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The electronic energy E for N-electron systems

E =
∑
ik

HikΓki +
∑
ijkl

< ij |kl > Dkl ,ij

Γki : 1-RDM

Dkl ,ij : 2-RDM

Hik : core-Hamiltonian

< ij |kl >: Coulomb integrals

E [N, Γ,D] is an explicitly known functional of the 1- and 2-RDMs!

Variational Methods:

DFT
(reconstruction)

ρ (r) =⇒
RDMs

Γ,D
(contraction)
⇐= ΓN ← Ψ

CI ,MCSCF ,
CCSD, ...

M.Piris,JM.Matxain,X.Lopez,F.Ruipérez,E.Matito,J.Ugalde Can NOFT bridge the gap between DFT and WFT?



Introduction
The energy functional

Solving the system of equations
Results and chemical accuracy

The exact energy functional of RDMs
Outline

Outline

1 Introduction to the DMFT and NOFT

2 Solving the system of equations
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1-RDM Functional

Last term in the Energy: U [N,D] =
∑
ijkl

< ij |kl > Dkl ,ij can be

replaced by an unknown functional of the 1-RDM:

Vee [N, Γ] = min
D∈D(Γ)

U [N,D]

D (Γ): family of N-representable 2-RDMs which contract to the Γ

E [N, Γ,D]⇒ E [N, Γ] =
∑
ik

HikΓki + Vee [N, Γ]

T. L. Gilbert, Phys. Rev. B 12, 2111 (1975); M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979)
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Natural Orbital Functional

The 1-RDM can be diagonalized by a unitary transformation of the
spin-orbitals {φi (x)}:

Γki = niδki , Γ
(
x
′
1|x1

)
=
∑
i

niφi
(
x
′
1

)
φ∗i (x1)

φi (x) is the natural spin-orbital with the corresponding

occupation number ni

E [N, Γ]⇒ E [N, {ni , φi}] =
∑
i

niHii + Vee [N, {ni , φi}]
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Cumulant expansion of the 2-RDM

D
σσ,σσ
pq,rt =

nσ
p n

σ
q

2
(δprδqt − δptδqr ) + λσσ,σσpq,rt (σ = α, β)

D
αβ,αβ
pq,rt =

nα
p n

β
q

2
δprδqt + λαβ,αβpq,rt

λσσ,σσpq,rt = −∆σσ
pq

2
(δprδqt − δptδqr )

λαβ,αβpq,rt = −∆αβ
pq

2
δprδqt +

Πpr

2
δpqδrt

∆ : real symmetric matrix (∆σ1σ2
pq = ∆σ2σ1

qp )

Sum Rules:
P
q

′∆σσ
pq = nσp

`
1− nσp

´
,
P
q

∆αβ
pq = Πpp

Π : spin-independent Hermitian matrix

(Πααpr = Παβpr = Πβαpr = Πββpr = Πpr , Πpr = Π∗rp)

Int. J. Quantum Chem. 106, 1093 (2006)
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Conserving rule for Ŝ2 and diagonal elements

Assume Nα ≥ Nβ and high-spin multiplet state MS = S〈
Ŝ2
〉

= S (S + 1) + Nβ −
∑
p

nαp n
β
p − 2

∑
pq

λαβ,αβpq,qp

conservation of the total spin→ 2
∑
pq

λαβ,αβpq,qp = Nβ −
∑
p

nαp n
β
p

J. Chem. Phys. 131, 021102 (2009).

λαβ,αβpq,qp = 1
2

(
Πpp −∆αβ

pp

)
δpq for our reconstruction

nαp = np + mp , n
β
p = np

spin conserving rule:

∆αβ
pp = nαp n

β
p = n2p + npmp , Πpp = np
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The N-representability and o�-diagonal elements

N-representability

RDMs must be derivable from an N-particle wave function Ψ

N-representability of Γ: 0 ≤ ni ≤ 1 (
∑

ini = N)

lack of su�cient conditions for N-representability of D

One may approximate the unknown ∆ [n] and Π [n], in terms of the
occupation numbers, considering the analytic constraints imposed
by necessary N-representability conditions of the 2-RDM.

D ≥ 0,Q ≥ 0 ⇒ ∆σ1σ2
qp ≤ nσ1q nσ2p , ∆σ1σ2

qp ≤ hσ1q hσ2p

G ≥ 0 ⇒ Π2
qp ≤ nqhqnphp + ∆qp (nqhp + hqnp) + ∆2

qp
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Implemented Approximations

PNOF1: Int. J. Quantum Chem. 106, 1093, 2006.

PNOF2: J. Chem. Phys. 126, 214103, 2007.

PNOF3: J. Chem. Phys. 132, 031103, 2010.

PNOF4: J. Chem. Phys. 133, 111101, 2010.

PNOF5: J. Chem. Phys. 134, 164102, 2011.
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PNOF5: ∆- and Π-matrices for singlet states |S = 0〉

∆qp =


n2p , q = p

0 , q 6= p̃

np̃np , q = p̃

, Πqp =


np , q = p

0 , q 6= p̃

−√np̃np , q = p̃

np̃ + np = 1

EPNOF5 =
N∑
p=1

[
np (2Hpp + Jpp)−√np̃npKpp̃

]
+

N∑
p,q=1

′′ nqnp (2Jpq − Kpq)

(p̃ = N − p + 1 ;
P ′′ : q 6= p, p̃)

J. Chem. Phys. 134, 164162, 2011
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Minimization of the functional EPNOF5 under constraints

1 Löwdin's normalization: 2
∑

p np = N (np̃ + np = 1)

2 N representability of the 1-RDM: 0 ≤ np ≤ 1

=⇒ np = cos2 γp, np̃ = sin2γp̃ : Conjugate Gradient Method

3 Orthonormality of natural orbitals: 〈ϕp|ϕq〉 = δpq

=⇒ Method of Lagrangian multipliers

Ω = E − 2
∑
pq

εqp [< ϕp|ϕq > −δpq]
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Euler equations for the natural orbitals {ϕp (r)}

npV̂p |ϕp〉 =
∑
q

εqp |ϕq〉, εqp = np 〈ϕq| V̂p |ϕp〉

V̂p (1) = Ĥ (1) + Ĵp (1)−
√

np̃
np
K̂p̃ (1) +

N∑
q=1

′′ nq

[
2Ĵq (1)− K̂q (1)

]

[Λ, Γ] 6= 0⇒ solution cannot be reduced to diagonalization of Λ

Λ = {εqp}, Γ = {npδpq}

Self-consistent iterative diagonalization procedure

J. Comp. Chem. 30, 2078 (2009)
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The Hermeticity of Λ and the Aufbau Principle

The Lagrangian is Hermitian at the extremum: εpq = ε∗qp

- De�ne a new Hermitian matrix F: (o�-diagonal elements)

Fpq = θ (q − p) [εpq − ε∗qp] + θ (p − q) [ε∗qp − εpq]

- {Fpp} cannot be determined from the Hermiticity of Λ

First order perturbative theory (Hillier 1970, Saunders 1973)

E = E 0 + 2
∑

p<q ∆pqF
0

pq = E 0 + 2
∑

p<q

|F0

pq|2
F0
pp−F0

qq{
F 0

qq > F 0

pp

}
→ E is bound to drop upon diagonalization of F0

⇒ Aufbau Principle for diagonal elements

J. Comp. Chem. 30, 2078 (2009)
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Parallel E�ciency (H2O, cc-pV6Z, 290 GBF)

cores (n) nodes Time (h) Total # Iter. E�ciency (%)

1 1 62.6 998 100

2 1 34.5 1090 99

4 2 16.2 1004 97

8 2 8.1 1013 98

12 3 5.8 1056 95

24 2 2.5 866 91

24 4 2.5 866 90

36 3 1.9 945 87

48 4 1.7 1115 86

Maximum speedup that can be achieved is 1/(1-P) ∼ 40
P is the proportion of the program made parallel (∼ 97.5%)

En = T1
nTn

ITn
IT1
× 100%
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Planar trimethylenemethane

TMM IMA OXA HOMO LUMO

TMM: trimethylenemethane diradical character
IMA: iminoallyl diradicaloid TMM > IMA > OXA
OXA: oxyallyl diradicaloid

M.Piris,JM.Matxain,X.Lopez,F.Ruipérez,E.Matito,J.Ugalde Can NOFT bridge the gap between DFT and WFT?



Introduction
The energy functional

Solving the system of equations
Results and chemical accuracy

Diradicals and Diradicaloids. Ethylene Torsion
Homolytic Dissociations. N2 and 14-e− series
Dissociation of transition metal dimers
Natural and Canonical Orbitals

Relative Energies and Occupation Numbers

Relative energy with respect to its cyclic isomer, in kcal/mol

TMM IMA OXA

CAS(12,12) 34.4 34.0 26.2

PNOF5 40.8 37.2 26.5

CASPT2(12,12) 43.3 39.7 32.6

Occupation numbers of the (pseudo)degenerate orbitals

TMM IMA OXA

PNOF4 1.07/0.97 1.36/0.71 1.57/0.50

PNOF5 1.00/1.00 1.26/0.74 1.46/0.54

CAS(12,12) 1.01/0.99 1.25/0.75 1.45/0.55

ChemPhysChem 12, 1673, 2011
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Ethylene Torsion
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J. Chem. Phys. 134, 164102, 2011
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Ethylene Torsion. Energetics

E (Hartrees) ∆E(kcal/mol)

Min(D2h)
† TS (D2d )

†

CASPT2(12,12) -78.342567 -78.238122 65.5

PNOF5 -78.136524 -78.032063 65.6

B3LYP‡ -78.591976 -78.490308 63.8

PBE0‡ -78.485589 -78.388529 60.9

M06-2X‡ -78.543689 -78.437072 66.9

] cc-pVDZ Basis Set.

† Optimized at the CASSCF(4,4)/cc-pVDZ level of theory.

‡ Broken symmetry energies for TS.
˙
S2
¸

= 1.01

J. Chem. Phys. 134, 164102, 2011
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cc-pVTZ dissociation curves for diatomic molecules
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BONDS

covalent with di�erent
polarity H2, FH, BH

multiple bond CO, N2

electrostatic LiH

In all cases, dissociation limit implies an homolytic cleavage of the
bond, high degree of near-degeneracy at the dissociation asymptote

J. Chem. Phys. 134, 164102, 2011
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Dissociation for multiply bonded molecule: N2

N2(1Σ)→ N(4S) + N(4S)

1 2 3 4 5 6
R (Å)

-109.20

-109.00

-108.80

-108.60

E
(a

.u
.)

PNOF5
CASSCF(10,8)
CASSCF(14,14)

1 2 3 4 5 6
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σ
π 
π∗
σ∗

- PNOF5
- CASSCF(14,14)

Phys. Chem. Chem. Phys. 13, 20129, 2011
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cc-pVTZ Ionization Potentials of N2, in eV

EKT: diagonalization of the matrix ν whose elements are

νqp = − εqp√
nqnp

Molecule MO KT PNOF5-EKT EXP

N2 σg 17.23 ( 1.63) 16.69 (1.09) 15.60

πu 16.68 ( 0.00) 17.50 (0.82) 16.68

σu 21.18 ( 2.40) 20.45 (1.67) 18.78

J. Chem. Phys., 2012 (DOI: 10.1063/1.4709769)
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14-electron isoelectronic series

N2 CN−

Re De BO µe qN Re De BO µe qN

PNOF5 1.099 229.9 2.87 0.000 7 1.180 247.6 2.89 0.900 7

CAS(10,8) 1.117 205.0 2.85 0.000 7 1.200 220.0 2.86 2.241 7

CAS(14,14) 1.115 210.4 2.85 0.000 7 1.196 235.4 2.86 2.360 7

Exptl. 1.098 225.1 - 0.000 7 1.177 - - 0.630 7

NO+ CO

Re De BO µe qN Re De BO µe qC

PNOF5 1.059 228.2 2.87 0.337 6/7 1.130 221.0 2.92 0.209 6

CAS(10,8) 1.077 229.0 2.84 2.368 7 1.143 249.9 2.88 -0.259 6

CAS(14,14) 1.076 261.7 2.83 2.260 6 1.145 247.0 2.86 -0.059 6

Exptl. 1.066 - - - 7 1.128 256.2 - 0.112 6

Re in Å, De in kcal/mol and µe in Debyes Phys. Chem. Chem. Phys. 13, 20129, 2011
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Dissociation curves for O2+
2

0 2 4 6 8 10
R (Å)

-148.60

-148.40

-148.20

-148.00

E
( 

a.
u.

)

PNOF5
CAS (6,6)
CAS (10,8)
CAS (14,14)

Re (Å) BO R 6=(Å) ∆E 6=( kcal
mol

) De ( kcal
mol

) qO

PNOF5 1.038 2.78 1.66 76.5 -71.5 7

(6,6) 1.051 2.79 1.59 83.9 -90.9 7

(10,8) 1.054 2.79 1.59 85.5 -94.8 7

(14,14) 1.052 2.79 1.59 91.9 -92.0 7

MRCI† 1.050 - 1.59 63.3 - 7

†R. H. Nobes, et. al. Chem. Phys. Lett. 182, 216 (1991)

Phys. Chem. Chem. Phys. 13, 20129, 2011
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Dissociation of transition metal dimers: Cr2, CrMo, Mo2

Cr2 at Re = 1.679Å

−0.3552 (1.838)
−0.3324 (1.811)

−0.2486 (1.397)

−0.2010 (1.875)

−0.1326 (0.603)

−0.0608 (0.189)

−0.0196 (0.125)

−0.0551 (0.162)

E�ective Bond Order:

PNOF5=4.16, CASPT2=4.45

XY (1Σg )→ X(7S3) +Y(7S3)

CASSCF PNOF5 CASPT2 Exp.

Cr2 -3.38 0.84 1.50a 1.56

CrMo -1.60 2.38 2.62b 2.09

Mo2 0.29 2.94 4.41c 4.28

a J. Chem. Theory Comput. 7, 1640 (2011)

b Inorg. Chem. 50, 9219 (2011)

c Chem. Phys. 343, 210 (2008)

CASSCF/CASPT2: ANO-RCC-QZ, PNOF5: 6-31G
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Canonical Orbitals

E =
N∑
p=1

[npHpp + εpp], εpp = np 〈ϕp| V̂p |ϕp〉

the trace of square matrix is the sum of its diagonal elements,

E = Tr (HΓ + Λ) , Λ = {εqp}

the trace of a matrix is invariant under U (X
′

= U†XU)

Tr (HΓ + Λ) = Tr
(
H′Γ′ + Λ′

)
,

A U : Λ
′

= U†ΛU⇒ ε
′
qp = εpδqp, Γ

′
= U†ΓU⇒ n

′
qp 6= npδqp

{χp (r)}: canonical orbitals
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Valence orbitals of methane (CH4)

−0.0126 (0.0160)

−0.6517 (1.9840)

E

Natural Orbital Representation

−0.9458 (1.9840)

−0.5521 (1.9840)

−0.0141 (0.0160)

−0.0120 (0.0160)

Canonical Orbital Representation
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Valence vertical ionization energies, in eV, for methane

cc-pVDZ

T2 A1

B3LYP 10.57 18.79

BLYP 9.13 16.66

BP86 9.33 16.93

M06-2X 12.22 21.20

M06L 9.56 17.76

M06 10.74 18.98

MPWPW91 9.27 16.87

O3LYP 9.98 18.06

Experiment 14.40 23.00

cc-pVDZ

T2 A1

OLYP 9.17 16.88

PBEPBE 9.22 16.83

PBEHPBE 9.23 16.82

PW91PW91 9.29 16.88

HF 14.76 25.62

−εCanOrbpp 15.02 25.74

EKT-PNOF5 15.14 25.89

OVGF 14.21 23.47

Experiment 14.40 23.00
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Valence orbitals of Benzene (C6H6)

Natural Orbital Representation

−0.3938 (1.9587)

−0.0155 (0.0413)

−0.3403 (1.9573)

E

−0.5012 (1.9587)

−0.0169 (0.0427)
−0.0122 (0.0413)

Canonical Orbital Representation
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Closing Remarks

it is now feasible to perform expensive NOFT calculations. The
parallelization of the bottlenecks of our code allows us to achieve an
execution 37 times faster than the sequential one, in 48 processors,
with an e�ciency of 86%.

the functional N-representabilty plays a crucial role towards
achieving chemical accuracy. The PNOF5 can describe in a
balanced way chemical bonding situations that evolve gradually
from non-degenerate to degenerate states. Integer number of
electrons have been found on the dissociated atoms.

two equivalent orbital representations are possible. PNOF5 could be
a practical tool for the interpretation of the chemical bonding.
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