ[ρ] + Ec,λ[ρ]

I Let’s focus on the latter two components of interest (Exc,λ on the left, Ec,λ on the right)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Λ

E
X

C
,Λ

@Ρ
D�

a.
u.

0.0 0.2 0.4 0.6 0.8 1.0

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Λ
E

C
,Λ

@Ρ
D�

a.
u.

I For Exc,λ the exchange energy dominates in this example → almost linear
I Removing the exchange contribution shows the dependence of the correlation energy

on λ → almost quadratic
I Importantly, both are concave in λ

A. M. Teale (CTCC, University of Oslo) The Decomposition of Fλ [ρ] RPA and the adiabatic connection 8 / 27



The Decomposition of Fλ[ρ]

I We usually decompose Fλ[ρ] into known and unknown contributions

Fλ[ρ] = Ts[ρ] + Jλ[ρ] + Ex,λ[ρ] + Ec,λ[ρ]

I Let’s focus on the latter two components of interest (Exc,λ on the left, Ec,λ on the right)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Λ

E
X

C
,Λ

@Ρ
D�

a.
u.

0.0 0.2 0.4 0.6 0.8 1.0

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Λ
E

C
,Λ

@Ρ
D�

a.
u.

I For Exc,λ the exchange energy dominates in this example → almost linear
I Removing the exchange contribution shows the dependence of the correlation energy

on λ → almost quadratic
I Importantly, both are concave in λ

A. M. Teale (CTCC, University of Oslo) The Decomposition of Fλ [ρ] RPA and the adiabatic connection 8 / 27



The Decomposition of Fλ[ρ]

I We usually decompose Fλ[ρ] into known and unknown contributions

Fλ[ρ] = Ts[ρ] + Jλ[ρ] + Ex,λ[ρ] + Ec,λ[ρ]

I Let’s focus on the latter two components of interest (Exc,λ on the left, Ec,λ on the right)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Λ

E
X

C
,Λ

@Ρ
D�

a.
u.

0.0 0.2 0.4 0.6 0.8 1.0

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Λ
E

C
,Λ

@Ρ
D�

a.
u.

I For Exc,λ the exchange energy dominates in this example → almost linear
I Removing the exchange contribution shows the dependence of the correlation energy

on λ → almost quadratic
I Importantly, both are concave in λ

A. M. Teale (CTCC, University of Oslo) The Decomposition of Fλ [ρ] RPA and the adiabatic connection 8 / 27



The Adiabatic Connection

I Being concave, Exc,λ[ρ] may be represented in terms of a decreasing AC integrand:

Exc,λ[ρ] =

Z λ

0
E ′xc,λ[ρ] dλ =

Z λ

0
Wxc,λ[ρ] dλ (Wxc,λ[ρ] decreasing)

I The Hellmann–Feynman theorem provides an explicit expression for the AC integrand:

Wxc,λ[ρ] =
˙
Ψλ
˛̨
W ′λ
˛̨
Ψλ
¸
− J′λ[ρ] (AC integrand)
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area = Exc, Λ@ΡD

I Note: the AC integrand has a large constant exchange contribution (above the horizontal line)

I Langreth and Perdew, Solid State Comm. 17 1425 (1975),
Gunnarsson and Lindqvist, PRB 13, 4247 (1976)

A. M. Teale (CTCC, University of Oslo) The Adiabatic Connection RPA and the adiabatic connection 9 / 27



The Adiabatic Connection

I Being concave, Exc,λ[ρ] may be represented in terms of a decreasing AC integrand:

Exc,λ[ρ] =

Z λ

0
E ′xc,λ[ρ] dλ =

Z λ

0
Wxc,λ[ρ] dλ (Wxc,λ[ρ] decreasing)

I The Hellmann–Feynman theorem provides an explicit expression for the AC integrand:

Wxc,λ[ρ] =
˙
Ψλ
˛̨
W ′λ
˛̨
Ψλ
¸
− J′λ[ρ] (AC integrand)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Exc, Λ@ΡD

0.0 0.2 0.4 0.6 0.8 1.0
-14

-12

-10

-8

-6

-4

-2

0

Wxc, Λ@ΡD

area = Exc, Λ@ΡD

I Note: the AC integrand has a large constant exchange contribution (above the horizontal line)

I Langreth and Perdew, Solid State Comm. 17 1425 (1975),
Gunnarsson and Lindqvist, PRB 13, 4247 (1976)

A. M. Teale (CTCC, University of Oslo) The Adiabatic Connection RPA and the adiabatic connection 9 / 27



The Adiabatic Connection

I Being concave, Exc,λ[ρ] may be represented in terms of a decreasing AC integrand:

Exc,λ[ρ] =

Z λ

0
E ′xc,λ[ρ] dλ =

Z λ

0
Wxc,λ[ρ] dλ (Wxc,λ[ρ] decreasing)

I The Hellmann–Feynman theorem provides an explicit expression for the AC integrand:

Wxc,λ[ρ] =
˙
Ψλ
˛̨
W ′λ
˛̨
Ψλ
¸
− J′λ[ρ] (AC integrand)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Exc, Λ@ΡD

0.0 0.2 0.4 0.6 0.8 1.0
-14

-12

-10

-8

-6

-4

-2

0

Wxc, Λ@ΡD

area = Exc, Λ@ΡD

I Note: the AC integrand has a large constant exchange contribution (above the horizontal line)

I Langreth and Perdew, Solid State Comm. 17 1425 (1975),
Gunnarsson and Lindqvist, PRB 13, 4247 (1976)

A. M. Teale (CTCC, University of Oslo) The Adiabatic Connection RPA and the adiabatic connection 9 / 27



The Adiabatic Connection

I Being concave, Exc,λ[ρ] may be represented in terms of a decreasing AC integrand:

Exc,λ[ρ] =

Z λ

0
E ′xc,λ[ρ] dλ =

Z λ

0
Wxc,λ[ρ] dλ (Wxc,λ[ρ] decreasing)

I The Hellmann–Feynman theorem provides an explicit expression for the AC integrand:

Wxc,λ[ρ] =
˙
Ψλ
˛̨
W ′λ
˛̨
Ψλ
¸
− J′λ[ρ] (AC integrand)

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

-4

-2

0

Exc, Λ@ΡD

0.0 0.2 0.4 0.6 0.8 1.0
-14

-12

-10

-8

-6

-4

-2

0

Wxc, Λ@ΡD

area = Exc, Λ@ΡD

I Note: the AC integrand has a large constant exchange contribution (above the horizontal line)

I Langreth and Perdew, Solid State Comm. 17 1425 (1975),
Gunnarsson and Lindqvist, PRB 13, 4247 (1976)
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The Adiabatic Connection Integrand

I Just as for the exchange–correlation integrand which gives Exc on integration

I We may construct integrand for the sum of the Coulomb, exchange and correlation
energies:

WJxc,λ[ρ] =
˙
Ψλ
˛̨
W ′λ
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Ψλ
¸

I or just the correlation energy

Wc,λ[ρ] =
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¸
−
˙
Ψ0

˛̨
W ′λ
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¸
I Using our approach we may employ any of the armoury of wavefunction techniques to

accurately calculate the AC

I In this way we can “see what we are aiming at” by calculating the AC with the control and
refine-ability of wavefunction techniques

I Of course to perform practical calculations we need a sufficiently cheap model of the AC...

I An example of such a model is E
(d)RPA
c . But how accurate is it ?
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The RPA Correlation Energy in DFT

I The closed-shell RPA excitation problem requires the solution of„
A B
−B −A

«„
X
Y

«
=

„
X
Y

«
ω

Aai,bj = (εa − εi )δabδij + Laijb Bai,bj = −Laibj Lpqrs = 2gpqrs − gpsrq

I The Tamn-Dancoff approximation (TDA) sets B = 0 and solves AZ = Zv .

I The RPA contains both excitation and de-excitation operators, the latter of which can be
thought of as correlating the ground state, whilst TDA contains only excitation operators.

I The ground state correlation energy in RPA is then given by the plasmonic formula

ERPA
c =

1

2
Tr(ω − A)

I The above equations correspond to the ’full’ RPA, making the replacement Lpqrs = 2gpqrs

gives so called ’direct’ RPA (dRPA)
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The Relationship of RPA to Coupled-Cluster Techniques

I It has long been known numerically and recently proved analytically that the (d)RPA
correlation energy may be obtained by solving a so called (d)ring-CCD problem

I Following Scuseria et al. we introduce the quantities Z = YX−1 and R = XωX−1

(assuming that X is non-singular) the RPA problem may be re-written as

B + AZ + ZA + ZBZ = 0

I Following the derivation of the closed-shell CCD equations and identifying terms
corresponding to the A and B matrices an approximate closed-shell CCD equation is
obtained

B− 2AT− 2TA + 4TBT = 0 (Z = −2T)

I The (d)RPA correlation energy is then expressed as

E
(d)RPA
c =

X
aibj

tab
ij Laibj = −Tr(BT) =

1

2
Tr(BZ) =

1

2
Tr(ω − A)

I This route to the (d)RPA correlation energy has favourable scaling and avoids the
evaluation of the adiabatic connection integral

I In addition we can obtain the RPA density via standard Lagrangian techniques
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Calculating RPA and dRPA ACs

I The (d)RPA is an attractive non-local but relatively inexpensive correlation contribution for
use in DFT

I The dRPA can be derived directly from a consideration of the adiabatic connection.
However the AC can be calculated both for RPA and dRPA

I Using our iterative approach we can calculate the (d)RPA adiabatic connections and
compare them with those from other techniques

I This can be useful as a diagnostic technique. Here we consider RPA and dRPA calculations
based on Hartree–Fock orbitals (work on other references in progress)

I We begin with the dynamically correlated atomic systems He and Ne, before examining the
H2 molecule (u-aug-cc-pCVTZ basis)

I For comparison we will also present the ACs for HF, MP2, CCD, and CCSD
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RPA ACs: He

I
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I RPA gives a much too positive correlation energy, whilst dRPA gives a significantly too
negative correlation energy for atoms
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RPA ACs: Ne
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The H2 Molecule: BLYP

I At short distances, exchange (−0.827Eh) dominates over correlation (−0.039Eh) energy

I BLYP curve performs well, reproducing HF exchange and FCI correlation

I The BLYP and FCI curves are nearly linear, indicative of dynamical correlation
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The H2 Molecule: BLYP

I The overall picture is similar to that at R = 0.7 bohr

I Most notably, Ex ⇑ from −827 to −661 mEh

I Ec ⇓, from −39 to −41 mEh
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The H2 Molecule: BLYP

I Ex ⇑ further from −661 to −477 mEh and Ec ⇓, −41 to −77 mEh

I The FCI curve now curves more strongly, indicative of static correlation

I The BLYP functional overestimates exchange but works well by error cancellation
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The H2 Molecule: BLYP

I The overall picture is similar to that at R = 3.0 bohr

I However, the static-correlation curvature of the FCI curve is now more pronounced

I The BLYP curve now benefits less from error cancellation, underestimating the XC energy
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The H2 Molecule: BLYP

I At R = 10 bohr, the two atoms are separated and correlation is essentially static

I Dynamical correlation is now less than 1 mEh (dispersion)

I The BLYP functional works mostly by overestimating the exchange energy
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RPA ACs: H2
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I At R = 0.7 bohr, half equilibrium bond length, the picture is similar to He atom
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RPA ACs: H2
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I Stretching to R = 1.4 bohr, equilibrium bond length, little changes
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RPA ACs: H2
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I Stretching to R = 3.0 bohr, the correlation energy grows and the AC begins to display
more pronounced curvature. Both RPA and dRPA now give a too positive correlation
energy. However, both display some curvature.
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Generalized, range-dependent adiabatic connection

I Up to now, we have studied the AC with uniformly scaled two-electron interaction

Wλ =
X
i 6=j
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I We shall now consider range-dependent generalized adiabatic interaction
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Generalized, range-dependent adiabatic connection
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 1
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 2
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 3
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 4
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 5
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 6
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 7
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 8
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 9
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AC correlation curves for the He isoelectronic series

I Standard AC curve on the left

I linearity increases with increasing Z

I Range-separated (erf–gau) AC curve on the right

I curves reveal increasing compactness with increasing Z

I Z = 10
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Range-dependent AC: Total curve, dissociating H2

I We consider the total AC curve first
I includes Coulomb, exchange and correlation

I Standard curve on the left
I it undergoes the usual transition from a sloped to horizontal curve at full separation
I this reflects the transition from dynamical to static correlation

I Range-separated erf–gau curve on the right
I it moves towards small λ values with increasing separation
I at full separation, all total interactions are interatomic
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Range-dependent AC: Correlation-only, dissociating H2

I Standard curve on the left

I it undergoes the same transition from a sloped to horizontal curve
I this reflects the transition from dynamical to static correlation

I Range-dependent erf–gau curve on the right

I at short bond distance, the interactions are predominantly short-ranged
I at long distances, short- and long-ranged interactions partially cancel

I R = 0.7 bohr
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I Static correlation is an all range effect
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Modelling the Adiabatic Connection
I We now return to considering the linear AC

I Modelling of ACs can provide a constructive route to new functionals

I A prominent model is the interaction strength interpolation (ISI) of Seidl et al.

I This model makes use of simple density functionals for the coefficients W∞ and W ′∞ in
the asymptotic expansion Wλ[ρ]→W∞[ρ] +W ′∞[ρ]λ−1/2(λ→∞)

I Using these functionals an interpolation between the weak and strongly interacting limits is
setup

WISI
λ =W∞ +

X
√

1 + Y + Z
where

X =
xy2

z2
, Y =

x2y2

z4
, Z =

xy2

z3
− 1

x = −2W ′0, y =W ′∞, z =W0 −W∞
with

WPC
xc,∞[ρ] =

Z h
Aρ4/3(r) + B

|∇ρ(r)|2

ρ4/3(r)

i
dr A = −

9

10

„
4π

3

«1/3

B =
3

350

„
3

4π

«1/3

W
′PC
xc,∞[ρ] =

Z h
Cρ3/2(r) + D

|∇ρ(r)|2

ρ7/6(r)

i
dr C =

1

2
(3π)1/2 D0 =

1

40

„
3

4π

«1/6

I For the coefficient D several possibilities have been suggested and the quality of the results
obtained is very sensitive to this choice

I Seidl, Perdew and Kurth, PRA 62, 012502 (2000)
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Modelling the Adiabatic Connection

I Recently we have used our approach for the calculation of accurate ACs to guide the
construction of models for the AC

I By considering the λ dependence of the correlation energies in second order perturbation
theory and a simple CI model we obtained the forms

WD(λ) =
asλ(4a + sλ)

(2a + sλ)2

WCI(λ) = −
1 +
√

5

4
a−

4
“

2 +
√

5
”

a2 + 5
“

3 +
√

5
”

asλ

2

r
8
“

7 + 3
√

5
”

a2 + 16
“

2 +
√

5
”

asλ+ 10
“

3 +
√

5
”

s2λ2

I Here the parameter a is the asymptotic value Wc,∞ and s the initial slope of the AC
(2EGL2

c )

I Using the functional WPC
xc,∞[ρ]− Ex[ϕKS] for the asymptotic value and 2EGL2

c [ϕKS] for
the initial slope a model for the AC is obtained in terms of the density and Kohn–Sham
orbitals only

I Teale, Coriani, Helgaker, JCP, submitted (2010)
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Modelling the Adiabatic Connection
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I The model WD(λ) gives a surprisingly good description of static correlation in H2.
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I The model WCI(λ) gives a slightly too negative correlation energy - both models seem to
hint that the approximate WPC

xc,∞[ρ]− Ex[ϕKS] may be slightly too negative
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Modelling the Adiabatic Connection

I Integration of these models between λ = 0 and λ = 1 yields correlation energy functionals

ED Model
c =

as

2a + s

ECI Model
c =

4a2 +
“√

5− 1
”

as + a

r
16a2 + 8

“√
5− 1

”
as − 10

“√
5− 3

”
s2

2(
√

5− 3)s

I These functionals

I are suitable for addition to orbital dependent exchange
I avoid error cancellation between exchange and correlation components
I correspond to AC models that have the correct λ = 0 point and slope at λ = 0 and

have a finite asymptotic value
I do not use W ′∞ in their construction
I have scaling of N5 owing to the use of the exact slope

I Approximations to the slope are under investigation...
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Summary

I Calculation of Fλ[ρ] and the AC Integrand

I Performed the Lieb functional maximization at different coupling strengths
I Decomposed the universal functional into Ts , J, Ex and Ec
I Represented these as adiabatic connection integrands

I The Adiabatic Connection and RPA

I Discussed preliminary results obtained for the RPA and dRPA ACs
I Compared these with more accurate results from wavefunction methodologies
I Highlighted the shortcomings of a typical GGA functional

I Range-Dependent Adiabatic Connections

I Examined generalized range-dependent ACs (Erf and Erf-Gau)
I Discussed the description of static correlation in these ACs

I Modelling the Adiabatic Connection

I Discussed some recent results for modelling the AC in terms of ρ and ϕKS only
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