Can NOFT bridge the gap between DFT and WFT? Kathmandu Workshop on Theoretical Chemistry

M.Piris, JM.Matxain, X.Lopez, F.Ruipérez, E.Matito, J.Ugalde

Euskal Herriko Unibertsitatea, Kimika Fakultatea, P.K. 1072, 20080 Donostia. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.

#### May 3, 2012



4 3 1 4

#### Introduction

The energy functional Solving the system of equations Results and chemical accuracy The exact energy functional of RDMs Outline

・ 同 ト ・ ヨ ト ・ ヨ ト

# The electronic energy *E* for *N*-electron systems

$$E = \sum_{ik} H_{ik} \Gamma_{ki} + \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij}$$

Γ<sub>ki</sub>: 1-RDM
 *H<sub>ik</sub>*: core-Hamiltonian
 *D<sub>kl,ij</sub>*: 2-RDM
 *< ij*|*kl* >: Coulomb integrals

 $E[N, \Gamma, \mathbf{D}]$  is an explicitly known functional of the 1- and 2-RDMs!

#### Variational Methods:

$$DFT \quad \begin{array}{c} (reconstruction) \quad RDMs \quad (contraction) \quad CI, MCSCF, \\ \rho(\mathbf{r}) \Longrightarrow \qquad \Gamma, D \quad \Leftarrow \Gamma^N \leftarrow \Psi \quad CCSD, \dots \end{array}$$

#### Introduction

Outline

The energy functional Solving the system of equations Results and chemical accuracy

Outline

Introduction to the DMFT and NOFT

- Solving the system of equations
   computational efficiency of the method
- Results and chemical accuracy
   examples of systems, where DFT yields pathological failures
  - potentiality of the NOF theory.
- Closing Remarks





4 B b 4

**1-RDM Functional** Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

イロト イポト イヨト イヨト

## **1-RDM** Functional

Last term in the Energy:  $U[N, \mathbf{D}] = \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij}$  can be replaced by an unknown functional of the 1-RDM:

$$V_{ee}\left[N,\Gamma\right] = \min_{\mathbf{D}\in\mathbf{D}(\Gamma)} U\left[N,\mathbf{D}\right]$$

 $D(\Gamma)$ : family of N-representable 2-RDMs which contract to the  $\Gamma$ 

$$E[N, \Gamma, \mathbf{D}] \Rightarrow E[N, \Gamma] = \sum_{ik} H_{ik} \Gamma_{ki} + V_{ee}[N, \Gamma]$$

T. L. Gilbert, Phys. Rev. B 12, 2111 (1975); M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979)

1-RDM Functional Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

(日) (同) (三) (三)

## Natural Orbital Functional

The 1-RDM can be diagonalized by a unitary transformation of the spin-orbitals  $\{\phi_i(\mathbf{x})\}$ :

$$\Gamma_{ki} = n_i \delta_{ki}, \quad \Gamma\left(\mathbf{x}'_1 | \mathbf{x}_1\right) = \sum_i n_i \phi_i\left(\mathbf{x}'_1\right) \phi_i^*\left(\mathbf{x}_1\right)$$

 $\phi_i(\mathbf{x})$  is the natural spin-orbital with the corresponding occupation number  $n_i$ 

$$E[N,\Gamma] \Rightarrow E[N,\{n_i,\phi_i\}] = \sum_i n_i H_{ii} + V_{ee}[N,\{n_i,\phi_i\}]$$

1-RDM Functional Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

### Cumulant expansion of the 2-RDM

$$D_{pq,rt}^{\sigma\sigma,\sigma\sigma} = \frac{n_p^{\sigma} n_q^{\sigma}}{2} \left( \delta_{pr} \delta_{qt} - \delta_{pt} \delta_{qr} \right) + \lambda_{pq,rt}^{\sigma\sigma,\sigma\sigma} \quad (\sigma = \alpha, \beta)$$
$$D_{pq,rt}^{\alpha\beta,\alpha\beta} = \frac{n_p^{\alpha} n_q^{\beta}}{2} \delta_{pr} \delta_{qt} + \lambda_{pq,rt}^{\alpha\beta,\alpha\beta}$$

$$\lambda_{pq,rt}^{\sigma\sigma,\sigma\sigma} = -\frac{\Delta_{pq}^{\sigma\sigma}}{2} \left( \delta_{pr} \delta_{qt} - \delta_{pt} \delta_{qr} \right)$$
$$\lambda_{pq,rt}^{\alpha\beta,\alpha\beta} = -\frac{\Delta_{pq}^{\alpha\beta}}{2} \delta_{pr} \delta_{qt} + \frac{\Pi_{pr}}{2} \delta_{pq} \delta_{rt}$$

- $\Delta : \text{ real symmetric matrix } (\Delta_{pq}^{\sigma_1\sigma_2} = \Delta_{qp}^{\sigma_2\sigma_1})$ Sum Rules:  $\sum_{q} \Delta_{pq}^{\sigma\sigma} = n_p^{\sigma} (1 - n_p^{\sigma}), \sum_{q} \Delta_{pq}^{\alpha\beta} = \Pi_{pp}$
- $\Pi$  : spin-independent Hermitian matrix

$$\left(\Pi_{pr}^{\alpha\alpha}=\Pi_{pr}^{\alpha\beta}=\Pi_{pr}^{\beta\alpha}=\Pi_{pr}^{\beta\beta}=\Pi_{pr},\ \Pi_{pr}=\Pi_{rp}^{*}\right)$$

Int. J. Quantum Chem. 106, 1093 (2006)

1-RDM Functional Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

# Conserving rule for $\hat{S}^2$ and diagonal elements

• Assume  $N^{lpha} \geq N^{eta}$  and high-spin multiplet state  $M_S = S$ 

$$\left\langle \hat{S}^{2} \right\rangle = S\left(S+1\right) + N^{\beta} - \sum_{p} n_{p}^{\alpha} n_{p}^{\beta} - 2 \sum_{pq} \lambda_{pq,qp}^{\alpha\beta,\alpha\beta}$$

conservation of the total spin 
$$\rightarrow 2 \sum_{pq} \lambda_{pq,qp}^{\alpha\beta,\alpha\beta} = N^{\beta} - \sum_{p} n_{p}^{\alpha} n_{p}^{\beta}$$
  
J. Chem. Phys. 131, 021102 (2009)

• 
$$\lambda_{pq,qp}^{\alpha\beta,\alpha\beta} = \frac{1}{2} \left( \prod_{pp} - \Delta_{pp}^{\alpha\beta} \right) \delta_{pq}$$
 for our reconstruction  $n_p^{\alpha} = n_p + m_p, \ n_p^{\beta} = n_p$ 

#### spin conserving rule:

$$\Delta^{\alpha\beta}_{pp} = n^{\alpha}_{p} n^{\beta}_{p} = n^{2}_{p} + n_{p} m_{p} , \ \Pi_{pp} = n_{p}$$

1-RDM Functional Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

イロト イポト イラト イラト

# The N-representability and off-diagonal elements

#### N-representability

RDMs must be derivable from an N-particle wave function  $\Psi$ 

- N-representability of  $\Gamma$ :  $0 \le n_i \le 1$   $(\sum_i n_i = N)$
- $\bullet$  lack of sufficient conditions for N-representability of  ${\bf D}$

One may approximate the unknown  $\Delta[\mathbf{n}]$  and  $\Pi[\mathbf{n}]$ , in terms of the occupation numbers, considering the analytic constraints imposed by necessary N-representability conditions of the 2-RDM.

• 
$$D \ge 0, Q \ge 0 \Rightarrow \Delta_{qp}^{\sigma_1 \sigma_2} \le n_q^{\sigma_1} n_p^{\sigma_2}, \Delta_{qp}^{\sigma_1 \sigma_2} \le h_q^{\sigma_1} h_p^{\sigma_2}$$

• 
$$G \ge 0$$
  $\Rightarrow$   $\Pi_{qp}^2 \le n_q h_q n_p h_p + \Delta_{qp} (n_q h_p + h_q n_p) + \Delta_{qp}^2$ 

1-RDM Functional Natural Orbital Functional Two-particle cumulant Δ- and Π-matrices

イロト イポト イラト イラト

## Implemented Approximations

- PNOF1: Int. J. Quantum Chem. 106, 1093, 2006.
- PNOF2: J. Chem. Phys. 126, 214103, 2007.
- PNOF3: J. Chem. Phys. 132, 031103, 2010.
- PNOF4: J. Chem. Phys. 133, 111101, 2010.
- PNOF5: J. Chem. Phys. 134, 164102, 2011.

Introduction 1-RDM Functional The energy functional Solving the system of equations Results and chemical accuracy  $\Delta$ - and I-matrices

**PNOF5**:  $\Delta$ - and  $\Pi$ -matrices for singlet states  $|S = 0\rangle$ 

$$\Delta_{qp} = \begin{cases} n_p^2, & q = p \\ 0, & q \neq \tilde{p}, \\ n_{\tilde{p}}n_p, & q = \tilde{p} \end{cases} \quad \Pi_{qp} = \begin{cases} n_p, & q = p \\ 0, & q \neq \tilde{p} \\ -\sqrt{n_{\tilde{p}}n_p}, & q = \tilde{p} \end{cases}$$

 $n_{\tilde{p}} + n_p = 1$ 

$$E^{PNOF5} = \sum_{p=1}^{N} \left[ n_p \left( 2H_{pp} + J_{pp} \right) - \sqrt{n_{\tilde{p}} n_p} K_{p\tilde{p}} \right] \\ + \sum_{p,q=1}^{N} {}^{\prime\prime} n_q n_p \left( 2J_{pq} - K_{pq} \right) \\ (\tilde{p} = N - p + 1; \quad \sum_{p=1}^{\prime\prime} {}^{\prime\prime} : q \neq p, \tilde{p})$$

J. Chem. Phys. 134, 164162, 2011

Minimization of the energy functional and Euler equations The Hermitian matrix F General overview of the program architecture Parallelization of the bottleneck

イロト イポト イヨト イヨト

Minimization of the functional EPNOF5 under constraints

**3** Löwdin's normalization:  $2\sum_{p} n_{p} = N$   $(n_{\tilde{p}} + n_{p} = 1)$ 

**2** N representability of the 1-RDM:  $0 \le n_p \le 1$ 

 $\implies$   $n_{p} = \cos^{2} \gamma_{p}, \, n_{\tilde{p}} = \sin^{2} \gamma_{\tilde{p}}$  : Conjugate Gradient Method

**③** Orthonormality of natural orbitals:  $\langle \varphi_p | \varphi_q \rangle = \delta_{pq}$ 

$$\implies \text{ Method of Lagrangian multipliers}$$
$$\Omega = E - 2 \sum_{pq} \varepsilon_{qp} \left[ \langle \varphi_p | \varphi_q \rangle - \delta_{pq} \right]$$

Minimization of the energy functional and Euler equations The Hermitian matrix F General overview of the program architecture Parallelization of the bottleneck

# Euler equations for the natural orbitals $\{\varphi_{p}(\mathbf{r})\}$

$$n_{p}\hat{V}_{p}|\varphi_{p}\rangle = \sum_{q}\varepsilon_{qp}|\varphi_{q}\rangle, \qquad \varepsilon_{qp} = n_{p}\langle\varphi_{q}|\hat{V}_{p}|\varphi_{p}\rangle$$

$$\hat{V}_{p}\left(1
ight)=\hat{H}\left(1
ight)+\hat{J}_{p}\left(1
ight)-\sqrt{rac{n_{ ilde{p}}}{n_{p}}}\hat{K}_{ ilde{p}}\left(1
ight)+\sum_{q=1}^{N}{}^{\prime\prime}{}^{\prime}{}_{n_{q}}\left[2\hat{J}_{q}\left(1
ight)-\hat{K}_{q}\left(1
ight)
ight]$$

 $[\Lambda,\Gamma] \neq 0 \Rightarrow \ \ \, \mbox{solution}$  cannot be reduced to diagonalization of  $\Lambda$ 

$$\Lambda = \{\varepsilon_{qp}\}, \quad \Gamma = \{n_p \delta_{pq}\}$$

• Self-consistent iterative diagonalization procedure J. Comp. Chem. 30, 2078 (2009)

Minimization of the energy functional and Euler equations **The Hermitian matrix F** General overview of the program architecture Parallelization of the bottleneck

## The Hermeticity of $\Lambda$ and the Aufbau Principle

- The Lagrangian is Hermitian at the extremum:  $\varepsilon_{pq} = \varepsilon^*_{qp}$ 
  - Define a new Hermitian matrix F: (off-diagonal elements)  $F_{pq} = \theta \left(q - p\right) \left[\varepsilon_{pq} - \varepsilon_{qp}^*\right] + \theta \left(p - q\right) \left[\varepsilon_{qp}^* - \varepsilon_{pq}\right]$
  - $\{F_{pp}\}$  cannot be determined from the Hermiticity of  $\Lambda$
- First order perturbative theory (Hillier 1970, Saunders 1973)

$$E = E^{0} + 2 \sum_{p < q} \Delta_{pq} F^{0}_{pq} = E^{0} + 2 \sum_{p < q} \frac{|F^{0}_{pq}|^{2}}{F^{0}_{pp} - F^{0}_{qq}}$$
$$\left\{F^{0}_{qq} > F^{0}_{pp}\right\} \rightarrow E \text{ is bound to drop upon diagonalization of } \mathbf{F}^{0}$$
$$\Rightarrow \text{ Aufbau Principle for diagonal elements}$$

J. Comp. Chem. 30, 2078 (2009)

・ロト (同) (ヨト (ヨト ) ヨー うくつ

Introduction The energy functional Solving the system of equations Results and chemical accuracy Parallelization of the energy functional and Euler equations The Hermitian matrix F General overview of the program architecture Parallelization of the bottleneck



Minimization of the energy functional and Euler equations The Hermitian matrix F General overview of the program architecture Parallelization of the bottleneck

▲ □ ▶ ▲ □ ▶ ▲

# Parallel Efficiency (H<sub>2</sub>O, cc-pV6Z, 290 GBF)

| cores (n) | nodes | Time (h) | Total # Iter. | Efficiency (%) |
|-----------|-------|----------|---------------|----------------|
| 1         | 1     | 62.6     | 998           | 100            |
| 2         | 1     | 34.5     | 1090          | 99             |
| 4         | 2     | 16.2     | 1004          | 97             |
| 8         | 2     | 8.1      | 1013          | 98             |
| 12        | 3     | 5.8      | 1056          | 95             |
| 24        | 2     | 2.5      | 866           | 91             |
| 24        | 4     | 2.5      | 866           | 90             |
| 36        | 3     | 1.9      | 945           | 87             |
| 48        | 4     | 1.7      | 1115          | 86             |

Maximum speedup that can be achieved is  $1/(1-P) \sim 40$  P is the proportion of the program made parallel (~ 97.5%)

$$E_n = \frac{T_1}{nT_n} \frac{T_n}{T_1} \times 100\%$$

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14-e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

### Planar trimethylenemethane



TMM: trimethylenemethane IMA: iminoallyl diradicaloid OXA: oxyallyl diradicaloid



diradical character TMM > IMA > OXA

< □ > < 同 >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14-e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

### Relative Energies and Occupation Numbers

Relative energy with respect to its cyclic isomer, in kcal/mol

|               | тмм  | IMA  | ΟΧΑ  |
|---------------|------|------|------|
| CAS(12,12)    | 34.4 | 34.0 | 26.2 |
| PNOF5         | 40.8 | 37.2 | 26.5 |
| CASPT2(12,12) | 43.3 | 39.7 | 32.6 |

#### Occupation numbers of the (pseudo)degenerate orbitals

|            | ТММ       | IMA       | OXA       |
|------------|-----------|-----------|-----------|
| PNOF4      | 1.07/0.97 | 1.36/0.71 | 1.57/0.50 |
| PNOF5      | 1.00/1.00 | 1.26/0.74 | 1.46/0.54 |
| CAS(12,12) | 1.01/0.99 | 1.25/0.75 | 1.45/0.55 |

ChemPhysChem 12, 1673, 2011

**Ethylene** Torsion

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14-e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals



Natural Orbital Functional Theory correctly describes degeneracy effects in diradical reactions



J. Chem. Phys. 134, 164102, 2011

э

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14 \cdot e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

# Ethylene Torsion. Energetics

|                     | E (Ha                 | rt rees)                | $\Delta E(\text{kcal/mol})$ |
|---------------------|-----------------------|-------------------------|-----------------------------|
|                     | $Min(D_{2h})^\dagger$ | TS $(D_{2d})^{\dagger}$ |                             |
| CASPT2(12,12)       | -78.342567            | -78.238122              | 65.5                        |
| PNOF5               | -78.136524            | -78.032063              | 65.6                        |
| B3LYP <sup>‡</sup>  | -78.591976            | -78.490308              | 63.8                        |
| PBE0 <sup>‡</sup>   | -78.485589            | -78.388529              | 60.9                        |
| M06-2X <sup>‡</sup> | -78.543689            | -78.437072              | 66.9                        |

♯ cc-pVDZ Basis Set.

- † Optimized at the CASSCF(4,4)/cc-pVDZ level of theory.
- $\ddagger$  Broken symmetry energies for TS.  $\left< {{{\cal S}}^2} \right> = 1.01$

J. Chem. Phys. 134, 164102, 2011

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N2 and 14-e<sup>-</sup> series Dissociation of transition metal dimers Natural and Canonical Orbitals

### cc-pVTZ dissociation curves for diatomic molecules



In all cases, dissociation limit implies an homolytic cleavage of the bond, high degree of near-degeneracy at the dissociation asymptote

・ロト ・ 同ト ・ ヨト ・ ヨ

J. Chem. Phys. 134, 164102, 2011

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and 14-e<sup>-</sup> series Dissociation of transition metal dimers Natural and Canonical Orbitals

#### Dissociation for multiply bonded molecule: N<sub>2</sub>



Phys. Chem. Chem. Phys. 13, 20129, 2011

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N2 and 14-e<sup>-</sup> series Dissociation of transition metal dimers Natural and Canonical Orbitals

cc-pVTZ lonization Potentials of  $N_2$ , in eV

EKT: diagonalization of the matrix u whose elements are

$$u_{qp} = -\frac{\varepsilon_{qp}}{\sqrt{n_q n_p}}$$

| Molecule | MO           | КТ            | PNOF5-EKT    | EXP   |
|----------|--------------|---------------|--------------|-------|
| $N_2$    | $\sigma_{g}$ | 17.23 ( 1.63) | 16.69 (1.09) | 15.60 |
|          | $\pi_u$      | 16.68 ( 0.00) | 17.50 (0.82) | 16.68 |
|          | $\sigma_{u}$ | 21.18 ( 2.40) | 20.45 (1.67) | 18.78 |

J. Chem. Phys., 2012 (DOI: 10.1063/1.4709769)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and 14-e<sup>-</sup> series Dissociation of transition metal dimers Natural and Canonical Orbitals

#### 14-electron isoelectronic series

|            |                |                | N <sub>2</sub> |           |              |       | c     | CN-  |           |            |
|------------|----------------|----------------|----------------|-----------|--------------|-------|-------|------|-----------|------------|
|            | R <sub>e</sub> | De             | во             | $\mu_{e}$ | ٩ <i>N</i> P | Re    | De    | во   | $\mu_{e}$ | ٩ <i>N</i> |
| PNOF5      | 1.099          | 229.9          | 2.87           | 0.000     | 7            | 1.180 | 247.6 | 2.89 | 0.900     | 7          |
| CAS(10,8)  | 1.117          | 205.0          | 2.85           | 0.000     | 7            | 1.200 | 220.0 | 2.86 | 2.241     | 7          |
| CAS(14,14) | 1.115          | 210.4          | 2.85           | 0.000     | 7            | 1.196 | 235.4 | 2.86 | 2.360     | 7          |
| ExptI.     | 1.098          | 225.1          | -              | 0.000     | 7            | 1.177 | -     | -    | 0.630     | 7          |
|            |                |                | $NO^+$         |           |              |       |       | со   |           |            |
|            | R <sub>e</sub> | D <sub>e</sub> | во             | $\mu_{e}$ | ٩N           | Re    | De    | во   | $\mu_{e}$ | ٩ <i>८</i> |
| PNOF5      | 1.059          | 228.2          | 2.87           | 0.337     | 6/7          | 1.130 | 221.0 | 2.92 | 0.209     | 6          |
| CAS(10,8)  | 1.077          | 229.0          | 2.84           | 2.368     | 7            | 1.143 | 249.9 | 2.88 | -0.259    | 6          |
| CAS(14,14) | 1.076          | 261.7          | 2.83           | 2.260     | 6            | 1.145 | 247.0 | 2.86 | -0.059    | 6          |
| Expti.     | 1.066          | -              | -              | -         | 7            | 1.128 | 256.2 | -    | 0.112     | 6          |

 $R_e$  in Å,  $D_e$  in kcal/mol and  $\mu_e$  in Debyes

Phys. Chem. Chem. Phys. 13, 20129, 2011

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and 14-e<sup>-</sup> series Dissociation of transition metal dimers Natural and Canonical Orbitals

# Dissociation curves for $O_2^{2+}$



|         | $R_{e}(\text{\AA})$ | во   | <i>R</i> ≠(Å) | $\Delta E^{\neq}(\frac{kcal}{mol})$ | $D_e(\frac{kcal}{mol})$ | 90 |
|---------|---------------------|------|---------------|-------------------------------------|-------------------------|----|
| PNOF5   | 1.038               | 2.78 | 1.66          | 76.5                                | -71.5                   | 7  |
| (6,6)   | 1.051               | 2.79 | 1.59          | 83.9                                | -90.9                   | 7  |
| (10,8)  | 1.054               | 2.79 | 1.59          | 85.5                                | -94.8                   | 7  |
| (14,14) | 1.052               | 2.79 | 1.59          | 91.9                                | -92.0                   | 7  |
| MRCI†   | 1.050               | -    | 1.59          | 63.3                                | -                       | 7  |

<sup>†</sup>R. H. Nobes, et. al. Chem. Phys. Lett. 182, 216 (1991)

< 口 > < 同

Phys. Chem. Chem. Phys. 13, 20129, 2011

< ∃ >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14-e^-$  series **Dissociation of transition metal dimers** Natural and Canonical Orbitals

# Dissociation of transition metal dimers: Cr2, CrMo, Mo2



 $XY(^{1}\Sigma_{\sigma}) \rightarrow X(^{7}S_{3}) + Y(^{7}S_{3})$ 

|                 | CASSCF | PNOF5 | CASPT2                   | E×p. |
|-----------------|--------|-------|--------------------------|------|
| Cr <sub>2</sub> | -3.38  | 0.84  | 1.50ª                    | 1.56 |
| CrMo            | -1.60  | 2.38  | 2.62 <sup><i>b</i></sup> | 2.09 |
| Mo <sub>2</sub> | 0.29   | 2.94  | 4.41 <sup>c</sup>        | 4.28 |

<sup>a</sup> J. Chem. Theory Comput. 7, 1640 (2011)

- <sup>b</sup> Inorg. Chem. 50, 9219 (2011)
- <sup>c</sup> Chem. Phys. 343, 210 (2008)

CASSCF/CASPT2: ANO-RCC-QZ, PNOF5: 6-31G

(日) (四) (日) (日)

Effective Bond Order: PNOF5=4.16, CASPT2=4.45

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14 \cdot e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

・ロト ・得ト ・ヨト ・ヨト

# **Canonical** Orbitals

$$E = \sum_{p=1}^{N} [n_p H_{pp} + \varepsilon_{pp}], \qquad \varepsilon_{pp} = n_p \langle \varphi_p | \hat{V}_p | \varphi_p \rangle$$

• the trace of square matrix is the sum of its diagonal elements,

$$E = \operatorname{Tr} (\mathrm{H}\Gamma + \Lambda), \quad \Lambda = \{\varepsilon_{qp}\}$$

• the trace of a matrix is invariant under U  $(X' = U^{\dagger}XU)$  $\operatorname{Tr}(H\Gamma + \Lambda) = \operatorname{Tr}(H'\Gamma' + \Lambda'),$ 

 $\Box U : \Lambda' = U^{\dagger} \Lambda U \Rightarrow \varepsilon'_{qp} = \varepsilon_p \delta_{qp}, \quad \Gamma' = U^{\dagger} \Gamma U \Rightarrow n'_{qp} \neq n_p \delta_{qp}$  $\{\chi_p(\mathbf{r})\}: \text{ canonical orbitals}$ 

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14 \cdot e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

ChemPhysChem 2012

# Valence orbitals of methane $(CH_4)$



Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14-e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

## Valence vertical ionization energies, in eV, for methane

|              | cc-p  | VDZ            |
|--------------|-------|----------------|
|              | Τ2    | A <sub>1</sub> |
| <b>B3LYP</b> | 10.57 | 18.79          |
| BLYP         | 9.13  | 16.66          |
| BP86         | 9.33  | 16.93          |
| M06-2X       | 12.22 | 21.20          |
| M06L         | 9.56  | 17.76          |
| M06          | 10.74 | 18.98          |
| MPWPW91      | 9.27  | 16.87          |
| 03LYP        | 9.98  | 18.06          |
| Experiment   | 14.40 | 23.00          |

Chem. Phys. Lett. 531, 272, 2012.

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14 \cdot e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

# Valence orbitals of Benzene $(C_6H_6)$



ChemPhysChem 2012

∃ → < ∃</p>

Closing Remarks

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N<sub>2</sub> and  $14 \cdot e^-$  series Dissociation of transition metal dimers Natural and Canonical Orbitals

イロト イポト イヨト イヨト

- it is now feasible to perform expensive NOFT calculations. The parallelization of the bottlenecks of our code allows us to achieve an execution 37 times faster than the sequential one, in 48 processors, with an efficiency of 86%.
- the functional N-representability plays a crucial role towards achieving chemical accuracy. The PNOF5 can describe in a balanced way chemical bonding situations that evolve gradually from non-degenerate to degenerate states. Integer number of electrons have been found on the dissociated atoms.
- two equivalent orbital representations are possible. PNOF5 could be a practical tool for the interpretation of the chemical bonding.

Introduction The energy functional Solving the system of equations Results and chemical accuracy Natural and Canonical Orbitals

#### Acknowledgement

- Financial support comes from the Basque Government and the Spanish Office for Scientific Research.
- The SGI/IZO-SGIker UPV/EHU is greatfully acknowledged for generous allocation of computational resources.

Thank you for your attention !!!