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1. Introduction.

Quantum Chemistry is now near Dirac’s reductionist goal:

e Theoretical (DFT) & Computational achievements allow us to reach chemical
accuracy in everyday molecules.

Problems, however, if chemical insight is regarded:
1. Wavefunction information.

2. Epistemology of emergent phenomena.

Chemistry has a language defined before Quantum Mechanics.
e Chemists envision entities in interaction

e These entities live in 3D space, and are embodied with properties: bonds,
transferability, characteristic energies and reactivities...

We need interpretations!.

How do we extract chemically meaningful information from W?
U = Chemistry
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Density and the chemical bond.
= As old as Quantum Chemistry.

= Properly put into context by Berlin (1950's): Hellmann-Feynman theorem and
charge redistributions.

= Binding & antibinding regions ...,
= build—up of density in the binding region.

» Difficult to generalize to polyatomics.

= |t leads naturally to study Difference maps: Ap = pr — p;

= Usually, p; = > 4 pa(in vacuo)

s The reference problem is huge.
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spherically averaged 2P F's 2p, aligned F's

= How to avoid the indefinitions? Look at derivatives.

e Charge accummulation & charge depletion

s Topological Theories of the Chemical Bond.
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» The topology induced by many scalar fields constructed from reduced
density matrices carry chemical information

1. Take a scalarfield f: D — R
2. Construct its gradient field: V f
3. Obtain its CPs, isolate local maxima (M) or minima (m).

4. Build their attraction or repulsion basins: D = ;) D (m)
= A number of them, according to the scalar studied: (p, ELF, ...)

» The QTAIM is based on the attraction basins of p.

e Part of many standard chemistry curricula. Many advocates and detractors.

o A theory without external reference
o A theory of atoms in molecules, and groups of atoms or functional groups.
o A theory of bonding: The CP’s carry chemical information

o An additive partition of observables into basin contributions
o A theory of binding, through IQA.

e © Angel Martin Pendés, 2008-2016 (0)
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A mathematical digression: Dynamical systems.

A Dynamical system is a vector field y defined over an n—dimensional variety M.

-If the field is differentiable, then the set of differential equations dr/dt = y univocally defines the
trajectories r(t) of the DS..

-Gradient fields:

Let us consider a scalar function p.

R3 — R
r —  p(r),

that we will call potential.
The DS associated to p is the Vp = f vector field, defined by the action of the gradient operator

on the scalar field p:

) ) )
Vp:z—p+.7—p+k—p=pxz+py.7+pzk.
ox oy 0z

The trajectories of this DS, also known as flux, force, field, or gradient lines, are defined by:

r(t) = r(to) + t Vo(r(t))dt.

to
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Some of their properties are:

1. One and only one trajectory of Vp passes through any point r of the domain space. This is
equivalent to saying that field trajectories of V p do never cross each other. The only exception
to this rule is found at the so-called critical points of the field.

2. At each point 7, the vector Vp(r) is tangent to the field line passing through that point.

3. Given that the gradient field always points along the steepest ascent direction of p, the
trajectories of V p are orthogonal to the isoscalar lines.

4. Each trajectory must originate or end up either at a point where Vp(r) = 0, or at infinity.

e © Angel Martin Pendés, 2008-2016 (8) e
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Critical points of a field:

» Those points in R3 that satisfy the condition 7 = 0 are called critical points.
= o— and w-limits of a point p:
The geometrical locus of limy_—y oo 7 y limy_, 4 o 7, respectively.
= Characterization: Based on the behavior of the DS in the vicinities of the CPs. That is why it

is useful to study the linearized system (LS), a first order truncated approximation to the DS
close to the critical point under scrutiny, r.:

ro= f(r)>flre) +I(r—re)

= Jr—re),
where J is the Jacobian matrix of the system at 7,
;- @y, 2)
o(z,y,2)

In 3D gradient DS’s, the jacobian of the vector field at the CP may be identified with the
Hessian matrix:

I(Vp) =H,

e © Angel Martin Pendés, 2008-2016 (9) ——
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Redefining the origin of the reference frame at the critical point,
r = Hr. (1)

Provided that H is a symmetric matrix, we may uncouple the DS easily.
If U is the orthogonal matrix that diagonalizes H at a CP:

U'HU = diag();),

and 7 is the eigen reference frame of Hi,
r = Un,
r = Un.

ni(t) = mi(to)e™ " 70), {i = 1,3},

The \; coefficients are also called characteristic or Lyapunov exponents. And the eigen frame
is usually known as the principal system of curvature, its axes the principal curvature axes,
which coincide with the directions along which the field varies mostly.

e © Angel Martin Pendés, 2008-2016 (10) —




= |ntroduction Introduction

» There exist 4 different types of non-degenerate CPs in R3. In this field it is customary to
classify them according to a terminology with two integer indices (r, s). The rank, r, is defined
as the number of non vanishing curvatures at the CP, and the signature, s, as the difference

between the number of positive and negative curvatures.

= The set of points with field lines ending at a given CP is known as the basin of attraction of
the CP.

= The set of points with field lines starting at a given CP is known as the basin of repulsion of
the CP.

e (©) Angel Martin Pendds, 2008-2016 (11) —
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= Properties of the different types of CPs in R3:

(r,s) Curvatures Description AB RB

(3,-3) X <0 Vi Local Maximum (attractor) 3D 0D

(3,—1)  A1,A2 < 0;A3 > 0; First order saddle 2D 1D
Maximum in 11 and m2; minimum in 73

(3,+1)  A1,A2 > 0;A3 <0; Second order saddle 1D 2D
Maximum in 13 and minimum in 11 and 72

(3,43) X >0 Vi Local Minimum (source) oD 3D

(2,=2) A1, A2 <023 =0; Local Maximum in 1 y 1o 2D 0D

(2,0) A < 0;A2 =0;A3 >0  Saddle point. 1D 1D
Maximum in 171 and minimum in 73

(2,42) A1 =0; A2, A3 >0 Local minimum in 12 y 73 ob 2D

(1,—1) X <0;A2=XA3=0 Local Maximum in 7 1D 0D

(1,+1) A1 =X2=0;A3>0 Local Minimum in n3 oD 1D

(0,0) A1l =2 =23 =0 ob oD

e (©) Angel Martin Pendds, 2008-2016 (12) e
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Basins, separatrices and induced topologies.

= We call separatrix to the set of points that do not belong to the AB(RB) of a critical point.

» It is possible to divide space R3 in a finite number of subsets, corresponding to the a- and
w-limits of the CPs of the potential function. We may choose two types of subsets:

e Using the ABs of the maxima.
e Using the RBs of the minima.

= We thus introduce in R3 a set of open subsets {A;}, that we will call (R3, A).
= This structure is called the topology induced by p.
= Example: Topology of the RBs of a field.

V(z,y) = z%(x — 1)? + y2. A potential in R2.

TV — t = 2zx(zx—1)2x—1)

y = 2.

e (©) Angel Martin Pendds, 2008-2016 (14)
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= Critical points:
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= The Separatrix is a local zero flux surface:

/ VV(r) -n(r)ds =0.
S

= The gradient field has generated a partition of the 2D space in three regions.

= A binary relationship between the two basins appears. Basin 1 is related to basin 2, since a
saddle exists which AB connects both repulsors.

Topological invariants.

= The number and type of non-degenerate critical points of a field depends on the structure of
the supporting variety.

= For instance, in a ring, S1 the number of maxima must be equal to the number of minima.

» These relationships may be generalized using concepts from topology. The Betti number, R,
of a veriety D is the number of n—dimensional topologically different regions that have no
boundaries and are not boundaries of (n + 1)—dimensional regions of D.

o inS: Rg=1,R; =1.

e inS? Rg=1,R1 =0,Ry = 1.

e inT?: Rp=1,R1 =2,Ry = 1.

e in7T3: Ry=1,R;1 =3,R; =3,R3 = 1.

e © Angel Martin Pendés, 2008-2016 (16) —
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= The Morse relationships

NO

N' — N

n . .

Z(_l)n—zNz
1=0

S (1N

1=0

where N™ is the number of maxima, N™ 1 the number of first order saddles, etc.

establish that:

>

>

1V

Ro

R1 — Ro

n

> (=)™ 'R,

1=0

l

Z(_l)iR’ia

1=0

e In S! N9 >1y NO— N1 =0. As before.
e InS? NY>1 N —NO>_1 and N2 - N1 =2,

e In73, N>1, N1 —NO>2 N2 _N1 4+ NO>1 and N3 - N2+ N1 - NO =0.

= (©) Angel Martin Pendas, 2008-2016

In R? n-b4+r-c=1
In T3 n-b+r-c=0

Introduction
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2. QTAIM Quick Reference Guide

General features of p.
The stationary electron density is obtained from V(x1,x2,...xN, R1,... R)s) as:

p(r) = NZ/ /dwg d:nN/ /de

U*(xy...eny,R1 ... Ryf)V (1 ...xn, R1...Ryyp),

x being the spatial and spinorial coordinates of electrons, and R the spatial coordinates of the
nuclei.
Under the BO approximation, ¥(x1,x2,... xN; R), y

p('r;R):NZ/.../dmg...dmN\IJ*(wl...a:N;R)\IJ(azl...a:N;R),
51

p is observable. For instance, from elastic X—Ray scattering,

2
(k) = \ [omemsran = aw)P,

where A is the Fourier transform of p.

e © Angel Martin Pendés, 2008-2016 (18)
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Analytical properties of p.

= Cusp theorem:

p(r) = i/,0(7°)Silr19c1l9d¢
4
oz, — O ln p(r) |
Olr — Ral |, —g,

= Asymptotic behavior:

Ziotal— N+1
) _ 2( total ) .
lim p(r) ~r V2IP e 2rvIP

r— 00

= Hoffmann-Ostenhof and Hoffmann-Ostenhof inequalities:
1 Z
—§V2p—|— (IP — Z)p <.
r

= Monotonicity and convexity are not assured.

e © Angel Martin Pendés, 2008-2016 (19) —
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Basic Morphology of p.

HCN (HF/6-311G(p.d))
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Topological analysis of p.
In general, the number of attractors of the p field coincide in number and position with the nuclei.
There will be, therefore, as many attraction basins as atoms in the system.

LiF (HF/6-311G*) LiCl (HF/6-311G*)

The basins of equal atoms under similar bonding regimes seem to be transferable.
Critical points Vp = 0 are important, and classified according to the eigenvalues of the Hessian of
p: (3,-1) = two negative, one positive curvatures.

s (©) Angel Martin Pendés, 2008-2016 (21)
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Usual representations. (LiH HF/TZV)

a) Projected relief diagrams.
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Perpendicular plane

Nuclear plane
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b) Projected contour diagrams.

Nuclear plane Perpendicular plane
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(d) Isosurfaces.

p=0.01 p = 0.02 p=0.05

s (© Angel Martin Pendds, 2008-2016 (25) o




QTAIM e

—— Survey

Bond critical points.
= (3,—1) critical points are identified with chemical bonds. This is, in principle, an empirical
assignment.
= However, they usually coincide with the objects defined in chemistry, even in rather strange

situations.
H>0
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CsHg. Cage points.
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= Properties computed at critical points: The QTAIM local stance
e CPs provide a continuous = discrete map: 3D to finite set of points.

e Many kinds of scalar and tensor properties calculated at the CPs are easy to
correlate with chemically relevant concepts.
o pp itself is a measure of bond strength for a given pair of bonded atoms.
o It turns to be small in ionic compounds and large in covalent.
o It correlates with bond order
o It is not possible to simply compare values of p, for different bonded pairs.
o However, it is reasonable to compare p; values for set of molecules that

share a given pair of bonded atoms.

e The distances from nuclei to BCP’s are good indicators of atomic size.

e The ratio of curvatures of the Hessian, ellipticity, has been used as a measure
of something like m character of the bond.

e ctc...

e © Angel Martin Pendés, 2008-2016 (29) —
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e Bond radius.

o The distance from the BCP to each of the bonded nuclei is called
topological bonded radius.

o It is basically the crystalline radius introduced by Shanon.

o They depend on the effective nuclear charge and on the electronegativity.

——— (© Angel Martin Pendas, 2008-2016 (30) —
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QTAIM

B3LYP/6-3114+G(2d,2p)//HF /6-31(d) a.u.

Molecule R 75(H)  pp

HH 1.3792 0.6896 0.2700
HLi 3.0908 1.7234 0.0379
HBe 2.5469 1.4545 0.0952
HB 2.3163 1.2790 0.1916
HC 2.0941 0.7112 0.2807
HN 1.9347 0.5315 0.3360
HO 1.8111 0.3802 0.3717
HF 1.7211 0.2848 0.3801
HNa 3.6176 1.7091 0.0321
HMg 3.3043 1.6195 0.0500
HAI 3.1222 1.5896 0.0758
HSi 2.8634 1.4566 0.1171
HP 2.6655 1.3110 0.1670
HS 2.5134 0.9044 0.2175
HCI 2.3928 0.7071 0.2490

= (©) Angel Martin Pendas, 2008-2016

The values of p; for LiH, BeH y NaH, MgH are small. lonic
bonding.

BCP density increases on advancing on a period.

If we compare pairs of identical bonded atoms, p; may be
used to define a topological bond order n,.

For instance, in C-C bonds the values of p; for the ethane,
ethene, and ethyne series are approximately 0.249,0.356 y
0.426 a.u. A linear fit that recovers the classical 1, 2, and 3
bond orders gives n;, = 1.6 for the C-C bond in benzene.

The np—pp relations are different for each pair of bonded

atoms.

It has been proposed that the concept of bond order is actually
an scaled measure of py.

(31) —
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= Ellipticity.

e Let us call A1, A2, and A3 the 3 principal curvatures at the bcp, in ascending order.
e In an Ao molecule, A\1 = \o.
e We define the ellipticity at a BCP as e = A1 /A2 — 1.

e |t measures the asymmetry of the perpendicular accumulation of charge, determining the
facile, and non-facile directions of density accumulation.

e In CoH4 ¢ = 0.3. 7 character? In CgHg € = 0.23.
e Caution: the 7 character is not an observable.

e In CoHy e = 0. IN BoHg, € = 0.33

A A

2

e © Angel Martin Pendés, 2008-2016 (32)
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Other scalars: General Features of V?p.
What other scalar fields may we study? Further order derivatives.

e Vp - Vp. lts critical points are located where the condition H(7)V p(7) = 0. is satisfied.
e V?2p. Related to local charge accumulation or depletion.

e Since the trace of a matrix is invariant under an orthogonal transformation:
VZp =1+ A2 + A3,

o V?2p > 0 The positive curvatures "win”, and we have a point of charge depletion with
respect to its neighbourhood.
o V?2p < 0 corresponds to charge accumulation with respect to its neighbourhood.

Example:

z=1x° — 5y
A Critical Point at (0, 0)

V?2p(0,0) = -8

2

e (© Angel Martin Pendas, 2008-2016 (33) e




—— Survey QTAIM

e Morphology of V?p in spherical atoms.
o Given that p = p(r)

p'(r)

r

V2p(r) = o (r) + 2

o Supposing an exponential behaviour: p(r) = Ne=¢", valid close to the nucleus as well
as in the asymptotic limit,

V2p(r) = Ne™¢"(¢% — 2¢/r)
o There exits a cutoff radius r. = 2/( for which a change of sign appears.
V?2p < 0if r < 7. and viceversa.

o lim,_,o V2p = —o00 and limy_so0 =07,

o Atomic densities are reasonably appproximated by a series of exponentially decreasing
segments, so we should expect a negative and positive region in the laplacian for each
of these segments. These are usually identified with the classical atomic shells. This is
correct until Ca, which shows only 3 shells. Other functions (ELF,...) allow for a more
perfect match.

o The (3,-3) points of V2p are associated with important charge concentrations. The

most exterior ones are the valence charge concentrations (VCC). They may be associated
with bonds (BVCC), or with lone pairs (LVCC).

e © Angel Martin Pendés, 2008-2016 (34) —
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—— Su rvey

QTAIM

o The position of the zeros, minima, and maxima of the laplacian in atoms has

been successfully related to a other atomic size measures.

Radius Li Be B C N O F Ne
T2 249 159 119 094 0.78 0.66 0.57 0.50
Radius  Na Mg Al Si P S Cl Ar
T2 0.44 040 036 033 030 028 0.26 0.24
T3 344 255 208 176 152 134 120 1.08
Radius K Ca Ga Ge As Se Br Kr
T2 0.23 021 0.13 0.12 0.12 0.12 0.11 o0.11
T3 098 090 049 047 045 043 041 0.39
T4 494 3.77 218 183 1.65 1.50

Radii of maximum charge concentration for the different atomic shells in some

elements. Quasi-HF results from multi—¢ Clementi and Roetti basis set.

= (©) Angel Martin Pendas, 2008-2016
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e V?2p suffers a restructuration upon molecule formation: Clz, NaCl HF //6-311G**

e (© Angel Martin Pendas, 2008-2016 (37)




—— Survey QTAIM

e V?p changes more noticeably if symmetry breaks: HoO:HF //6-311G**

o There are 4 tetrahedrally arranged VCC now.

o Two BVCC's and two lone pairs.

o They correspond to the VSEPR model: The angle between the two BVCC's is 103.8°
and 138.6° for the lone pairs.

——— (© Angel Martin Pendas, 2008-2016 (38)




—— Survey QTAIM

Atomic observables: The QTAIM global stance

= There exist well defined operator densities within QT subsystems. They may
be integrated over atomic basins, but since the actual form of the operators
depends on the structure of the basins, only in the case of QTAIM zero-flux
separated basins, we will get physically meaningful results.

= Let O be the density associated to 1-electron operator O:
0= [ 0ar=3"0n, 2)
74 Q

so all global observables are additively reconstructed from the atomic observa-
bles. The transferability that the latter have shown to have is the origin of the
constancy and experimental additivity of what we usually call group properties.

——— (© Angel Martin Pendas, 2008-2016 (39) —
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—— Su rvey

= Simple examples:

e V=1 =Vo= fQ dr. In isolated molecules Vo — oo usually. It is common
practice define an integration domain Q' = QN I(p = 0.002) u.a. These
atomic volumes are trasnferable.

e O =p = Nq = J,p dr. Domain populations.. They are usually
transformed into net atomic charges, ()o = Z — Nq. They are not

observables. Their variances 0%(Q) = (N?)q — N3 determine the quantum

mechanical uncertainty associated to electron populations.

e © Angel Martin Pendés, 2008-2016 (40) —
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= Atomic moments: Let us define the real spherical harmonics, 5;,,,

(S W +YE) m>0,

V2
Slm(97¢) — < Yle m — O,
\ (i\/i (Yijm) = Yijm) ™ <O,

With this, Soo = s, 517 = py, S10 = Dz: S11 = Pz, Sog = dgy, So1 = dyz,
S20 = dy2, So1 = dgz, Yy S22 = dg2_y2.
We define the spherical multipolar atomic moments, N, as

NG = [ 11816, O)p(r)ar.

N is the atomic population, the (N1, N1, N19) trio determines the atomic
dipolar moment vector, 1o, and the [ = 2,3,4,... moments are to be
identified with the different atomic quadrupoles, octupoles, etc.

s (©) Angel Martin Pendds, 2008-2016 (41)
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Atomic moments measure the atomic charge distribution distortion with respect
to an ideal sphere.
With the N3 we may reconstruct the molecular N*™ moments. For [ = 1, for

Instance,
no = /rpd'r — Z/ rodr = Z/ (r — RA)perrZ R 4 pdr
A /a4 A /4 A

— Z“A_"ZNARA = Mpol T HTC
A A

s (©) Angel Martin Pendds, 2008-2016 (42) e
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= Energetic components:

e Kinetic energy: Very problematic outside the QTAIM. T = G = Kq, with

1 / /
Th == V¥V p(r;r)dr,

2 Ja,

e Atomic energy: Using the virial Th.: Eq = —Tq. ! Equillibrium configurations

only.
e Nucleus-electron potential energy:

p(T)
Ven = —7 / dr,
AB o Qa |”° — RB|

VAB — BA

ZZ / . _2A|dr =) Vi

e © Angel Martin Pendés, 2008-2016 (43) —
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= Digression: Why the QTAIM?
e Only the atoms of the QTAIM have well defined energetic components:

o Only if the separatrices are of p is the domain 1" quasi-unique.

e The QTAIM is a quantum theory of subsystems.

o Open quantum regions

= (© Angel Martin Pendas, 2008-2016 (44) —
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3. A world beyond p(7): IQA

= Chemically partitioning ps introduces a energetic viewpoint in QTAIM.

= The energy depends only on the second-order reduced density matrix (2RDM):
p2(r1,m2; 71, 75) = N(N —1) /d’l"g, o drn U (P, Ty, rN) (T, T, TN
Its diagonal part is the two-particle density. Integrating one particle, we get the 1RDM,
p(ri;ry) = N/d'rQ, codry UT(rL, . rN)U(PL, . TN

Its diagonal part is the electron density. With this,

-~ 1 _
H., = Z hi + Z — = E =Tr(p1h) + =Tr(paris ) + Vin

Ti 2
1>7 i

= Now let us partition all the integrals into domain contributions...

e © Angel Martin Pendés, 2008-2016 (45)
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Ta = [q, dr tp1(r';r); VAB = _7p Ja, dr pL(T) . AA — > fQA dry [q, dra p2(r1,73)

[Rp—r[’ 712
AB _ ZaZp AB _ p2(r1,r2)

A AB
Eself Eznt
_A\

E = Z {TA + VA 4 Ve‘if“} + {VeﬁB +VAE VAP 4 VeéB}
A>B

= Since p2 = pS + p3°, with pS = p(r1)p(r2), VAE = VAP + VAB
Eznt Vclas + VﬂiféB

= |f binding with respect to a reference is needed, then

Evina = Z (Efelf_EA’O) Z Eznt — ZEdef - Z{ las + V:JcéB}

A A>B A>B

s )\ = fQA drq fQA dre pzc(ri,r2),
§4P = 2 Jg, dr1 [o_ dra pec(ri,T2), localization and delocalization indices. They
measure the number of localized electrons, and the number of delocalized pairs (~
covalent bond order)

e © Angel Martin Pendés, 2008-2016 (460) —
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3. IQA in the H, molecule I. The 'Y/ state
» FCI//TZV(p,d) calculations. True chemical bond.

0.1 . ' ' '
e The atomic dipole Q19

changes sign.

e Its maximum  almost
. coincides with V?p
crossing the axis.

e The atomic quadrupole
Q20 < 0.

e Many energetic contribu-

Qf\/e.alo, szb/e.a65

- tions follow the dipole.

0 2 4 6 8 10

= (© Angel Martin Pendas, 2008-2016 (47) e
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= |QA analysis of Eping

01 : T I : |
. Eping(integr) + |
Eping(@nalyt) -oeo- ® Fgecr is very small

(8 kcal/mol) at R..

o limp ;o Eself — E(H)

0.0 """""""""""""" T — *‘ ® Fg.r increases steeply at
c . 1 ‘ short distances.
L
w e Binding is basically inter-

—0.1 action.
e Two deformed H atoms
interact strongly.
0.0 o | . | e Delocalization is large.
0 2 4 6 8 10
Mn/ag

e © Angel Martin Pendés, 2008-2016 (48)
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o Fg.r > 0: from a restricted
s Self-Energy: A balance of large components. variational principle.

o T4 follows (D10, the atomic

0.3 . . . . _
: dipole.

e V.. has an important con-

tribution from the delocali-

zed electrons from atom B

1 o VA4 £ 0. A direct mea-

sure of electron delocaliza-

E/E,

tion

e Delocalization changes all
energetic components. The
total energetic change is

very small.

0 2 4 6 8 10 ® The environment =~ per-
turbation = AFE.rr ~
fA‘A/pA’O — AEself ~ (.

e © Angel Martin Pendés, 2008-2016 (49) —
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= Interaction energy decomposition.

e For R > 4.5 All compo-
nents basically converge to
Coulombic 1/R behavior.

e For R < 4.5 the series diver-

ges. Overlap (Delocalization)

is felt. (Multipolar regime vs.
short—range regime.

E/E,,

e V.. < J. An important part
of the interelectron repulsion
has become monocentric .

Not a big Escr penalty, a
int big decrease in Ei,; =

-0.5 ' ' ! ' ' signature of covalency.

e (© Angel Martin Pendas, 2008-2016 (50) —
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= Interaction energy decomposition Il.

0.1 |
00 e
AB
LI\JS -0.1 + Vel
L VD
-02 + AB
VSRR
AB
Veorr
—0.3 |
_04 I I I I I
0 2 4 6 8 10
Mn/ag

= (©) Angel Martin Pendas, 2008-2016

Viias > 0. Small even at Re. At
variance with other analysis.

Eint is the only sta-
bilizing contribution.
Interaction binded molecule

Eint = Vclas + Vie.

Vzc is the stabilization mecha-
nism. Exchange—correlation
binded molecule.

Vie = Vx + Veorr:
o At R~ R., VAB >0,

= Resonance binding.

o At R>> R., VAB <0, and
V4B — Vyx. Cannot se-
parate exchange from corre-
lation. Dissociation problem

& Static correlation.

(51) —
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Some numbers at the exp. geometry:

Prop. HF  CAS[2,2] FClI e The sensitivity of magnitudes to calculation level
Qi -0.1021 -0.1068  -0.1064 Is very dependent on the type of magnitude.
Q5 -0.3617  -0.3452 -0.3488 o Intraatomic: J (0.9%, 0.2%); Vae (1, 0.2);T
T'p 0.5608 0.5805  0.5849 (5, 1); Vze (20, 4). Those related to xc mo-
Vi -1.2153  -1.2277  -1.2251 re sensitive, in general. However, Vx (0.4, 1)
VA4 0.1979 0.1628  0.1532 relatively stable.

AA . o .
J 0.3957 0.3994 0.3984 o Interatomic: Similar behavior. J stable, V..

Vi 01979 -0.2366  -0.2452 sensitive through correlation.
Va4 -0.1979  -0.1988  -0.1967
VA4 0.0000 -0.0378 -0.0486
Ef.,  0.0432 0.0154  0.0128
VAB  _05974  -0.5975 -0.5975
VAB 0.2619 0.2993  0.2871
JAB 0.5236 0.5237  0.5236
VAB  _02619  -0.2244 -0.2365
VAB  -0.2619  -0.2522 -0.2510 _
VAB 00000  0.0279  0.0145 tron correlation.

EAB  _0.2193 -0.1820 -0.1942

nt

e Correlation has different behavior for intra—, in-
teratomic magnitudes. Correlation stabilizes intra-,

destabilizes inter-.

e HF delocalizes too many electrons.

e F;nt (FCl) is about 120 kcal/mol. The resonance
energy Vx ~ 160 kcal/mol. In agreement with che-
mical wisdom FEj . decreases on increasing elec-

e © Angel Martin Pendés, 2008-2016 (52) —




The H; molecule Il. The *X state
m FCI//TZV(p,d) calculations.
0.1 / / (p ) . . 1.0 0.1
' 108
~0.1 | 0.0
- 106
g -02} 4 ur
<_ | L
o % 1 0.4
-0.3 + *'.* S —— -0.1
"-‘-.‘ T —
04 L “""i SAB(S) ..... doeen 1 0.2
............... . .'+.+ SAB(T)
-0.5 —— e 0.0 -0.2
0 2 4 6 8 10
Mn/ag

— (O Angel Martin Pendas, 2008-2016

Efe(T) ——
EfYS) e 1
EpT)

6 8 10
/2o

= The triplet does not accummulate bonding charge. Delocalization is smaller.

A mch smalle, bt saifzing B 1

= The triplet has a much larger deformation energy. Why?
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Charge Transfer. The LiH molecule.
= CAS[2,2]//6-311G* calculations.

Q|A/e.a'0

""""
.
.
P
Y
Ry
Iy
.

R = 10,5.5,3 bohr.

0.2 | - - S
......... Hook lonization.
-0.4 f I Forward & backwards
-0.6 ' ' ' ' polarization.
0 2 4 6 8 10

= (©) Angel Martin Pendas, 2008-2016
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= Binding energy Analysis: The reference.

0.55
0.50 e Eg4.f/neutral atoms =~ 140
0.45 kcal /mol.

040 ©® Edeyr/ions
~ —12 kcal/mol. Negative

0.35 due to incomplete ionization.
QI ,0'30 e Everything has two regimes.
L 0.25 Atomic, lonic.
’ | 0.20 e Ej.r dueto Egglf'
-0.2 t 1015 o gl — EYT just 5
S o ) 41 0.10 kcal /mol.
0.3 e 1005 e oUH describes beautifully the
0.4 | . | | 0.00 ionization.
o) 2 4 6 8 10

e (© Angel Martin Pendas, 2008-2016 (55) —
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» Interaction Energy. Classical Behavior

2.00

1.00

0.00

A E/E,

-1.00

-2.00

-3.00

Ry in/ag
= All the interaction terms are very well represented by their classical expressions

m Vias i1s 86% FE;,: at R.! Electrostatically binded system.

0.00

—-0.05

—-0.10

-0.15

-0.20

-0.25

—-0.30

-0.35

5 6
R in/an

= Ve =~ resonance. Two regimes with a plateau. _

— (O Angel Martin Pendas, 2008-2016
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Polar bonds: the 'A; H,O molecule.

e CAS[6,5]//6-311G** calculation.

o 3 Quantum Atoms, 2 bond paths; 2 bonded, 1 non—bonded interactions.

o A summary of the topological properties:

Prop. Value
Ob 0.3896

V?p, -2.7361
G 0.0897

Q(H) 0.5598

= (©) Angel Martin Pendas, 2008-2016

©)

©)

Large density at BCP.
Large negative Laplacian.
Considerable CT.

Shared interaction.

Two non—-bonded VCC's

(57) —
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What do we expect on physical grounds?

e O-—H interactions with

large Fxchange/Resonance contributions.

large Electrostatic terms.

e H-H interaction with important classical repulsion.

Property O H
ATA 0.6349 -0.1060
AVAA -6.5823 0.1187
AVAA 6.1149  [0.0431
Ej 0.1675 0.1956
OH HH
EAB -0.4897 0.1239
vAB -0.1976 -0.0055
VB -0.2921 0.1295
Jl‘;‘,B diverges 0.1376
548 0.6148 0.0404

= (©) Angel Martin Pendas, 2008-2016

o A reference is difficult to find.
o The H atom looses charge = AT < 0, AV, > 0.
o OH delocalization very large = AV, > 0.

o Fint for OH very large. 60/40 partition into class
cal/QM
o Ve for OH similar to the single bond in Hs.

o HH interaction dominated by classical, multipolar

repulsion.
o Negligible HH delocalization.

o Clear partition into bonded & non—bonded

interactions.

(58) ——
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4. Other IQA examples.

= lonicity, Polarity, Covalency. HF//TZV(p,d)

Examples

Q(H) -0.9111
oAH 0.2040
5HH _

ELAT.0.2886
EAH  _0.2518
VB -0.0367
VZp,  0.1420

= (©) Angel Martin Pendas, 2008-2016

-0.5551
-0.3548
-0.2002
-3.0992
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= Bond formation and bond breaking. HoO CASJ[6,5]//6-311G** calculation.

a b
»
™ &I\/ Property a b C d
/Q Qu 0.088 0.312 0.546 0.560
ve ECH -0.059  -0.227  -0.518  -0.490
-4 14 voH 0.001  -0.052  -0.304  -0.292
C d VOoH -0.060  -0.175  -0.214  -0.198
’N\/’ R EHH 0138 0016 0252  0.124
[ ) \/‘\’ Vi 0.050  0.117  0.278  0.130
“’1).4\'/ = Vv HH -0.188  -0.098  -0.026  -0.006
By, -1.018  -0.722  -0.345  -0.485
} Eo -74.731  -74.783 -74.577 -74.633
a b,c,d

e (© Angel Martin Pendas, 2008-2016 (60) —




IQA Examples

= Isomers & Functional Groups: HCN vs. CNH. [ HF//TZV(p,d) ]
CNH

Net charge

SAB 0.022
R(bohr)

1.742 .664
T

1.174 2168  _q1749 1857 575

0.084

TN

0.916 2.291
i g 2 g

0212 9% 11200 %1% _1411

HCN

e © Angel Martin Pendés, 2008-2016 (61)
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= Isomers & Functional Groups: HCN vs. CNH. [ HF//TZV(p,d) ]
CNH

Net charge

EAB 0.2425
IRtB -0.00
Vxc |
—-2.0702 -0.571
‘ 070 ‘ 0.5710 ®

1.174 “94632_9 749 02099 575

—0.1060

m\

-0.1240 —-1.8862
.

0212 2?7749 200 97031 411

HCN

e © Angel Martin Pendés, 2008-2016 (62) e
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= Isomers & Functional Groups: HCN vs. CNH. [ HF//TZV(p,d) ]
CNH

Net charge
Efhe
VP

e AFE ~ 10 kcal/mol.
o AFE . r(CN) < 6 kcal/mol.

o Fserr (CN/HCN) within 1 —~0.2300
kcal/mol of extrapolated va-
lue using the E.A. of CN -0.2878
(0.1420).
— o
0.212

HCN

e (© Angel Martin Pendas, 2008-2016 (63)
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= Multiple bonds. Ethane-Ethyne HF//TZV(p,d)
0.9835\\4 —-0.039 0.9746 2.867 +0.1455

8
Q.mss Z/f_ —0.6045

—0.2530 & —37 4162 =y (4220

~0.2924 X —37.4467
—0.2867 -0.4381 —0.7544

_0_431039001 _0006

e (© Angel Martin Pendas, 2008-2016 (64) e
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= Multiple bonds. HF//TZV(p,d)

-0.2 - - - - -0.2
-0.3 -03 1 Estandara —%—
Vo oo o
~0.4 0.4 | X
e =
w o5 w o5 ¢t
LL LL
-0.6 -0.6 ¢
-0.7 + 4 -0.7 -
@ o
-0.8 ' ' ' ' -0.8 ' .
0.5 1.0 1.5 2.0 2.5 3.0 -04 -0.3 -0.2 -0.1
SAB Eexo/Eh

o E;:B changes by a few kcal /mol for equivalent bonds.

e Interaction energies are proportional to delocalization indices.

o  The correlation is best for VA5

e Standard Bond energies are proportional to _

o The correlation is best for VA5

e (© Angel Martin Pendas, 2008-2016 (65)
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