On the decay rate of real space delocalization measures

Introduction	Analytical model systems	Correlation: back to Chemistry	Correlation: collective effects	
Outli	no			

Introduction

Analytical model systems

- Homoatomic
- Heteroatomic
- The 2D,3D TB limit

3 The real thing

Correlation: back to Chemistry

- Dissociation in diatomics
- Other Dissociations
- Simple Chemical Process

5 Correlation: collective effects

- CAS on H-chains
- Hubbard Model on H-chains

Conclusions

AMP (Universidad de Oviedo)

Introduction ••••••	Analytical model systems	Correlation: back to Chemistry	Correlation: collective effects	
Intro	duction			

- May real space descriptors of metallic or insulating-like character be found in extended as well as molecular systems?
 - Partitioning of space provided by QTAIM
- Some initial QTAIM proposals unfruitful:
 - Non-nuclear attractors found in Li molecular clusters.
 - Present in *bcc*-Li, but not in Cu, Al.
- A seminal paper by Kohn establishes a deep link between localization and insulating character.
 - Tempting to examine real space delocalization measures.
- In solids, a lot of theoretical work has been done.
 - ... Berry phases, modern theory of polarization.
 - Link between the decay rate of $\rho(\mathbf{r};\mathbf{r}')$ with insulating nature

Introduction Analytical model systems The real thing Correlation: back to Chemistry Correlation: collective effects Conclusions

Metals

e.g. Goedecker, PRB 58, 3501, (1998)

- $\rho(\mathbf{r};\mathbf{r}') \equiv \rho(|\mathbf{r}-\mathbf{r}'|) \equiv \rho(\mathbf{r})$ decays like a power law at T = 0.
- For free electron bands $\rho(r) = 2(2\pi)^{-3} \int_{k < k_F} dk e^{-ikr} = \frac{-k_F}{\pi^2 r^2} (\cos(rk_F) \sin(rk_F)/(rk_F))$

Similar to Friedel oscillations First zeros at $rk_F = 4.49, 7.73, 10.90$ If $k_F \approx \pi/a$ close to lattice positions Decay as $r^{-(d+1)/2}$ in *d*-dimensions

Image: Image:

Introduction Analytical model systems The real thing Co 00000 0000 0000 0000 0000

Correlation: back to Chemistry

Correlation: collective effects

Conclusions

Known results in extended systems

Insulators

e.g. PRL 88, 196405 (2002)

- Exponential decay for $\rho(|\mathbf{r}-\mathbf{r}'|) \approx e^{-\lambda|\mathbf{r}-\mathbf{r}'|}$
- For 2 bands tight binding (TB) models exist for a 1D chain, 2D square, 3D simple cubic lattice.
 - A prefactor $r^{d/2}$ appears.
 - ρ is anisotropic. Slowest decay along diagonals.
 - (1, 1) or (1, 1, 1) directions in 2D, 3D.
 - Decay length λ depends on the gap Δ .
 - As $\Delta \rightarrow 0$, λ scales linearly with Δ .
 - Effective λ values between $\approx 1-5$.

 Introduction
 Analytical model systems
 The real thing
 Correlation: back to Chemistry
 Correlation: collective effects
 Conclusions

 Real space delocalization measures

 • Well known in real space theories of the chemical bond.

- Becke's & Edgecombe ELF (local, drawback).
- QTAIM's delocalization indices δ^{AB} , extension of Wiberg-Mayer bond order.

• etc.

Delocalization index

Bader & Stephens 1974

• $\mathsf{DI}(A,B) = \delta^{AB} = 2 \int_{\Omega_A} d\mathbf{r}_1 \int_{\Omega_B} d\mathbf{r}_2 \rho_2^{xc}$. $\rho_2^{xc}(\mathbf{r}_1,\mathbf{r}_2) = \rho_1(\mathbf{r}_1)\rho_1(\mathbf{r}_2) - \rho_2(\mathbf{r}_1,\mathbf{r}_2)$

• Scalar parameter between each pair of atoms: $1/2 \sum_{A,B} \delta^{AB} = N$.

Condenses two-center electron population fluctuations.

$$\delta^{AB} = -2 \operatorname{cov}(n_A, n_B) = -2 \left[\langle n_A n_B \rangle - \langle n_A \rangle \langle n_B \rangle \right]$$

•
$$\langle n_A n_B \rangle = \sum_{n_A, n_B} n_A n_B p(n_A, n_B), \qquad \langle n_A \rangle = \sum_{n_A} n_A p(n_A)$$

• At the single-determinant level (non-interacting effective electrons) $\rho_2^{xc} = \rho(\mathbf{r}_1; \mathbf{r}_2) \rho(\mathbf{r}_2; \mathbf{r}_1) \equiv |\rho(\mathbf{r}_1; \mathbf{r}_2)|^2$

• For interacting systems (correlated level) still dominated by Fock-Dirac.

• Well known in real space theories of the chemical bond.

- Becke's & Edgecombe ELF (local, drawback).
- QTAIM's delocalization indices δ^{AB} , extension of Wiberg-Mayer bond order.

• etc.

Delocalization index

Bader & Stephens 1974

•
$$\mathsf{DI}(A,B) = \delta^{AB} = 2 \int_{\Omega_A} d\mathbf{r}_1 \int_{\Omega_B} d\mathbf{r}_2 \rho_2^{xc}$$
. $\rho_2^{xc}(\mathbf{r}_1,\mathbf{r}_2) = \rho_1(\mathbf{r}_1)\rho_1(\mathbf{r}_2) - \rho_2(\mathbf{r}_1,\mathbf{r}_2)$

• Scalar parameter between each pair of atoms: $1/2 \sum_{A,B} \delta^{AB} = N$.

Condenses two-center electron population fluctuations.

•
$$\delta^{AB} = -2 \operatorname{cov}(n_A, n_B) = -2 \left[\langle n_A n_B \rangle - \langle n_A \rangle \langle n_B \rangle \right]$$

• $\langle n_A n_B \rangle = \sum_{n_B \to n_B} n_A n_B p(n_A, n_B), \quad \langle n_A \rangle = \sum_{n_B} n_A p(n_A)$

- At the single-determinant level (non-interacting effective electrons) $\rho_2^{xc} = \rho(\mathbf{r}_1; \mathbf{r}_2) \rho(\mathbf{r}_2; \mathbf{r}_1) \equiv |\rho(\mathbf{r}_1; \mathbf{r}_2)|^2$
- For interacting systems (correlated level) still dominated by Fock-Dirac.

 Introduction
 Analytical model systems
 TH

 00000
 00000
 0

The real to

Correlation: back to Chemistr

Correlation: collective effects

Conclusions

Real space delocalization measures

Expectations for extended systems

- DI's should fall as power-law for metals: $\delta pprox r^{-f}$
 - f depends on dimension.
 - DI's might show Friedel-like oscillations.
- DI's should fall exponentially for insulators. $\delta \approx e^{-\lambda r}$
 - λ depends on Δ .

Aims

- Examine Hückel finite + TB extended models in 1D, 2D, 3D.
- Compute actual DI's for H and LiH realizations of the models.
- Examine the role of electron correlation.
- Link results with chemistry.

 </l

 Introduction
 Analytical model systems

 OOOOO
 OOOOO

ns The rea

Correlation: back to Chemistry

Correlation: collective effects

Conclusions

Real space delocalization measures

Expectations for extended systems

- DI's should fall as power-law for metals: $\delta pprox r^{-f}$
 - f depends on dimension.
 - DI's might show Friedel-like oscillations.
- DI's should fall exponentially for insulators. $\delta \approx e^{-\lambda r}$
 - λ depends on Δ .

Aims

- Examine Hückel finite + TB extended models in 1D, 2D, 3D.
- Compute actual DI's for H and LiH realizations of the models.
- Examine the role of electron correlation.
- Link results with chemistry.

- $H = \alpha I + \beta T$, where $T_{ij} = \delta_{|i-j|=1}$ is Toeplitz tridiagonal if linear.
- Eigensystem $\lambda_{\mu} = \alpha + 2\beta \cos \frac{\mu \pi}{n+1}, \mu = 1, n \text{ (n even). } x_{\mu}^{i} = \sqrt{\frac{2}{n+1} \sin \frac{\mu i \pi}{n+1}}.$
- $\delta^{ij} = 2(\sum_{\mu} x^i_{\mu} x^j_{\mu})^2$
- DI's predict Peierls-like distortions in linear chains.
- The *p*-DI in cyclic related to aromaticity.

Introduction	Analytical model systems		Correlation: back to Chemistry	Correlation: collective effects	
Finite	analytica	mode	l systems		
Hückel ho	moatomic chain				

- $H = \alpha I + \beta T$, where $T_{ij} = \delta_{|i-j|=1}$ is Toeplitz tridiagonal.
- Eigensystem $\lambda_{\mu} = \alpha + 2\beta \cos \frac{\mu \pi}{n+1}, \mu = 1, n \text{ (n even). } x_{\mu}^{i} = \sqrt{\frac{2}{n+1}} \sin \frac{\mu i \pi}{n+1}.$
- $\delta^{ij} = 2(\sum_{\mu} x^i_{\mu} x^j_{\mu})^2$, $\lim_{n \to \infty} \delta^{ij} = (16/\pi^2)j^2/(i^2 j^2)^2$ (j + i odd).
- Gap $\Delta(\gamma) = 2\pi(\gamma \gamma^2) + \mathcal{O}(\gamma^3)$. (Expansion with respect to $\gamma = 1/n$) • $\delta^{i,i+2n} = 0, \, \delta^{n/2,n/2+r} \to 4/(r^2\pi^2)$ (r odd)

• $H = \alpha I + \beta T$, where $T_{ij} = \delta_{|i-j|=1}$ is Toeplitz tridiagonal.

• Eigensystem
$$\lambda_{\mu} = \alpha + 2\beta \cos \frac{\mu \pi}{n+1}, \mu = 1, n \text{ (n even). } x_{\mu}^{i} = \sqrt{\frac{2}{n+1}} \sin \frac{\mu \pi}{n+1}.$$

• $\delta^{ij} = 2(\sum_{\mu} x_{\mu}^{i} x_{\mu}^{j})^{2}, \qquad \lim_{n \to \infty} \delta^{ij} = (16/\pi^{2})j^{2}/(i^{2}-j^{2})^{2} \text{ (}j+i \text{ odd).}$
• Gap $\Delta(\gamma) = 2\pi(\gamma - \gamma^{2}) + \mathcal{O}(\gamma^{3}).$ (Expansion with respect to $\gamma = 1/n$)
• $\delta^{i,i+2n} = 0, \ \delta^{n/2,n/2+r} \to 4/(r^{2}\pi^{2}) \text{ (r odd)}$

AMP (Universidad de Oviedo)

NCI 2013

June 2013 8 / 26

Introduction Analytical model systems The real thing Correlation: back to Chemistry Correlation: collective effects Conclusions

- $H = \alpha I + \beta T$, where $T_{ii} = \delta_{|i-i|=1}$ is Toeplitz tridiagonal.
- Eigensystem $\lambda_{\mu} = \alpha + 2\beta \cos \frac{\mu \pi}{n+1}, \mu = 1, n \text{ (n even). } x_{\mu}^{i} = \sqrt{\frac{2}{n+1}} \sin \frac{\mu i \pi}{n+1}.$
- $\delta^{ij} = 2(\sum_{\mu} x^i_{\mu} x^j_{\mu})^2$, $\lim_{n \to \infty} \delta^{ij} = (16/\pi^2)j^2/(i^2 j^2)^2$ (j + i odd). • Gap $\Delta(\gamma) = 2\pi(\gamma - \gamma^2) + \mathcal{O}(\gamma^3)$. (Expansion with respect to $\gamma = 1/n$)
- $\delta^{i,i+2n} = 0$, $\delta^{n/2,n/2+r} \rightarrow 4/(r^2\pi^2)$ (*r* odd) Equivalence to TB:
 - 1D lattice, a
 - Occ. BZ $\equiv -\pi/(2a) \le k < \pi/(2a)$
 - $\phi_k(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\mathbf{R}} \phi(\mathbf{r} \mathbf{R})$
 - $\delta^{0r} = 4\{\frac{a}{2\pi} \int_{-\pi/(2a)}^{-\pi/(2a)} dk \ e^{ikra}\}^2 = 4\sin^2(\pi r/2)/(r^2\pi^2) = 4/(r^2\pi^2), (r \text{ odd})$

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Analytical model systems		Correlation: back to Chemistry	Correlation: collective effects	
Finite	e analytica	l mode	I systems		
Hückel he	eteroatomic AB ch	ain			

- Two different α and α' values. ($\alpha' = 0$).
- Analytically solved through a generalization of the Coulson-Rushbrooke theorem.
- $\lambda_k = \left(\alpha \pm \sqrt{\alpha^2 + 16\cos^2(k\pi/(n+1))}\right)/2, k = 1, n/2$
- Gap $\Delta(\gamma) = \alpha + 2\pi^2\gamma^2/\alpha + \mathcal{O}(\gamma^3)$

- Two different α and α' values. ($\alpha' = 0$).
- Analytically solved through a generalization of the Coulson-Rushbrooke theorem.

•
$$\lambda_k = \left(\alpha \pm \sqrt{\alpha^2 + 16\cos^2(k\pi/(n+1))}\right)/2, k = 1, n/2$$

• Gap
$$\Delta(\gamma) = \alpha + 2\pi^2 \gamma^2 / \alpha + \mathcal{O}(\gamma^3)$$

•
$$n = 10$$
 chain. $\alpha = 0, 1, 2$

DI(1,j)

- Two different α and α' values. ($\alpha' = 0$).
- Analytically solved through a generalization of the Coulson-Rushbrooke theorem.

•
$$\lambda_k = \left(\alpha \pm \sqrt{\alpha^2 + 16\cos^2(k\pi/(n+1))}\right)/2, k = 1, n/2$$

• Gap
$$\Delta(\gamma) = \alpha + 2\pi^2\gamma^2/\alpha + \mathcal{O}(\gamma^3)$$

•
$$n = 10$$
 chain. $\alpha = 0, 1, 2$

AMP (Universidad de Oviedo)

AMP (Universidad de Oviedo)

June 2013 10 / 26

 δ (1st neighbor) = 0.405, 0.164, 0.112 in 1D, 2D, 3D.

AMP (Universidad de Oviedo)

Introduction 00000	Analytical model systems	The real thing ●OO	Correlation: back to Chemistry	Correlation: collective effects	
	llic-like be	havior			

H chains

- Fixed nearest neighbors distance.
- 6-311G(p) Hartree-Fock finite data.
- Elk+DGRID 1D Kohn-Sham periodic calculations.

- *a* = 1.84 au.
- $\delta^{1,2i+1} \neq 0$ but small.
- Friedel-like oscillations clear even for finite chains
- f values larger than Hückel or TB, but definitely power-law scaling.

 $\delta^{1,2(4)}$ close to models: 0.44(0.40), 0.04(0.04) for infinite chain.

Introduction 00000	Analytical model systems	The real thing O●O	Correlation: back to Chemistry	Correlation: collective effects	
Metal	lic-like be	havior			

2D, 3D periodic H lattices

- Elk+DGRID KS periodic calculations
- *a* = 2.5 au.
- Only (1,0) or (1,0,0) directions shown

- Directional profiles.
- Clear power law for DIs.
- Tight binding (TB) oscillations damped.
- $f_{2D} \approx 3.8$, close to TB. $\delta^{12} = 0.19, 0.164$ for KS, TB.
- f_{3D} close to 6. $\delta^{12} = 0.12, 0.112$ for KS, TB.

Introduction	Analytical model systems	The real thing OO●	Correlation: back to Chemistry	Correlation: collective effects	
Insula	ating-like l	pehavio	or		

1D, 2D models

LiH toys

- 6-311G(p) Hartree-Fock calculations.
- *a* = 3.0 au.
- Only (1,0) directions shown

- 9-1D, 9x9-2D
- $\delta^{\mathsf{HX}} + \delta^{\mathsf{LiX}}$
- δ's decrease exponentially or even faster.
- λ grows with D
- No oscillations
- Numerical precision?

Image: Image:

 Introduction
 Analytical model systems
 The real thing
 Correlation: back to Chemistry
 Correlation: collective effects
 Correlation: back to Chemistry

 Back to Chemistry.
 The profile of DI's

The role of correlation

JCTC 7, 1704 (2011)

- Reliable correlated \(\rho(\mathbf{r},\mathbf{r}')\) in solids?
- DI's measure covalent bond order in molecules
 - $\delta \approx 1$ in H₂, ethane, 2 in ethylene, etc.
- Correlation effects have been investigated.
 - Homolytic dissociation \equiv switch on correlation
- May we learn something from this?

• Study the profile of DI's in chemical processes

Bonded & non-bonded interactions.

Introduction 00000	Analytical model systems	Correlation: back to Chemistry ●00000	Correlation: collective effects	
Diato	mics			

- Singlet and Triplet behave very differently.
- Singlet shows inflection point.
 - Hückel DI= 1
 - singlet \rightarrow metallic
- Triplet decays exponentially.
 - Hückel DI= 0
 - triplet \rightarrow insulating

 H_2

Introduction	Analytical model systems	Correlation: back to Chemistry	Correlation: collective effects	
Diato	mics			
H_2				

- Singlet and Triplet behave very differently.
- Singlet shows inflection point.
 - Hückel DI= 1
 - singlet \rightarrow metallic
- Triplet decays exponentially.
 - Hückel DI = 0
 - triplet \rightarrow insulating

• $DI=2(1 - p(1, 1)) = 4p(2, 0) \equiv Probability of$ *hopping*.

- Inflection at $\approx 2.90 \pm 0.1$ a.u.
- DI $\approx 0.5 \pm 0.1$

Introduction	Analytical model systems	Correlation: back to Chemistry	Correlation: collective effects	

Diatomics Bonded vs. non-bonded Interactions

• CAS[10,8] for N₂: IP at 3.3 ± 0.1 bohr

590

16/26

June 2013

- DI ≈ 0.9 ± 0.1
- IP at about half eq. value

 </l

CISD He₂ and Ar₂.

Introduction	Analytical model systems	Correlation: back to Chemistry	Correlation: collective effects	
Diato Effect of c	mics charge transfer			

- $r \approx 5.5$ bohr \equiv avoided crossing
- Q(Li) = p(2,2) = t
- CT coordinate *t* models the process.

- H₂ Hopping $t \equiv p(2,0)$
- LiH Hopping $t \equiv p(2,2)$

< 🗆 🕨

• Sigmoidal $Q \equiv t vs$. Distance

590

In H₂O:

- Covalent one-parameter dissociation of H-H
- covalent formation + CT for O-H (peak DI>0.5)
- Successfully modeled by 2 parameters.
- Similar in H₂S:
 - Larger covalency.
 - CT maximum barely visible.

< <p>I I

In H₂O:

- Covalent one-parameter dissociation of H-H
- covalent formation + CT for O-H (peak DI>0.5)
- Successfully modeled by 2 parameters.
- Similar in H₂S:
 - Larger covalency.
 - CT maximum barely visible.

0.2

0.0

-4.0

-3.0 -2.0 -1.0 0.0

• Chemistry easy to decode.

IRC/amu^{1/2}-bohr

- \sum_{i} DI_i valuable \equiv free valence.
- The jump in \sum DI for H+H-F related to charge transfer.
 - If washed out \Rightarrow similar to H+H-H
 - For HF, Q(F) = -0.74. At peak, Q(F) = -0.13,

0.4

0.2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

4.0

2.0

1.0

IRC/amu^{1/2}=bohr

< < >>

Introduction	Analytical model systems	The real thing	Correlation: back to Chemistry	Correlation: collective effects	

Migrations

- 1,2 H migration in $C_6H_7^+$.
- keto-enol tautomerism in malonaldehyde.
- HCN isomerization.

< <p>I I

 Even a CT step may be distinguished in HCN

Correlation: collective effects

- Sigmoid ≡ onset of delocalization.
- What happens as n grows?
- Baranov & Kohout have computed DI's in H chains (UKS):
 - Sharp transition form low to high DI as d(HH) decreases
 - Metal-insulator (Mott)?
 - Is the H-H DI sigmoid a precursor of the transition?

First attempt: Size extensive CAS

- Cyclic chains: 4n + 2 (Aromatic). n = 0, 1, 2 6-311G(p)
 - Quick saturation

uction Analytical model systems

The real thir

orrelation: back to Chemistry

Correlation: collective effects

Conclusions

Sigmoids, Cooperativity, Phase transitions?

Second attempt: Mapping to Hubbard Hamiltonian

- $H = -t \sum_{\langle i,j \rangle,\sigma} (c^+_{i\sigma} c_{j\sigma} + c^+_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$
- U/t measures correlation
 - $U = 0 \equiv \text{TB}$: independent electrons, 1SD.
 - $U/t \rightarrow \infty \equiv d \rightarrow \infty$ dissociation limit
 - $U/t \approx d$ mapping

tion Analytical model system

stems The re 000 Correlation: back to Chemistry

Correlation: collective effects

Conclusions

Sigmoids, Cooperativity, Phase transitions?

Second attempt: Mapping to Hubbard Hamiltonian

- $H = -t \sum_{\langle i,j \rangle,\sigma} (c^+_{i\sigma} c_{j\sigma} + c^+_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$
- U/t measures correlation
 - $U = 0 \equiv \text{TB}$: independent electrons, 1SD.
 - $U/t \rightarrow \infty \equiv d \rightarrow \infty$ dissociation limit
 - $U/t \approx d$ mapping

ction Analytical model system

systems The

Correlation: back to Chemistry

Correlation: collective effects

Conclusions

Sigmoids, Cooperativity, Phase transitions?

Second attempt: Mapping to Hubbard Hamiltonian

- $H = -t \sum_{\langle i,j \rangle,\sigma} (c^+_{i\sigma} c_{j\sigma} + c^+_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$
- U/t measures correlation
 - $U = 0 \equiv \text{TB}$: independent electrons, 1SD.
 - $U/t \rightarrow \infty \equiv d \rightarrow \infty$ dissociation limit
 - $U/t \approx d$ mapping

ction Analytical model systems

ems The rea

Correlation: back to Chemistry

Correlation: collective effects

Conclusions

23/26

Sigmoids, Cooperativity, Phase transitions?

Second attempt: Mapping to Hubbard Hamiltonian

- $H = -t \sum_{\langle i,j \rangle,\sigma} (c^+_{i\sigma} c_{j\sigma} + c^+_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$
- U/t measures correlation
 - $U = 0 \equiv \text{TB}$: independent electrons, 1SD.
 - $U/t \rightarrow \infty \equiv d \rightarrow \infty$ dissociation limit
 - $U/t \approx d$ mapping

ction Analytical model sy 00 0000

model systems

The real thing

orrelation: back to Chemistry

Correlation: collective effects

Conclusions

Sigmoids, Cooperativity, Phase transitions?

Second attempt: Mapping to Hubbard Hamiltonian

- $H = -t \sum_{\langle i,j \rangle,\sigma} (c^+_{i\sigma} c_{j\sigma} + c^+_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$
- U/t measures correlation
 - $U = 0 \equiv \text{TB}$: independent electrons, 1SD.
 - $U/t \rightarrow \infty \equiv d \rightarrow \infty$ dissociation limit
 - $U/t \approx d$ mapping

< <p>I I

Introduction Analytical model systems The real thing Correlation: back to Chemistry Correlation: collective effects Conclusio

Other results, Kurzyk et. al. Eur. Phys. J. B 66, 385 (2008)

- 3D variational Hubbard H lattices.
- All show MT.
- Almost Linear p(2)(U/t)
- Continuous transitions.

AMP (Universidad de Oviedo)

June 2013 25 / 26

Introduction	Analytical model systems		Correlation: back to Chemistry	Correlation: collective effects	Conclusions
Summary Conclusions					

- As noted by Kohn (1963), ρ unrelated to insulating/metallic character.
- This leads to different decay rates for $\rho(\mathbf{r};\mathbf{r}')$
 - Models predict power-law in metals
 - Exponential decays in insulators
- We have shown, both analytically in simple models, and computationally that δ's behave in the same way.
- δ oscillations found in alternant hydrocarbons are analogous to Friedel oscillations in metals.
- There remains the question of numerical precision for usefulness.
- Correlation adds interesting insights
 - Profiles of DI's related to nature of interactions
 - Inflection points mark the onset of long range delocalization
 - Correlation suppresses fluctuations and interference.