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Simple view of van der Waals forces

Why  ΔE d-RPA is often good enough.   Ec (dRPA) results for cohesion of layered vdW xtals

Various fxc s and starting { εI, φi}, and their effect on vdW C6 coefficients

What are the fxc effects beyond RPA in ACFDT?

Formal expressions for vdW energy of separated and joined systems.

Some cases where dRPA is not good enough



ORIGIN OF VDW (DISPERSION, RESIDUAL COULOMB) FORCE
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A correlation effect, highly nonlocal so LDA & GGA FAIL

Get from 2nd order perturbation theory (for small systems)
Or via theory of response (polarisability, coupled plasmons)

Weak but ubiquitous - additional to covalent, ionic bonds

2
(2) 2 2 1 0

6 6

dE
R R

α < > α α ω
= − ≈ −

=

R
+
-

-
+



2
'

(( )

(( )

) ( )

)

′

′′′ ′ ′′
′′ ′′

′

′

′
′

′ ′

′

= +

×

, ,

⎛ ⎞
⎜ ⎟+ , ,
⎜ ⎟−

.

, , , ,

⎝
, ,

⎠

∫

∫

G GG G

G G GG

G

GG

G

G G

K KS

xc

Sr r

e r r dr
r r

r r r r

drf r r

λ

λ λ

χ ω χ

ω

ωχ ω

λ χ ω

n(r)δ =

n( r ) exp( i t )
V( r ') exp( i t )dr '

δ − ω
= δ − ω∫

G
H G

Electronic response functions in TDDFT
(exact but looks like mean-field theory)

Eff. Internal field

Bare Response to int field

(beyond-RPA MB physics)
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Bare Resp to ext field (one-body physics)KS 0λ=χ ≡ χ
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Density-density response function χλ

χλ= +χλ χ0+ χ0Uλ=



Interacting(λ) and KS (λ=0) dens response
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Fully interacting M-B eigenstate

Fully interacting M-B energy

Kohn-Sham orbital

Kohn-Sham eigenvalue

Fermi factor
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W12 perturbation theory and vdW:
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Gen. nonoverlapping

finite systems

nonlocal dens-dens resp of isolated 
system 2 (incl W11to all orders)

H.C. Longuet-Higgins, Disc. Faraday Soc. 40, 7 (1965).
E. Zaremba and W. Kohn, P.R.B 13 2270 (1976).
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“ZK formula, Generalised Casimir Polder formula”
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ZK Not valid for overlapped systems –
cannot deal with indistinguishability, 
exchange: symmetry adapted pert. th. is 
better
See Jeziorski, Moszinski, Szalewicz et al

MPx OK for overlapped systems, 
(“seamless”) but can require higher and 
higher order as systems become larger

Gen Casimir PolderMP

MPx includes all e-e interactions w, 
not just w12.  MP2 vdW only includes 
bare responses – OK for many small 
weakly polarizable systems eg Ar-Ar, 
not v. good for (e.g.) Be-Be, wrong for 
extended metals. (JFD, J. Comp Th
NanoSc 09)

MPx, ZK, SA perturbation theory

W12

W12

W12

W12
W11

W11
Response 
includes 
internal 
interaction 
W11 to all 
orders



vdW energy: well separated systems
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EXACT ADIABATIC CONNECTION-FDT APPROACH FOR 
CORRELATION ENERGY (INCL VDW AT ALL SEPARATIONS)
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Insert expr. for χKS from {φi}  ⇒ Ex = EHF({φi}) 

Our Exc contains EXACT DFT EXCHANGE

ACF-FDT (exact)

Can show χRPA gives asy -C6R-6 result for vdW betw small systs.  



Diagrams and RPA
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ACF/FDT STARTING WITH  χKS CONTAIN ALL THE 
BASIC CHEMICAL AND PHYSICAL FORCES - II
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JFD  pp 121-142 in 'Topics in condensed matter physics', Ed. M.P. Das, (Nova, NY 
1994, ISBN 1560721804. ) ( Hard to get: reproduced in cond-mat/0311371)

This is the exact result from perturbation theory except  A→ ARPA
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E.g. for isolated spherical systems in the dipolar approx,

Result does not appear to be true for RPA+approx fxc! 

RPA  ⇒ vdW (Casimir-Polder):



Conventional view: 
“universality” of asymptotic vdW

Rij

“Take vdW as given between atoms or 
sub-units:  Eij ≈ -C6
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pairwise contributions

( ) 6
6

, :
"ij

vdW ij
i j i j

E C R −

≠

= − ∑

“Triplet and higher terms – e..g. ( ) 3 3 3
9

,

3)

,

( ijk
ij jk ik

i
vd

j
W

k
C R RE R− − −= −∑

do not make a qualitative difference.”



Distant vdW interaction from coupled-
plasmon ZPE / RPA - preview
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•ΣC6R-6 can be very wrong for anisotropic nanoconductors where electrons can move 
large distances leading to large poorly screened polarizations

L << D

D
W >>D

J. F. Dobson, A. White and A. Rubio, Phys. Rev. Lett. 96,  073201, (2006)

•Insulators, 3D metals: ΣC6R-6 gives qualitatively OK results, but

W>>D

D

L>>D

W
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2A  << D

L>>DΔEc  ∼ const D-2

(metallic or insulating)



SOME WEAKNESSES OF dRPA ENERGY  (ACFDT with fxc = 0)

1 dRPA does not exclude incorrect orbital self-interaction in the dynamical response

This can be a big problem where one wants to describe correlations 
between s electrons eg He2, Be2.  But SIC is not a major problem (e.g.) for 
spatially extended 2π orbitals that are important in graphitic cohesion.  
The SIC problem is largely fixed by RPAx, ISTLS, ….

2. dRPA gives a poor account of the short ranged part of the correlation hole. 
It therefore often grossly overestimates the absolute correlation energy. 

E.g.  Homogeneous electron gas, rs= 10,:    ec = -22 mH/e.   ecRPA = -30 mH/e
As pointed out by John Perdew et al, the RPA error in Ec often largely 
cancels out in forming isoelectronic energy differences – e.g. change in 
correlation energy when one moves two nanostructures apart, as in binding 
energy curve calculations.   This is especially true where the orbital symmetry 
and degree of localization are not changing.  See example next slide.
This sr corr hole problem can also be addressed by (e.g.) RPAx, RPA+fxcr or
range separation methods or ISTLS. Num. application to layer binding of 
graphitics in ACFDT is not complete  (Seb Lebegue has preliminary results).

3. RPA as usually implemented may strongly depend on input orbitals
and self-interaction effects are very important here (ideally need SC RPA????)



Short ranged correlation from Energy Optimized fxc :
little effect on jellium slab binding cw RPA 

LDA

RPA

NLEnOpt

D
J. Jeil, P. Garcia-Gonzalez+JFD+,  PRB 70, 205107 (2004)D

L
L = 3aB

D
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NANOSCIENCE: 2D BLOCH BANDSTRUCTURE OF 
ISOLATED 2D GRAPHENE

kx

ky

E(k)

K1 (2π/(√3a), 2π/(3a))

K2 (0,4π/(3a))

M

K1′

K2 ′′ K2 ′

Γ (0, 0)

kx

ky

1st Brillouin Zone (k space)

Bandstructure near “Dirac” K-points in Brillioun
Zone is crucial for density response at low frequency 
and wavenumber: see next slide. 
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ky

E(kx,ky)

Bandstructure of 
single graphene plane 

(semimetal)
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E(kx,ky)

Bandstructure of 
single BN plane 
(semiconductor)
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E(kx,ky)

Bandstructure of metal 
(e.g. e- doped BN  

plane)
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Lattice and bandstructure of graphite

kx

ky

E(kx,ky)

Bandstructure of single 
graphene plane (semimetal)

From J. C. Charlier, X. Gonze
and J.-P. Michenaud, 

PRA 43, 4579 (1991)



RPA CALCULATION OF CRYSTALS: GRAPHITE LAYER BINDING ENERGY

Graphite,  Sebastien Lebegue et al (VASP) unpublished 2009

AB graphite geometry with in-plane lattice parameter fixed at exptal value 2.46 A.

Computations done for various values of layer stacking parameter D.

Plane wave cut-offs: 800 eV for the correlation part and 700 eV for the Hartree Fock part.

k-points used: Up to 14 × 14  × 6  for correlation part, 26×26×8 for HF part

This fine k subdivision was needed to sample reasonably finely the regions round the 
Dirac points K, K’ in the 2D graphene Brillouin zone, where the gapless feature of the 
graphene electronic bandstructure occurs. leading to small pockets of electrons and holes. 
This affects Ex and also unusual causes singularities in response functions at long 
wavelength and low frequency, affecting Ec

Previous full RPA calculations for crystals: Si, Na, boron nitride, rare gases..

Miyake, Aryasetiawan,  et al:  Marini, Rubio et al: Harl et al



LAYER BINDING ENERGY GURVE OF AB GRAPHITE:
Lebegue et al, unpub 2009

Best lattice spacing and layer-stretching elastic constant, and benchmark layer binding



LAYER BINDING PROPERTIES OF GRAPHITE
IN QUANTUM MONTE CARLO (VMC, DMC) 

Spanu, Sorella & Galli, Phys. Rev. Lett. 103, 196401 (2009)



J. Toulouse et al, 

RPA in Ne2 binding curve



J. Toulouse et al, 

Severe failure of RPA in Be2 binding curve: 

related to SIC and/or degeneracy effects?



FUTURE DIRECTIONS – GRAPHITIC ENERGETICS VIA RPA

The present graphite calculation was a tour de force, made possible because VASP is 
efficient and a large number of k points were able to be used.

More complicated geometries – intercalates, nanotubes, etc etc – would be very 
difficult within RPA (even within VASP)  if many need k points are needed.

A possible solution involves the use of much coarser k grids, but with analytic 
calculation of the response contributions from the sensitive regions near the Dirac 
K points.

The failure of the short-ranged correlation hole in RPA should be addressed, 
although experience with jellium layer problems suggests its effect on the 
energy differences of interest here is probably quite small.

One way to improve this is the range-separated approach in which the short-
ranged correlations are treated separately.

One can hopefully also try higher theories (eg RPAx vs present d-RPA).

A quite different way to simplify the calculations is to use hydrodynamic-style 
approximations for χ0 (JFD has grant for this).  



Range-separated energy functionals
Started with Savin et al 1980’s (short-ranged LDA with long-ranged CI) 

Split bare Coulomb interaction W=Wshort range+Wlong range

Treat SR by DFT, LR by another method (perturbation, ACF/FDT….)

Kohn, Meir, Makarov PRL 1998: rigorous SR/LR separation for ACF/FDT

Angyan, Savin, Toulouse  et al : another aproach, using 2nd order pert. for LR 
part, and recently RPA RPA/x correlation for long ranged part.  Also TD.

More empirical hybrids: Goursot, Elstner

The "Energy optimized Fxc" (Dobson, Wang PRB 2000) was 
designed to be local and frequency independent, but to give 
correct Ec via ACFDT for hom. gas.
A spatially nonlocal version was given in Jung et al PRB 04

Energy optimized fxc

SOME LESS-KNOWN WAYS TO GO BEYOND RPA IN ACFDT 
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C6 /C6 (exact) for closed shell atoms
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Toulouse, Gould et al 2009 unpublished
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