

REACTIVITY INDICES AND BONDING IN V_2O_5 BASED MATERIALS

Monica Calatayud

Laboratoire de Chimie Théorique Université Pierre et Marie Curie, CNRS Institut Universitaire de France calatayud@lct.jussieu.fr

Paris June 27th 2013

Applications

- catalysis : selective oxidation reactions
 DeNOx, alkane ODH, H₂SO₄ synthesis,...
- alloys: with steel Ford Model T 1908
- energy: V, Li...

storage batteries, solar panels, defibrillators,...

Rich chemistry: redox, acid/base

²³V: [Ar] 4s² 3d³

Questions

- structure/reactivity?
- role of V oxidation state?
- role of agregation?
- reactivity indices?

www.chemicool.com

The structure of V₂O₅

- common features: structural patterns, redox reactivity
- differences: characterization techniques, structural knowledge, applications
 - Use theoretical tools to understand structure/reactivity relationships

The gas-phase clusters V_xO_v^{0/+}

Experiments

- Collision Induced Dissociation
- Dissociation channels:
 - stable units $VO_{1/2}$, $V_2O_{4/5}$, $V_3O_{6/7}$
 - easily lose $O_2 VO_4$, $V_2O_{6/7}$
- Neutral and charged systems
- Reactivity: O₂, methanol,...

Calculations

- optimized geometries for different stoichiometry V_xO_y
- stability, reactivity towards O₂, methanol, H₂
- Bonding: topological analysis of ρ(r) and ELF
 V-O bonds: unshared electron interaction, covalent
 O-O bonds: shared electron interaction, CT
- Standard molecular codes
 - V=O and V-O-V bonds
 - reactivity of undercoordinated sites: V

J. Phys. Chem. A <u>105</u> (2001) 9760 Theor. Chem. Acc. <u>105</u> (2001) 299; <u>108</u> (2002) 12 Chem. Phys. Lett. <u>333</u> (2001) 493 4

 $V_2O_6^{+2}A$

The bulk V₂O₅ and its surfaces

Experiments

- DRX indicate a layered structure
- Surface science techniques: probe molecules, spectroscopy

reactivity V=O V-O-V sites

Calculations

- Bulk structure: description of the interlayer interactions
- Surfaces: description of the surface geometry and electronic structure, reactivity towards probe molecules model for vanadia-containing catalysts
- Standard molecular codes, **periodic codes**

- different oxygen sites: V=O, V-O-V
- reactivity of undercoordinated V sites
- reactivity of O sites: dependent on the partner

The supported catalysts

Experiments

- Catalytic measurements activity, selectivity, redox acid/base
- Raman spectroscopy
 - V=O V-O-V V-O-M sites, polymerization, coverage

Calculations

- Building realistic models
- stability, reactivity towards probe molecules: water, methanol, H₂
- Bonding: topological analysis of $\rho(r)$ and ELF on molecular models
- Standard molecular codes, periodic codes

- different oxygen sites: V=O, V-O-V, V-O-Ti
- reactivity of undercoordinated V and Ti sites
- reactivity of O sites?
- role of coverage

Catal. Today <u>139</u> (2008) 214

Comparing V₂O₅-based materials

gas-phase cluster

 V_{3f} V_{4f} $(001) V_2O_5$ V_{5f} V_{5f} V_{6f}

supported V₂O₅/TiO₂

Common features

- presence of V=O, V-O-V groups, undercoordinated V
- Similar reactivity like redox, acid/base

Differences

- Coordination increases with agregation, structure changes
- New sites in the supported material
- Properties calculated at different computational levels, models

How to compare the three materials on the same foot?

- use periodic boundary conditions for all
- choose the appropriate properties to compare

Predicting reactivity: reactivity indices

Molecular Electrostatic Potential

hardness ~ acid/base

$$V(\underline{R}) = \sum_{A} \frac{Z_{A}}{|\underline{R}_{A} - \underline{R}|} - \int \frac{\rho(\underline{r})}{|\underline{r} - \underline{R}|} d\underline{r}$$

Fukui function

softness ~ electron transfer

$$f^+(\underline{r}) =
ho_{N_0+1}(\underline{r}) -
ho_{N_0}(\underline{r})$$
 Nucleophilic
 $f^-(\underline{r}) =
ho_{N_0}(\underline{r}) -
ho_{N_0-1}(\underline{r})$ Electrophilic

- The undercoordinated V is acidic, the terminal oxygen sites are basic
- Ionisation will take place from terminal oxygens
- Validation from standard molecular calculations to periodic calculations (Gaussian vs VASP): qualitative agreement

- Terminal oxygens are preferred in hard-hard electrophilic reactions
- Soft-soft electrophilic reactions would take place on different sites for each material
- Comparison between the different materials towards the same partner

Chem. Phys. Lett. 456 (2008) 59

Conclusion

• V_2O_5 occurs in different forms

-Structure and reactivity have differences and similarities

- Bonding can be successfully explored by using ELF, QTAIM, NCI methods, adapted to the model
- periodic conditions allows a comparison of the materials on the same level
- conceptual DFT gives qualitative and quantitative description of the reactive regions
- understand and predict activity and selectivity in chemical reactions

Perspectives

- extend the application in periodic systems: DOS, band structure
- correlate with energetics
- apply to solid state, surface science, heterogeneous catalysis

Acknowledgements

V_2O_5 , ELF

J. Andrés, A. Beltran

B. Silvi, S. Berski

- P. Gonzalez-Navarrete, L. Gracia
- C. Minot

Conceptual DFT

F. Tielens, F. De Proft

NCI & more

J. Contreras

THANK YOU!!

Castelló (Spain)

Brussels

Paris

