

Modelling surfaces: models and applications

CTTC School Current Topics in Theoretical Chemistry *M. Calatayud* calatayu@lct.jussieu.fr

Laboratoire de Chimie Théorique Sorbonne Université Paris

Quito 30th June 2019

What is modelling?

Model: ideal or simplified system

Helps understanding, predicting rather than describing in detail

What are surfaces?

Regions where the solid ends -> interface with vacuum/gaz/liquid/solid Anisotropy, low coordination -> increased reactivity It concerns a small number of atoms compared to bulk

Modelling solid state

- Methods for solids Juan Peralta
- Surfaces: models and applications M. Calatayud
 - Introduction
 - Models
 - Properties
 - Applications
 - Software

Goal

Get familiar with surface modelling structure - properties

I: Introduction

Modelling solid surfaces

What do we want to study?

How accurate?

Choice of model & method

Methods, scales and phenomena

Each system its approach

The exact "solution" does not exist! We need: approximations that are reasonable know the conditions of applicability

Physico-chemical laws - Methodology Simplified forms = easier or faster to solve

ex. Acidic pH neglects [OH⁻] pH_{HCl} = -log ([HCl)/c°) Perfect gaz law pV=nRT for non-interacting particles Born-Oppenheimer approximation nuclei vs e-

Structural model

Reduce complexity to focus on a particular aspect

ex. size: Use an aminoacid to model a protein composition: neglect impurities to model water geometry: consider a solid periodic

Each system its approach

First step: defining the questions

What is the phenomena I want to study?

Define the system, property...

verify experimental distances, predict reactivity...

What level of accuracy I need?

Very accurate for comparison with exp Accurate to study trends Low accuracy to have a guess starting structure

What are my ressources and my constraints?

Literature: structure, composition, previous data Technical: computers, software, skills Others: deadlines, money...

Do it BEFORE you start!!

Structural models for surfaces

A real surface

Is not homogeneous

Is not perfect in composition or structure

Determine the property and the accuracy

Build the model

Models

cluster

embedded cluster

periodic

size small methods sophisticated CI, CCSD(T) MC atomic orbitals medium mixed QM/MM ONIOM AO+point charges infinite/large less acurate DFT, MM, semiemp. Monte Carlo plane waves/AO

Problems edge effect

Applications local phenomena fine structure

boundary region

concentration \uparrow

semi-local periodic adsorption, enzimes, etc. crystals, surfaces,...

The model must be carefully chosen depending on the properties to be studied!

Characterizing a surface - structure

Orientation along direction [hkl] plane (hkl) for crystals

Termination - where to cut Coordination of surface atoms, polarity... Thickness Composition stoichiometry, defects, capping...

Also applies for amorphous systems

Creating a surface in silico

The smaller the number of bonds cut, the more stable the surface The atoms at the surface are less coordinated (less stable) than in the bulk

Properties

Properties

- Catalysis and chemical reactivity
 - Adsorption
 - Energetic barriers

Adsorption mechanism Surface reactivity, diffusion Heterogeneous catalysis, tribology

Exemple 1: studying adsorption

- Building a model for the surface
 cluster vs periodic
- Determining the adsorption mode

based on energy, method dependent, comparison with experiment

• Explaining the interaction

analysis of the electronic structure

Surface Science

Volume 530, Issues 1-2, 20 April 2003, Pages 71-87

Site preference of CO chemisorbed on Pt(1 1 1) from density functional calculations

Alfred Gil ^a, Anna Clotet ^a, Josep M. Ricart ^a ^A [⊠], Georg Kresse ^b, Maite Garcı́a-Hernández ^c, Notker Rösch ^c, Philippe Sautet ^{d, e} ^A [⊠]

https://doi.org/10.1016/S0039-6028(03)00307-8

The adsorption sites in fcc metals

Тор

Bridge

Hollow fcc

Hollow hcp

Cluster models

- small clusters do not correctly describe the substrate environment → not adequate for adsorption energies
- larger clusters results ≈ periodic

Periodic models

both types of model favour CO adsorption at the hollow site instead of on-top \rightarrow disagreement with experiment

Methods make the difference

hybrid functionals including a part of the exact exchange decrease the energy difference between the two positions, suggesting a stabilization of the on top site relative to the threefold hollow site in the limit of extended models

Modelling allows electronic structure description

Bond analysis

Fig. 3. Electron density difference maps between CO chemisorbed on top at Pt(1 1 1) and the separated fragments computed with the PW91 functional, for (a) plane wave basis set (four layers slab) and (b) localized basis set (Pt₁₈ cluster model). Solid contours represent zones with accumulated electron density, and dashed contours are associated with zones of depleted electron density.

Example 2: surface energy

- Determining surface energy based on energy
- Relaxation, reconstruction based on energy
- Crystal shape

based on surface energy

Calculation of surface energy

The surface energy can be calculated from ab initio results

$$E_{surf} = \frac{E_{slab} - E_{bulk}}{2 \text{ A}} \quad units: \text{J} \text{ m}^{-2}$$

The most exposed planes will be the most stable ones → those of lower surface energy

1) Comparison of different surfaces

TiO ₂ phase	hkl	E _{surf} unrelaxed Jm ⁻²	E _{surf} relaxed Jm ⁻²
Anatase	(101)	1.127	0.414
Anatase	(001)	1.011	0.863
Anatase	(100)	1.330	0.463

2) Relaxation small rearragement to decrease energy

3) Reconstruction

important rearragement to decrease energy bond break-formation

Phys. Rev. Lett. 87 (2001) 266105

0.51 Jm⁻² reconstructed

0.90 Jm⁻² unconstructed 26

Crystal shape: a surface property

Wulff construction: the surface area is inversely proportional to the surface energy The lower energy, the higher area exposed

Rutile MO₂

Ramamoorthy and Vanderbilt Phys. Rev. B 49, 16721 (1994) TiO₂ rutile particle

Rutile particle exposing {110} and **{011}** facets.

Crystal shape: role of termination

Prediction of TiO₂ Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry

Barnard and Curtiss Nano Lett., Vol. 5, No. 7, 2005

Example 3: surface reactivity

- Building realistic model
 presence of water
- Adsorption, surface species based on energy, spectroscopic features, comparison exp.
- Chemical reactivity

reactants to products mechanism

Role of formates in the reaction reverse WGS

Stability Spectroscopy → experiment Reaction mechanism

Side view

Top view

Hydroxyl groups present

- $H_2 = H^+ + H^-$
- $H_2O = H^+ + OH^-$

Formates infra-red assignement

Based on stability (energy) and spectroscopic signature

	Infrared frequencies of formate species/cm ⁻¹								
	I		II		ш		IV		
Vibrational mode	Calcd	Exptl ^a	Calcd	Exptl ^a	Calcd	Exptl ^a	Calcd	Exptl	
C-H stretching	2923	2910	2973	2915	3011	2895	3062	n.d.	
COO asym stretching (ν_{as})	1634	1665	1538	1580	1581	1600	1624	n.d.	
C-H bending	1341	1350	1354	1385	1250	1355	1294	n.d.	
COO sym stretching (ν_s)	1252	1305	1310	1369	1324	1332	1187	n.d.	
$\Delta \nu = \nu_{\rm as} - \nu_{\rm s}$	382	360	228	211	257	268	437	_	

Table 1 Calculated and experimental harmonic frequencies for the formate (HCOO⁻) species

M. Calatayud et al. Phys. Chem. Chem. Phys. <u>11</u> (2009) 1397

Reaction mechanism

Key intermediates: monocoordinated formates

M. Calatayud et al. Phys. Chem. Chem. Phys. <u>11</u> (2009) 1397

Conclusion

Modelling is about capturing essential features!

Software & tools

- Molecular Mechanics
- Quantum Chemistry
- Molecular visualization and editing
- Databases etc
 - Nomad repository: structures and files of calculations

Companies – Academics Freeware – Web Applications

Molecular Mechanics

•AMBER

•CHARMM

- •VMD Visual Molecular Dynamics
- MOLDY Free MD program
- •GROMACS Molecular Dynamics on Parallel Computers
- •GROMOS Dynamic Modelling of Molecular Systems
- MacroModel Molecular Modelling
- •MSI/Biosym Molecular Modelling Software
- •NAMD Scalable Molecular Dynamics
- •TINKER package for molecular mechanics and dynamics
- •SYBYL software from Tripos
- •TURBOLMOL Ab initio electronic structure calculations
- •X-PLOR- MM program free for Academics
- •DNAtools-Web tools to analyze DNA

Quantum Chemistry

- 1. Finite Size
- GAMESS
- Gaussian
- ADF
- 2. Periodic
- VASP, CP2K
- WIEN2K, SIESTA, DACAPO
- CRYSTAL

- MOLCAS Quantum chemistry software at Lund University
- MOLPRO an ab initio package
- GAMESS-UK
- HyperCube Inc.
- ATMOL an ab initio program
- CADPAC -- The Cambridge Analytic Derivatives Package
- COLUMBUS general ab initio electronic structure calculations
- DeFT A gaussian density functional program
- Python source code for computational chemistry

Molecules

- Molden
- •Jmol
- •GaussView
- ECCE
- Avogadro
- Arguslab
- •VMD
- •VegaZZ
- •DeepView
- Discovery Studio
- MolView and Molview Lite Macintosh

Selection!

Periodic Systems

Materials Studio Crystal Maker VMD ModelView MOLDRAW (Molecules and crystals) Molekel (Molecules and crystals) VESTA

MOLDEN

X Molden Control	Christink Editor SondLeigth BandHingle Diffectel T Etics
Select Point: F Fires F Noxt F StickColor Stick <td>Image: Set Status All Variables Papely Diarges to current 2-Mic: Dancel Non-Applied Diarges Dancel Non-Applied Diarges</td>	Image: Set Status All Variables Papely Diarges to current 2-Mic: Dancel Non-Applied Diarges Dancel Non-Applied Diarges
Shade Perspect, Label BaokBono Status line: No coordinates found !	Substitute atom by Fragment Select by cursor DeSelect New Zrwat HawNZ/Uptimize Hupping Selection Bendlerigth From Diterature Huping Selection Write Z-Hatrix Submit Job File name 7 Emmati Geness US Geness

Gaussview

Databases, repositories

News

May 20, 2019: Database V2019.05 Released We have deprecated nearly 15,000 materials and added over 3,600 new ones. More info.